首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When pairs of adult male crickets (Gryllus bimaculatus) that had been housed individually for 7 days were placed together, they fought, and dominant-subordinate relationships were formed within 1min. Aggressive behavior by the dominant male was repeated during the period in which the two males were kept together. Immediately after 10min of aggressive interaction, brain serotonin (5-hydroxytryptamine, 5-HT) levels were unchanged in dominant males and significantly reduced in subordinate males. The emission of aggressive song by dominant males is known to be abolished by removal of the wings. All wings were thus removed from male crickets. After 7 days of isolation, pairs of wingless males were placed together. The wingless males fought and formed dominant-subordinate relationships within 1min. The wingless, dominant males displayed aggressive behavior. Brain 5-HT levels in the wingless males were reduced immediately after 10min of aggressive interaction, and no significant differences in brain 5-HT levels were detected between the dominant and subordinate males, unlike the case for intact males. These data indicate a difference in brain serotonergic activity between dominant and subordinate male crickets during aggressive interaction, and suggest that aggressive behavior by dominant male crickets rapidly reduce brain 5-HT levels in subordinate ones. Furthermore, the data suggest that aggressive song is responsible for the change in brain 5-HT levels.  相似文献   

2.
PNMT (phenylethanolamine-N-methyl-transferase) is the enzyme that catalyzes the formation of epinephrine from norepinephrine. In transgenic mice over-expressing PNMT, observations revealed a very high level of aggression compared to their background strain, C57BL/6J. To evaluate the influence of PNMT on aggression and emotionality in this transgenic line, single-sex male and female groups were independently established that consisted of either four wild-type mice or four transgenic mice overexpressing PNMT. The members of each group were littermates. Mixed single-sex groups consisting of two transgenic mice and two wild-type mice were also established. Almost no fights were observed within the female groups. In males, the transgenic line showed a significantly higher level of fighting than controls (p=0.007) and mixed male groups (p=0.02). Housing mice from the transgenic line in mixed groups with wild-type mice seems to decrease the level of aggression in the transgenic line. In conclusion, this is the first study to demonstrate a clear, significant increase in aggression arising from PNMT overexpression. This suggests an important role for central epinephrine levels in aggressive behavior.  相似文献   

3.
The ant, Formica japonica, is polyphagous and workers hunt other insects as foods. In this study, interspecific aggression was examined in the workers and queens. Behavior experiments demonstrated that interspecific aggressiveness was significantly higher in workers than queens. Workers showed predatory aggressive behavior towards crickets, on the other hand, queens elicited threat behavior but they didn't attack crickets. In order to investigate neuronal mechanisms underlying regulation of aggressive motivation, the role of biogenic amine in the brain in evoking aggressive behavior was examined by measuring biogenic amine using high-performance liquid chromatography (HPLC) with electrochemical detection (ECD). No significant difference in the octopamine (OA) level was found between workers and queens, but the level of N-acetyloctopamine (NacOA) in the brain of queens was significantly higher than that of workers. This study suggests that OAergic system in the brain must involve in controlling aggressive motivation in the ants.  相似文献   

4.
Cuticular substances on the body surface of crickets serve as pheromones that elicit a variety of different behaviors in male crickets. Antennal contact between males and females resulted in courtship behavior, and that between two males resulted in aggressive displays. As a first step in elucidating how crickets recognize and discriminate individuals, behavioral responses of male individuals to cuticular substances of conspecific males or females were investigated. The behavioral responses of males to antennal or palpal stimulation with an isolated antenna from a male or a female were recorded. To both antennal and palpal stimulation with female antennae, the majority of males responded with courtship behavior; to stimulation with male antennae, males responded with aggressive displays. To gain insight into the chemical nature of the behaviorally relevant components, isolated antennae were washed in either n-hexane, acetone or ethanol before behavior assays. Washed antennae no longer elicited courtship or aggressive responses in males. Next, polypropylene fibers were smeared with substances from the body surface of females and used for antennal stimulation. This experiment showed that the quality and quantity of cuticular substances appear to be highly age-dependent. Significantly more males responded with courtship behavior to cuticular substances from younger females. Isolated males generally showed higher levels of aggression than males reared in groups. Grouped males also were more likely to display courtship behavior towards antennae from younger females, and aggressive behavior towards antennae from older females. These results suggest that male discrimination of mating partners depends on the nature of female cuticular substances.  相似文献   

5.
Convict cichlids (Archocentrus nigrofasciatus) are a territorial, monogamous, and biparental Central American cichlid fish. Convicts exist in two common color morphs: the wild-type (WT) black-barred form and an amelanistic (AM) barless morph. Color morphs affect aggressive interactions in other species of fish. We staged fights between males of each color morph with varying size asymmetries and found that WT males were able to overcome a size disadvantage by increasing their rate of aggressive behavior. AM males lost more often when smaller than their opponent, apparently because they did not increase their rate of aggressive behavior when at a size disadvantage. We discuss two possible hypotheses to explain these findings: (1) that there are genetic differences in aggressive behavior between the morphs and (2) that AM fish are disadvantaged in staged contests because they are unable to signal via changes in bar coloration.  相似文献   

6.
Rillich J  Stevenson PA 《PloS one》2011,6(12):e28891
Winning an agonistic interaction against a conspecific is known to heighten aggressiveness, but the underlying events and mechanism are poorly understood. We quantified the effect of experiencing successive wins on aggression in adult male crickets (Gryllus bimaculatus) by staging knockout tournaments and investigated its dependence on biogenic amines by treatment with amine receptor antagonists. For an inter-fight interval of 5 min, fights between winners escalated to higher levels of aggression and lasted significantly longer than the preceding round. This winner effect is transient, and no longer evident for an inter-fight interval of 20 min, indicating that it does not result from selecting individuals that were hyper-aggressive from the outset. A winner effect was also evident in crickets that experienced wins without physical exertion, or that engaged in fights that were interrupted before a win was experienced. Finally, the winner effect was abolished by prior treatment with epinastine, a highly selective octopamine receptor blocker, but not by propranolol, a ß-adrenergic receptor antagonist, nor by yohimbine, an insect tyramine receptor blocker nor by fluphenazine an insect dopamine-receptor blocker. Taken together our study in the cricket indicates that the physical exertion of fighting, together with some rewarding aspect of the actual winning experience, leads to a transient increase in aggressive motivation via activation of the octopaminergic system, the invertebrate equivalent to the adrenergic system of vertebrates.  相似文献   

7.
Lobsters become transiently more aggressive before ecdysis. This aggressiveness accompanies an increase in hemolymph titers of 20-hydroxyecdysone (20-HE). Combats between intermolt female lobsters, injected with premolt levels of 20-HE, and larger, saline-injected opponents were videotaped. Aggressive, defensive, and avoidance behaviors were ranked according to aggressiveness in a Rank of Aggression hierarchy, which included opponent-directed and (nonopponent) redirected behaviors. Treated animals performed more and more highly aggressive behaviors than saline-injected controls. Opponents of treated animals performed fewer aggressive behaviors than saline-injected control opponents. Controls performed more defensive behaviors than treated animals, when redirected behaviors were considered. Differences in avoidance behaviors among the four types of combatants were not significant. The total aggressive content was the same in treated and control fights, but the interactions between combatants in the two fights were significantly different. Treated animals were equally as aggressive and defensive as their opponents; controls were relatively less aggressive and more defensive than their opponents. These results correlate with molt-cycle variations in behavior, 20-HE titers, and the effects of 20-HE and molt-differentiated hemolymph on the claw opener muscle. They suggest that 20-HE orchestrates intrinsic, cellular, and nuclear events that produce the molt-cycle transformations in agonistic behavior and aggressive state of lobsters.  相似文献   

8.
Male Weaponry in a Fighting Cricket   总被引:1,自引:0,他引:1  
Sexually selected male weaponry is widespread in nature. Despite being model systems for the study of male aggression in Western science and for cricket fights in Chinese culture, field crickets (Orthoptera, Gryllidae, Gryllinae) are not known to possess sexually dimorphic weaponry. In a wild population of the fall field cricket, Gryllus pennsylvanicus, we report sexual dimorphism in head size as well as the size of mouthparts, both of which are used when aggressive contests between males escalate to physical combat. Male G. pennsylvanicus have larger heads, maxillae and mandibles than females when controlling for pronotum length. We conducted two experiments to test the hypothesis that relatively larger weaponry conveys an advantage to males in aggressive contests. Pairs of males were selected for differences in head size and consequently were different in the size of maxillae and mandibles. In the first experiment, males were closely matched for body size (pronotum length), and in the second, they were matched for body mass. Males with proportionately larger weaponry won more fights and increasing differences in weaponry size between males increased the fighting success of the male with the larger weaponry. This was particularly true when contests escalated to grappling, the most intense level of aggression. However, neither contest duration nor intensity was related to weaponry size as predicted by models of contest settlement. These results are the first evidence that the size of the head capsule and mouthparts are under positive selection via male-male competition in field crickets, and validate 800-year-old Chinese traditional knowledge.  相似文献   

9.
To test whether insect antennae are necessary for eliciting courtship and aggression toward appropriate partners, we antennectomized adult male crickets (Gryllus bimaculatus) and observed their behavior toward other antennectomized males and intact females. At 7 days after removal of both antennae, pairs of antennectomized males were placed together; 80% displayed courtship behavior, generating courtship song by rubbing their forewings together, toward other antennectomized males, and 20% displayed aggressive behavior. Only 45% courted intact females. No intact males courted antennectomized males, and 80% displayed aggressive behavior. All intact males courted females. The results for males with one antenna removed were essentially the same as for intact males. These findings indicate that a high proportion of male crickets with both antennae removed court other males and fail to display male-male aggression, demonstrating that removal of antennae from male crickets induces male-male courtship and that an antenna is necessary for the expression of male-male aggression. Moreover, brain serotonin (5-hydroxytryptamine; 5-HT) levels in male crickets were significantly reduced at 7 days after removal of antennae. The reduction of 5-HT was detected primarily in the central body of the brain. Thus, 5-HT in the central body of the male cricket brain may be involved in the behavioral changes.  相似文献   

10.
In this study we present evidence that 20-hydroxyecdysone (20E) affects agonistic behavior in male American lobsters and that male and female animals differ in their response to the hormone. Thirty-minute staged fights were conducted between large males exposed either to artificial seawater (ASW) or 20E and small, anosmic opponents. The nephropores of both combatants were blocked. Fights were videotaped and quantitatively analyzed for aggressive, defensive and avoidance behaviors using an ethogram in which behaviors are ranked according to aggressiveness. Unlike female lobsters, exposing male lobsters to 20E did not increase their aggressive behavior; however, there was a marginally significant trend toward an increase in defensive behaviors with a lower aggressive content than in their ASW-exposed counterparts. The opponents of 20E-exposed animals performed significantly more aggressive behaviors than their counterparts. In fights with 20E-exposed animals, the overall aggressive intensity of the fight was increased and the animals performed a greater number of avoidance behaviors. Unlike the effects of 20E on females, where exposure to 20E caused an increase in overall agonistic arousal, males only exhibited a change in frequency of their behaviors. These findings suggest that while 20E affects both males and females in agonistic encounters, the nature of the effect is different for the two sexes.  相似文献   

11.
The teleost fish nonapeptides, arginine vasotocin (AVT) and isotocin (IT), have been implicated in the regulation of social behavior. These peptides are expected to be involved in acute and transient changes in social context, in order to be efficient in modulating the expression of social behavior according to changes in the social environment. Here we tested the hypothesis that short-term social interactions are related to changes in the level of both nonapeptides across different brain regions. For this purpose we exposed male zebrafish to two types of social interactions: (1) real opponent interactions, from which a Winner and a Loser emerged; and (2) mirror-elicited interactions, that produced individuals that did not experience a change in social status despite expressing similar levels of aggressive behavior to those of participants in real-opponent fights. Non-interacting individuals were used as a reference group. Each social phenotype (i.e. Winners, Losers, Mirror-fighters) presented a specific brain profile of nonapeptides when compared to the reference group. Moreover, the comparison between the different social phenotypes allowed to address the specific aspects of the interaction (e.g. assessment of opponent aggressive behavior vs. self-assessment of expressed aggressive behavior) that are linked with neuropeptide responses. Overall, agonistic interactions seem to be more associated with the changes in brain AVT than IT, which highlights the preferential role of AVT in the regulation of aggressive behavior already described for other species.  相似文献   

12.
Functions of fights in territory establishment   总被引:2,自引:0,他引:2  
Fights are often observed when prospective territory owners settle in patches of vacant habitat, but the function of these fights in space acquisition is obscure. This study tests two hypotheses about the effect of fights on subsequent space use patterns: first, that settlers win space by winning fights and, second, that fights encourage the establishment of mutually exclusive home ranges between opponents (i.e., "fights make neighbors"). The behavior of juvenile Anolts aeneus lizards was recorded as they established territories in patches of habitat in the field. In support of the fights-make-neighbors hypothesis, opponents whose last aggressive interaction was a fight were six times more likely to have mutually exclusive home ranges at the end of the settlement period than were otherwise equivalent dyads whose last encounter was a chase. Contra the hypothesis that settlers win space by winning fights, most last fights ended in a draw, and there was no discernable relationship between the outcome of last fights and the subsequent space use of the contestants. These and previous analyses of settlement behavior in this species suggest that fights during the settlement period encourage the formation of symmetrical social and spatial relationships between neighboring settlers.  相似文献   

13.
Agonistic behavior is a fundamental aspect of ecological theories on resource acquisition and sexual selection. Crustaceans are exemplary models for agonistic behavior within the laboratory, but agonistic behavior in natural habitats is often neglected. Laboratory studies do not achieve the same ecological realism as field studies. In an attempt to connect laboratory results to field data and investigate how habitat structure affects agonistic interactions, the nocturnal behavior of two crayfish species was observed by scuba diving and snorkeling in two northern Michigan lakes. Intraspecific agonistic interactions were analyzed in three habitats: two food resources-macrophytes and detritus-and one sheltered habitat. The overall observations reinforce the concept that resources influence agonistic bouts. Fights in the presence of shelters were longer and more intense, suggesting that shelters have a higher perceived value than food resources. Fights in the presence of detritus patches had higher average intensities and ended with more tailflips away from an opponent, suggesting that detritus was a more valuable food resource than macrophytes. In addition, observations of aggressive behavior within a natural setting can add validity to laboratory studies. When fights in nature are compared with laboratory fights, those in nature are shorter, less intense, and less likely to end with a tailflip, but do show the fundamental fight dynamics associated with laboratory studies. Extrinsic and intrinsic factors affect intraspecific aggression in many ways, and both should always be recognized as having the potential to alter agonistic behavior.  相似文献   

14.
The intraspecific behavior of the non-singing cricket Phaeophilacris bredoides Kaltenbach, 1986, which has no tympanal system, stridulatory apparatus, and classical acoustic communication, was studied. Even though this cricket has no song, its intraspecific behavior can be differentiated into reproductive and agonistic (defensive and aggressive), as this was done before for singing crickets. The main elements and the sequence of the phases were described for reproductive behavior. The active role during copulation belongs to the male. Wingflicks and rocking movements of the male can function as a “song.” Wing-flicks apparently generate air movements that function as short-range signals during reproductive and aggressive behavior. Substrate-borne vibrations produced by rocking also seem to be associated with aggressive behavior. Antennal contacts form an important part of interaction between crickets of both sexes. Thus, intraspecific signaling is at least partly mediated by mechanosensory channels. The assumption about the possible direction of evolution in the singing and non-singing groups of crickets was made.  相似文献   

15.
Aggression serves a great variety of social functions, one of which is protection of individual territories from intruders. Territorial males of many antelope species show aggressive noncontact displays, and only rarely fight. It has been suggested that ungulate males tend to have more frequent and longer aggressive interactions with rivals of similar age or social status than with males of dissimilar status. In the present paper, we test whether territorial and non-territorial males behave in a similar manner and avoid fights, and whether or not they preferentially direct aggressive and longer agonistic interactions towards males of similar age or social status, rather than towards other classes of males. We found that territorial males usually avoided straight fights with peers, and instead mainly used noncontact displays in aggressive interactions. In contrast, non-territorial males used fights considerably more often, especially during the onset of territoriality in April to May, when these males had their most frequent aggressive interactions. Territorial bucks aggressively interacted most frequently with non-territorial males and significantly less often with other territorial males, but agonistic noncontact displays between territorial males lasted the longest. In contrast, non-territorial males addressed their aggressive noncontact displays and fights most often to peers and less frequently to sub-adults. Asymmetry in the social status of territorial vs. non-territorial males was likely responsible for the distinctively different agonistic behaviors shown by the two types of males, which in turn are likely due to the different costs and benefits each male can accrue from these aggressive interactions.  相似文献   

16.
Interactions between male stag beetles usually involve aggressive behavior using their long mandibles as weapons to compete with rival males over females. Considerable variation exists within populations in male body size, and may affect their behavior and the outcome of male-male contests. We investigated the aggressive interactions between male Aegus chelifer chelifer, a small tropical stag beetle species. Morphological traits in relation to aggressiveness and the outcome of fights were examined in laboratory-reared beetles. The fight-engagement ratios of major and minor morph males were not significantly different and analyses revealed that the size of body parts had more effect on the fighting success than the weapon part (mandibles). The probability of winning a contest was higher in males with a larger head width (HW), and so HW was considered as the resource holding potential (RHP). No effects of the trait size on the initiation of fights or aggressive intensity was found. Relationships between the fight duration and RHP were not significantly consistent with any assessment strategies, but were close to the mutual assessment model.  相似文献   

17.
Aggressive and escape behaviors were analysed in crickets (Orthoptera) treated with either reserpine, a nonspecific depleter of biogenic amines, or the synthesis inhibitors alpha-methyltryptophan (AMTP) and alpha-methyl-p-tyrosine (AMT) to specifically deplete serotonin, respectively dopamine and octopamine. Standard immunocytochemical techniques were used to verify depletion from central nervous tissue, and determine the effective dosages. Reserpinized crickets became exceedingly lethargic and had severely depressed escape responses. However, they were still able to express all the major elements of the escalating sequences of stereotype motor performances that typifies normal aggressive behavior in the cricket. AMT and AMTP treatment had opposing influences on escape behavior, being enhanced by serotonin depletion, but depressed by dopamine/octopamine depletion. AMTP-induced serotonin depletion had no influence on aggressive or submissive behaviors. AMT-treated crickets could normally only be brought to fight by coaxing. Though capable of expressing aggressive behavior per se, agonistic encounters between AMT-treated crickets were shorter, and rarely involved actual physical interactions. Hence, although amines seem to have similar actions on escape behavior in insects and crustaceans, the aminergic control of aggression seems to be fundamentally different in these arthropods groups. We conclude that amines are not in principle required for the initiation and operation of the motor circuits underlying aggression in the cricket. However, octopamine and/or dopamine seem necessary for establishing a level of excitability sufficient for aggressive behavior to become overt in response to appropriate natural releasing stimuli.  相似文献   

18.
Predators unintentionally release chemical and other cues into their environment that can be used by prey to assess predator presence. Prey organisms can therefore perform specific antipredator behavior to reduce predation risk, which can strongly shape the outcome of trophic interactions. In contrast to aquatic systems, studies on cue‐driven antipredator behavior in terrestrial arthropods cover only few species to date. Here, we investigated occurrence and strength of antipredator behavior of the wood cricket Nemobius sylvestris toward cues of 14 syntopic spider species that are potential predators of wood crickets. We used two different behavioral arena experiments to investigate the influence of predator cues on wood cricket mobility. We further tested whether changes in wood cricket mobility can be explained by five predator‐specific traits: hunting mode, commonness, diurnal activity, predator–prey body–size ratio, and predator–prey life stage differences. Crickets were singly recorded (1) in separate arenas, either in presence or absence of spider cues, to analyze changes in mobility on filter paper covered with cues compared with normal mobility on filter paper without cues; and (2) in subdivided arenas partly covered with spider cues, where the crickets could choose between cue‐bearing and cue‐less areas to analyze differences in residence time and mobility when crickets are able to avoid cues. Crickets either increased or reduced their mobility in the presence of spider cues. In the experiments with cues and controls in separate arenas, the magnitude of behavioral change increased significantly with increasing predator–prey body size ratio. When crickets could choose between spider cues and control, their mobility was significantly higher in the presence of cues from common spider species than from rare spiders. We therefore conclude that wood crickets distinguish between cues from different predator species and that spiders unintentionally release a species‐specific composition and size‐dependent quantity of cues, which lead to distinct antipredator behavior in wood crickets.  相似文献   

19.
Photoaccumulation and random motility of wild-type and mutant gametes and dikaryons ofChlamydomonas reinhardtii were evaluated with quantitative assays and compared with those of vegetative cells. Gametes exhibited behavior similar to that of vegetative cells. Dikaryons constructed from (+) and (−) wild-type gametes exhibited strong photoaccumulation in the presence of a stimulus and normal random swimming in red light, which shows that the activity of flagella and other components from two cells can be integrated and coordinated to permit appropriate behavior. Dikaryons from crosses of the wild type with mutants exhibited intermediate photoaccumulation. suggesting that neither phenotype is dominant. In contrast, crosses between an abnormally swimming mutant and normally motile strains showed that wild-type swimming was dominant. Partial complementation of mutant photoresponse phenotypes occurred in some crosses, but recovery of fully normal behavior was not observed.  相似文献   

20.
Fighting behavior in male crickets is already well described, and some of the mechanisms underlying aggression and aggressive motivation have already been revealed. Much less is known about female/female interactions. Here, we report that adult female crickets that had been isolated for several days readily entered into agonistic interactions with conspecific individuals. Characteristic dyadic encounters between isolated females escalated in a stepwise manner and were concluded with the establishment of a dominant/subordinate relationship. For 15 to 30 minutes following an initial fight, former subordinate females showed a dramatic change in agonistic behavior. If they were paired with the former dominant opponent during this interval, a significant majority did not enter into any aggressive interaction but instead actively avoided the opponent. A similar experience-based and time-dependent increase in avoidance was observed when former subordinate females were paired with unfamiliar na?ve opponents. However, when faced with an unfamiliar subordinate individual in the second encounter, no such increase in avoidance behavior was observed. We propose that the observed changes in the behavior of former subordinate females are the consequence of a change in the general state of arousal and of the recognition of dominance status, but not of individual recognition. The fact that former dominant individuals did not show similar experience-based changes in agonistic behavior suggests that dominant/subordinate relationships between pairs of female crickets are maintained mainly by the behavior of subordinate individuals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号