首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Wong DL  Reich NO 《Biochemistry》2000,39(50):15410-15417
We describe a highly sensitive strategy combining laser-induced photo-cross-linking and HPLC-based electrospray ionization mass spectrometry to identify amino acid residues involved in protein-DNA recognition. The photoactivatible cross-linking thymine isostere, 5-iodoracil, was incorporated at a single site within the sequence recognized by EcoRI DNA methyltransferase (GAATTC). UV irradiation of the DNA-protein complex at 313 nm results in a >60% cross-linking yield. SDS-polyacrylamide gel electrophoresis and mass spectrometry were used to analyze the covalent cross-linked complex. The total mass is consistent with covalent bond formation between one strand of DNA and the protein with 1:1 stoichiometry. Protease digestion of the cross-linked complex yields several peptide-DNA adducts that were purified by anion-exchange column chromatography. A combination of mass spectrometric analysis and amino acid sequencing revealed that tyrosine 204 was cross-linked to the DNA. Electrospray mass spectrometric analysis of the peptide-nucleoside adduct confirmed this assignment. Tyrosine 204 resides in a peptide motif previously thought to be involved in AdoMet binding and methyl transfer. Thus, amino acids within loop segments but outside of "DNA binding" motifs can be critical to DNA recognition. Our method provides an accurate characterization of picomole quantities of DNA-protein complexes.  相似文献   

3.
Fingers domain of HIV-1 RT is one of the constituents of the dNTP-binding pocket that is involved in binding of both dNTP and the template-primer. In the ternary complex of HIV-1 RT, two residues Trp-24 and Phe-61 located on the β1 and β3, respectively, are seen interacting with N + 1 to N + 3 nucleotides in the template overhang. We generated nonconservative and conservative mutant derivatives of these residues and examined their impact on the template-primer binding and polymerase function of the enzyme. We noted that W24A, F61A, and F61Y and the double mutant (W24A/F61A) were significantly affected in their ability to bind template-primer and also to catalyze the polymerase reaction while W24F remained unaffected. Using a specially designed template-primer with photoactivatable bromo-dU base in the duplex region at the penultimate position to the primer terminus, we demonstrated that F61A, W24A, F61Y as well as the double mutant were also affected in their cross-linking ability with the duplex region of the template-primer. We also isolated the E–TP covalent complexes of these mutants and examined their ability to catalyze single dNTP incorporation onto the immobilized primer terminus. The E–TP covalent complexes from W24F mutant displayed wild-type activity while those from W24A, F61A, F61Y, and the double mutant (W24A/F61A) were significantly impaired in their ability to catalyze dNTP incorporation onto the immobilized primer terminus. This unusual observation indicated that amino acid residues involved in the positioning of the template overhang may also influence the binding and orientation of the duplex region of the template-primer. Molecular modeling studies based on our biochemical results suggested that conformation of both W24 and F61 are interdependent on their interactions with each other, which together are required for proper positioning of the +1 template nucleotide in the binary and ternary complexes.  相似文献   

4.
J Leszyk  J H Collins  P C Leavis  T Tao 《Biochemistry》1988,27(18):6983-6987
The sulfhydryl-specific, heterobifunctional, photoactivatable cross-linker 4-maleimidobenzophenone (BPMal) was used to study the interaction of rabbit skeletal muscle troponin subunits TnC, TnT, and TnI. TnC was labeled at Cys-98 by the maleimide moiety of BPMal and then mixed with either TnT alone or TnI plus TnT, in the presence of Ca2+. Upon photolysis, TnI and/or TnT formed covalent cross-links with TnC. The cross-linked TnC-TnT heterodimer obtained from the binary complex was digested into progressively smaller cross-linked peptides that were purified by HPLC and then characterized by amino acid analysis and sequencing. An initial cross-linked CNBr fraction contained the expected peptide CB9 (residues 84-135) of TnC, plus CNBr peptides spanning residues 152-230 of TnT. Results from a peptic digest of the CNBr cross-linked fraction permitted the identification of residues 159-197 as the most highly cross-linked region in TnT. A final subtilisin digest yielded a heterogeneous cross-linked fraction, which suggested that an especially high degree of cross-links was formed in the vicinity of residues 175-178 (Met-Lys-Lys-Lys) of TnT. Although this region of TnT had previously been implicated in binding, we show here for the first time that it is close to Cys-98 of TnC. In an analogous study on the binary complex of TnC and TnI [Leszyk, J., Collins, J. H., Leavis, P. C., & Tao, T. (1987) Biochemistry 26, 7042-7047], we previously showed that Cys-98 of TnC was cross-linked mainly to CN4, the "inhibitory region", of TnI.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The extracellular portions of the chains that comprise the human type I interferon receptor, IFNAR1 and IFNAR2, have been expressed and purified as recombinant soluble His-tagged proteins, and their interactions with each other and with human interferon-beta-1a (IFN-beta-1a) were studied by gel filtration and by cross-linking. By gel filtration, no stable binary complexes between IFN-beta-1a and IFNAR1, or between IFNAR1 and IFNAR2 were detected. However, a stable binary complex formed between IFN-beta-1a and IFNAR2. Analysis of binary complex formation using various molar excesses of IFN-beta-1a and IFNAR2 indicated that the complex had a 1:1 stoichiometry, and reducing SDS-PAGE of the binary complex treated with the cross-linking reagent dissucinimidyl glutarate (DSG) indicated that the major cross-linked species had an apparent Mr consistent with the sum of its two individual components. Gel filtration of a mixture of IFNAR1 and the IFN-beta-1a/IFNAR2 complex indicated that the three proteins formed a stable ternary complex. Analysis of ternary complex formation using various molar excesses of IFNAR1 and the IFN-beta-1a/IFNAR2 complex indicated that the ternary complex had a 1:1:1 stoichiometry, and reducing SDS-PAGE of the ternary complex treated with DSG indicated that the major cross-linked species had an apparent Mr consistent with the sum of its three individual components. We conclude that the ternary complex forms by the sequential association of IFN-beta-1a with IFNAR2, followed by the association of IFNAR1 with the preformed binary complex. The ability to produce the IFN-beta-1a/IFNAR2 and IFN-beta-1a/IFNAR1/IFNAR2 complexes make them attractive candidates for X-ray crystallography studies aimed at determining the molecular interactions between IFN-beta-1a and its receptor.  相似文献   

6.
Turner RM  Grindley ND  Joyce CM 《Biochemistry》2003,42(8):2373-2385
Cocrystal structures of DNA polymerases from the Pol I (or A) family have provided only limited information about the location of the single-stranded template beyond the site of nucleotide incorporation, revealing contacts with the templating position and its immediate 5' neighbor. No structural information exists for template residues more remote from the polymerase active site. Using a competition binding assay, we have established that Klenow fragment contacts at least the first four unpaired template nucleotides, though the quantitative contribution of any single contact is relatively small. Photochemical cross-linking indicated that the first unpaired template base beyond the primer terminus is close to Y766, as expected, and the two following template bases are close to F771 on the surface of the fingers subdomain. We have constructed point mutations in the region of the fingers subdomain implicated by these experiments. Cocrystal structures of family A DNA polymerases predict contacts between the template strand and S769, F771, and R841, and our DNA binding assays provide evidence for the functional importance of these contacts. Overall, the data are most consistent with the template strand following a path over the fingers subdomain, close to the side chain of R836 and a neighboring cluster of positively charged residues.  相似文献   

7.
A 39/34-kilodalton (kDa) monomeric dispase fragment of von Willebrand factor (vWF) has been purified by heparin affinity chromatography. Detailed structural analysis of the individual 39- and 34-kDa fragments indicated that they had identical amino acid sequences extending from Leu-480/Val-481 to Gly-718 with an intramolecular disulfide bond between Cys-509 and Cys-695. In addition to the binding site for heparin, the 39/34-kDa fragment also contained binding sites for collagen and for platelet membrane glycoprotein (GP) Ib. Unlike native vWF, the 39/34-kDa fragment bound to GP Ib without the requirement for a modulator but showed increased binding in the presence of botrocetin. The 39/34-kDa vWF fragment was cross-linked to intact human platelets by using the membrane-impermeable, homobifunctional cross-linking reagent bis(sulfosuccinimidyl) suberate. Two distinct cross-linked species of similar molecular weight (220/200 kDa, nonreduced; 190/175 kDa, reduced) were identified by SDS-polyacrylamide gel electrophoresis and autoradiography, consistent with the cross-linking of the 125I-labeled 39/34-kDa vWF fragment to GP Ib. The formation of these cross-linked species was enhanced 1.5-2.5-fold in the presence of the modulator botrocetin. The platelet membrane protein involved in cross-linking was shown unequivocally to be GP Ib since (i) neither cross-linked species was formed with Bernard-Soulier syndrome platelets, which genetically lack the GP Ib-IX complex, (ii) both cross-linked species were specifically immunoprecipitated by anti-GP Ib polyclonal and monoclonal antibodies, and (iii) the formation of the cross-linked species was completely inhibited only by those anti-GP Ib-IX complex monoclonal antibodies that inhibited vWF-GP Ib-IX complex interaction. Proteolysis of cross-linked platelets with endoproteinase Lys-C, which preferentially cleaves off the N-terminal peptide domain on the alpha-chain of GP Ib, indicated that the 39/34-kDa vWF fragment was cross-linked exclusively to this region of the GP Ib-IX complex.  相似文献   

8.
Cytochrome b5 holoenzyme was bound asymmetrically in the tightly bound form to small unilamellar dimyristoylphosphatidylcholine vesicles. [3H]Taurine, a membrane-impermeant nucleophile, was added to the external medium and was then cross-linked to cytochrome carboxyl residues by the addition of a water-soluble carbodiimide. Nonpolar peptide was isolated after trypsin digestion of taurine-labeled apocytochrome b5 and contained 1.7-1.9 residues of taurine. The C-terminal tetrapeptide containing residues Thr130-Asn133 was generated by chymotryptic hydrolysis of radiolabeled nonpolar peptide and was purified by gel filtration and ion exchange chromatography. Amino acid analysis of the C-terminal tetrapeptide showed that about 1.6 mol of taurine was cross-linked per mol of peptide. When the experiment was performed with taurine trapped inside the vesicles, no cross-linking was observed. The results suggest that when cytochrome b5 holoenzyme is bound to vesicles in the tight binding form, the C terminus is located on the external surface of the vesicles.  相似文献   

9.
A collagenous trimeric cross-linked peptide has been isolated from the insoluble matrix of calf aorta, using trypsin solubilisation, and purified by gel filtration, cation-exchange chromatography and reversed-phase HPLC. Molecular mass and amino acid composition indicated that the C-terminal, non-helical region of type I collagen in its dimer form, designated as [ColC(I)]2, is cross-linked to a tryptic peptide TN(I) from the N-terminal helical cross-link region of an adjacent type I molecule, forming the cross-linked peptide [ColC(I)]2 X TN(I). Amino acid sequence analysis of the peptide yielded a series of sequences corresponding to the cross-linking domains ColC(I) and TN(I) and furnished the first direct chemical evidence for the 4D staggered arrangement of type I molecules within native fibers. The trifunctional cross-linking amino acid pyridinoline was shown to occur in the peptide, confirming the peptides three-chain structure. Pyridinoline was isolated from the cross-linked peptide by preparative amino acid analysis and reversed-phase HPLC and identified by its ultraviolet absorption spectra, its fluorescence excitation and emission spectra and, for the first time, its time-of-flight secondary ion-mass spectrum. The high sensitivity of the latter method, exceeding that of fast-atom-bombardment mass spectroscopy by three orders of magnitude, allowed detection of pyridinoline in the picomole range. The occurrence of pyridinoline in non-stoichiometric amounts, the presence of hydroxylysine in hydrolysates of all cross-linked peptides and the finding that hydrolysates also contained an unidentified component indicated that there is at least one cross-link form that is different from pyridinoline and is hydrolysable.  相似文献   

10.
11.
Radiolabeled insulin was affinity cross-linked to purified insulin receptor with six separate bifunctional N-hydroxysuccinimide esters of different lengths. Results were qualitatively identical for each cross-linker in that insulin was predominantly cross-linked through its B chain to the receptor's alpha subunit. The maximum efficiencies of cross-linking were 10-15% for the most effective reagents, and this value was dependent upon the concentration and length of the cross-linker. In an effort to locate the cross-linking site, monoiodoinsulin was cross-linked to affinity-purified insulin receptor with disuccinimidyl suberate. Limited proteolysis of the hormone/receptor adduct with Staphylococcus aureus V8 protease, chymotrypsin, or thermolysin in an SDS-containing buffer rapidly generated a 55-kDa, insulin-labeled fragment as shown by SDS-polyacrylamide gel electrophoresis. We reported earlier that the 55-kDa chymotryptic fragment contained multiple internal disulfide bonds as evidenced by its shifting mobility on an SDS gel after dithiothreitol treatment [Boni-Schnetzler et al. (1987) J. Biol. Chem. 262, 8395-8401]. Here we show that the 55-kDa fragment is also formed by proteolysis of the receptor in the absence of prior insulin cross-linking. This fragment was prepared in amounts sufficient for sequence analysis and was purified by passage successively over gel permeation and reverse-phase HPLC columns. The sequence of the fragment's amino terminus corresponds to that of the amino terminus of the receptor's alpha subunit. This fragment also reacts with an antibody raised against a synthetic peptide corresponding to residues 242-253 of the receptor's alpha subunit.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
Cross-linking site in fibrinogen for alpha 2-plasmin inhibitor   总被引:4,自引:0,他引:4  
A plasma proteinase inhibitor, alpha 2-plasmin inhibitor (alpha 2PI), is cross-linked with alpha chain of fibrin(ogen) by activated coagulation Factor XIII (plasma transglutaminase). alpha 2PI serves only as a glutamine substrate (amine acceptor) for activated Factor XIII in the cross-linking reaction, and the cross-linking occurs between Gln-2 of the alpha 2PI molecule and a lysine residue (amine donor) of fibrin(ogen) alpha chain, whose position was investigated. alpha 2PI and fibrinogen were reacted by activated Factor XIII. The resulting alpha 2PI fibrinogen A alpha chain complex was separated and subjected to two cycles of Edman degradation using phenyl isothiocyanate for the first cycle and dimethylaminoazobenzene-isothiocyanate for the second cycle. The aqueous phase after the cleavage stage of the second cycle, containing dimethylaminoazobenzene-thiohydantoin-Gln cross-linked with A alpha chain, was subjected to CNBr fragmentation and tryptic digestion. Only one of the peptides was found to have the peak of absorbance at 420 nm, indicating the presence of dimethylaminoazobenzene-thiohydantoin-Gln in that peptide. The peptide was identified as corresponding to residues Asn-290-Arg-348 of A alpha chain by analyses of the NH2-terminal amino acid sequence and amino acid composition. The peptide contains a single lysine at position 303, indicating that Lys-303 of fibrinogen A alpha chain is the lysine residue that forms a cross-link with Gln-2 of alpha 2PI.  相似文献   

14.
Tubulin with [8-14C]GDP bound in the exchangeable site was exposed to ultraviolet light, and radiolabel was cross-linked to two peptide regions of the beta-subunit. Following enrichment for peptides cross-linked to guanosine by boronate chromatography, we confirmed that the cysteine 12 residue was the major site of cross-linking. However, significant radiolabel was also incorporated into a peptide containing amino acid residues 206 through 224. Although every amino acid in this peptide except cysteine 211 was identified by sequential Edman degradation, implying that this was the amino acid residue cross-linked to guanosine, radiolabel at C-8 was usually lost during peptide processing (probably during chromatography at pH 10). Consequently, the radiolabeled amino acid could not be unambiguously identified.  相似文献   

15.
The molecular weight of the vasoactive intestinal peptide (VIP) receptor in rat lung and its interaction with the stimulatory guanine nucleotide-binding protein (Gs) were assessed by covalent cross-linking, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and immunological techniques. Studies with two cross-linking agents indicated that the VIP receptor in this tissue is a single polypeptide of Mr = 54,000. The VIP-occupied receptor could be cross-linked to neighboring proteins after detergent solubilization; higher molecular weight complexes of Mr = 114,000 and 184,000 were formed. Immunoblotting with antisera against G-protein subunits demonstrated that both complexes contained the alpha-subunit of Gs as well as the 125I-VIP cross-linked receptor whereas only the Mr = 184,000 complex contained the beta-subunit. Pretreatment with GTP reduced the prominence of these complexes, verifying the functional nature of this receptor-Gs association. Studies with a third cross-linking agent, ethylene glycol bis(succinimidyl succinate), provided direct evidence of physically associated, ternary VIP-receptor-Gs complexes actually in the membrane milieu. That these complexes were functionally associated with shown by their inhibition by anti-Gs alpha anti-serum. Since treatment of membranes with guanosine 5'-O-(3-thiotriphosphate) resulted in the separation of the VIP-cross-linked receptor from Gs such that no cross-linking could occur, we conclude that the binding of GTP analogs induces a conformational change in Gs in the membrane milieu.  相似文献   

16.
Interactions between troponin C (TnC) and troponin I (TnI) play an important role in the Ca(2+)-dependent regulation of vertebrate striated muscle contraction. In the present study, we investigated the sites of interaction between the N-terminal regulatory domain of TnC and the inhibitory region (residues 96-116) of TnI, using a mutant rabbit skeletal TnC (designated as TnC57) that contains a single Cys at residue 57 in the C-helix. TnC57 was modified with the photoreactive cross-linker 4-maleimidobenzophenone (BP-Mal), and, after formation of a binary complex with TnI, cross-linking between the proteins was induced by photolysis. The resulting product was cleaved with CNBr and several proteases, and peptides containing cross-links were purified and subjected to amino acid sequencing. The results show that Cys-57 of TnC57 is cross-linked to the segment of TnI spanning residues 113-121. Previously, we showed that Cys-98 of TnC can be cross-linked via BP-Mal to TnI residues 103-110 (Leszyk, J., Collins, J.H., Leavis, P.C., and Tao, T. (1987) Biochemistry 26, 7042-7047). Taken together, these results demonstrate that both the C- and the N-terminal domains of TnC interact with the inhibitory region of TnI and are consistent with the hypothesis that, in a complex with TnI, TnC adopts a more compact conformation than in the crystal structure.  相似文献   

17.
A major site of pyridinoline cross-linking in bovine type IX collagen was traced to a tryptic peptide derived from one of the molecule's HMW chains. This peptide gave two amino acid sequences (in 2/1 ratio) consistent with it being a three-chained structure. The major sequence matched exactly that of the C-telopeptide of type II collagen from the same tissue. A second HMW chain that contained pyridinoline cross-links also gave two amino-terminal sequences, one from its own amino terminus, the other matching exactly the N-telopeptide cross-linking sequence of type II collagen. We conclude that type IX collagen molecules are covalently cross-linked in cartilage to molecules of type II collagen, probably at fibril surfaces.  相似文献   

18.
A method has been developed for exploring the quaternary fine structure of oligomeric proteins by crosslinking studies and applied to bovine heart mitochondrial F1-ATPase. The F1 was first labeled with 1-fluoro-2,4-dinitro-[14C]benzene, subsequently reduced with sodium hydrosulfite, and finally cross-linked with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. Gel electrophoresis in the chemically modified protein in the presence of sodium dodecyl sulfate and mercaptoethanol showed the existence of a 105-115-kilodalton molecular species in addition to the five monomeric subunits of F1. This cross-linked species could be alpha 2, alpha beta, or beta 2. Isolation of the cross-linked species and titration with 5,5'-dithiobis-(2-nitrobenzoic acid) showed the absence of sulfhydryl group. Therefore, the cross-linked species must be the dimer beta 2. After digestion of the purified beta 2 with pepsin, a single radioactive peptide was isolated. Determination of the amino acid sequence of this peptide and comparison of its radioactivity with the total radioactivity on beta-subunits show that it was formed exclusively by cross-linking Lys162 of one beta-subunit with Glu199 of another beta-subunit. The observation that two beta-subunits can be cross-linked by a rigid phenylenediamine bridge of 5.7- or 4.3-A length is difficult to reconcile with the widely assumed structure of F1 with the alpha- and beta-subunits occupying alternate corners of a planar hexagon, but is consistent with the structure in which a triangular set of three beta-subunits sits above a triangular set of three alpha-subunits in a staggered conformation.  相似文献   

19.
Escherichia coli ribonucleotide reductase (RNR) catalyzes the conversion of nucleoside 5'-diphosphates to deoxynucleoside 5'-diphosphates and is a 1:1 complex of two homodimeric subunits: alpha2 and beta2. As a first step towards mapping the subunit interface, beta2 (V365C) was labeled with [(14)C]-benzophenone (BP) iodoacetamide. The resulting [(14)C]-BP-beta2 (V365C) was complexed with alpha2 and irradiated at 365nm for 30min at 4 degrees C. The cross-linked mixture was purified by anion exchange chromatography and digested with trypsin. The peptides were purified by reverse phase chromatography, identified by scintillation counting and analyzed by Edman sequencing. Three [(14)C]-labeled peptides were identified: two contained a peptide in beta to which the BP was attached. The third contained the same beta peptide and a peptide in alpha found in its alphaD helix. These results provide direct support for the proposed docking model of alpha2beta2.  相似文献   

20.
Cross-linked peptides were isolated from chicken bone collagen that had been digested with CNBr or with bacterial collagenase. Analyses of (3)H radioactivity in disc electrophoretic profiles of the CNBr peptides from bone collagens that had been treated with NaB(3)H indicated that a major site of intermolecular cross-linking in chicken bone collagen is located between the carboxy-terminal region of an alpha1 chain and a small CNBr peptide, probably situated near the amino-terminus of an alpha1 or alpha2 chain in an adjacent collagen molecule. A small amount of this cross-linked CNBr peptide was isolated from a CNBr digest of chicken bone collagen by column chromatography. Amino acid analysis showed that the CNBr peptide, alpha1CB6B, the carboxy-terminal peptide of the alpha1 chain, was the major CNBr peptide in the preparation, and the reduced cross-linking components were identified as hydroxylysinohydroxynorleucine (HylOHNle), with a smaller amount of hydroxylysinonorleucine (HylNle). However, the composition and the low recovery of the cross-linking amino acids suggested that the preparation was a mixture of CNBr peptides alpha1CB6B and alpha1CB6B cross-linked to a small CNBr peptide whose identity could not be determined. A small cross-linked peptide was isolated from chicken bone collagen that had been reduced with NaB(3)H(4) and digested with bacterial collagenase. This peptide was the major cross-linked peptide in the digest and contained a stoicheiometric amount of the reduced cross-linking compounds. A peptide which had the same amino acid composition, but contained the cross-linking compounds in their reducible forms, was isolated from a collagenase digest of chicken bone collagen that had not been treated with NaBH(4). The absence of the reduced cross-links from this peptide indicates that, at least for the cross-linking site from which the peptide derives, natural reduction is not a significant pathway for biosynthesis of stable cross-links. However, most of the reducible cross-linking component in the peptide appeared to stabilize in the bone collagen by rearrangement from aldimine to ketoamine form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号