首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Spray-dried milk enriched with n-3 fatty acids from linseed oil or fish oil were fed to rats to study its influence on liver lipid peroxides, hepatic antioxidant enzyme activities, serum prostaglandins and platelet aggregation. Significant level of α linolenic acid, eicosapentaenoic acid and docosahexaenoic acid were accumulated at the expense of arachidonic acid in the liver of rats fed n-3 fatty acid enriched formulation. The linseed oil and fish oil enriched formulation fed group had 44 and 112% higher level of lipid peroxides in liver homogenate compared to control rats fed groundnut oil enriched formulation. Catalase activity in liver homogenate was increased by 37 and 183% respectively in linseed oil and fish oil formulation fed rats. The glutathione peroxidase activity decreased to an extent of 25–36% and glutathione transferase activity increased to an extent of 34–39% in rats fed n-3 fatty acids enriched formulation. Feeding n-3 fatty acid enriched formulation significantly elevated the n-3 fatty acids in platelets and increased the lipid peroxide level to an extent of 4.2–4.5 fold compared to control. The serum thromboxane B2 level was decreased by 35 and 42% respectively in linseed oil and fish oil enriched formulation fed rats, whereas, 6-keto- prostaglandin F1α level was decreased by 17 and 23% respectively in linseed oil and fish oil enriched formulation fed rats. The extent and rate of platelet aggregation was decreased significantly in n-3 fatty acids enriched formulation fed rats. This indicated that n-3 fatty acids enriched formulation beneficially reduces platelet aggregation and also enhances the activities of hepatic antioxidant enzymes such as catalase and glutathione transferase. (Mol Cell Biochem xxx: 9–16, 2005)  相似文献   

2.
In our earlier study, we have shown that rats fed spray-dried milk containing alpha-linolenic acid (LNA 18:3 n-3) or eicosapentaenoic acid (EPA 20:5 n-3) and docosahexaenoic acid (DHA 22:6 n-3) had significantly lower amounts of serum and liver cholesterol. To evaluate the mechanism for hypocholesterolemic effect of n-3 fatty acids containing milk formulation, we fed male Wistar rats with spray-dried milk containing linseed oil (LSO) (source of LNA) or fish oil (FO) (source of EPA+DHA) for 8 weeks. Feeding n-3 fatty acid containing milk formulation lowered the hepatic 3-hydroxy-methylglutaryl coenzyme A (HMG Co A) activity by 17-22% compared to rats given control diet devoid of n-3 fatty acids. The cholesterol level in liver microsomes was found to be decreased by 16% and 20%, respectively, in LSO and FO containing formulation fed rats. The bile flow was enhanced to an extent of 19-23% in experimental groups compared to control animals. The biliary cholesterol and phospholipid secretion was increased to an extent of 49-55% and 140-146%, respectively, in rats fed n-3 fatty acid containing formulation. The increase in the total bile acids secretion in bile was mainly reflected on an increase in the levels of taurine conjugated bile acids. These results indicated that n-3 fatty acid containing spray-dried milk formulation would bring about the hypocholesterolemic effect by lowering HMG Co A reductase activity in liver and by increasing the secretion of bile constituents.  相似文献   

3.
Anti-thrombotic effects of omega-3 (n-3) fatty acids are believed to be due to their ability to reduce arachidonic acid levels. Therefore, weanling rats were fed n-3 acids in the form of linseed oil (18:3n-3) or fish oil (containing 20:5n-3 and 22:6n-3) in diets containing high levels of either saturated fatty acids (hydrogenated beef tallow) or high levels of linoleic acid (safflower oil) for 4 weeks. The effect of diet on the rate-limiting enzyme of arachidonic acid biosynthesis (delta 6-desaturase) and on the lipid composition of hepatic microsomal membrane was determined. Both linseed oil- or fish oil-containing diets inhibited conversion of linoleic acid to gamma-linolenic acid. Inhibition was greater with fish oil than with linseed oil, only when fed with saturated fat. delta 6-Desaturase activity was not affected when n-3 fatty acids were fed with high levels of n-6 fatty acids. Arachidonic acid content of serum lipids and hepatic microsomal phospholipids was lower when n-3 fatty acids were fed in combination with beef tallow but not when fed with safflower oil. Similarly, n-3 fatty acids (18:3n-3, 20:5n-3, 22:5n-3, and 22:6n-3) accumulated to a greater extent when n-3 fatty acids were fed with beef tallow than with safflower oil. These observations indicate that the efficacy of n-3 fatty acids in reducing arachidonic acid level is dependent on the linoleic acid to saturated fatty acid ratio of the diet consumed.  相似文献   

4.
The hepatic fatty acid metabolism was investigated in rats stressed by selenium deficiency and enhanced fish oil intake. Changes in the composition of lipids, peroxides, and fatty acids were studied in the liver of rats fed either a Sedeficient (8 microg Se/kg) or a Se-adequate (300 microg Se/kg) diet, both rich in n-3 fatty acid-containing fish oil (100 g/kg diet) and vitamin E (146 mg alpha-tocopherol/kg diet). The two diets were identical except for their Se content. Se deficiency led to a decrease in hair coat density and quality as well as to changes in liver lipids, individual lipid fractions and phospholipid fatty acid composition of the liver. The low Se status did reduce total and reduced glutathione in the liver but did not affect the hepatic malondialdehyde level. In liver phospholipids (PL), Se deficiency significantly reduced levels of palmitic acid [16:0], fatty acids of the n-3 series such as DHA [22:6 n-3], and other long-chain polyunsaturates C-20-C-22, but increased n-6 fatty acids such as linoleic acid (LA) [18:2 n-6]. Thus, the conversion of LA to arachidonic acid was reduced and the ratio of n-6/n-3 fatty acids was increased. As in liver PL, an increase in the n-6/n-3 ratio was also observed in the mucosal total fatty acids of the small intestine. These results suggest that in rats with adequate vitamin E and enhanced fish oil intake, Se deficiency affects the lipid concentration and fatty acid composition in the liver. The changes may be related to the decreased levels of selenoenzymes with antioxidative functions. Possible effects of Se on absorption, storage and desaturation of fatty acids were also discussed.  相似文献   

5.
Rats were fed diets devoid of (n-3) fatty acids (olive oil supplementation) or high in (n-3) fatty acids (fish oil supplementation) for a period of 10 days. In spleen lymphocytes and liver microsomes derived from animals fed fish oil diets, relatively high levels of (n-3) eicosapentaenoic (20:5), docosapentaenoic (22:5) and docosahexaenoic acids (22:6) were obtained compared to minimal levels when fed the olive oil diet. When the average lipid motional properties were examined by measuring the fluorescence anisotropy of diphenylhexatriene, no significant different was found between intact liver microsomes from animals fed the two diets. However, when lipid motion was examined in vesicles of phosphatidylcholine, isolated from the microsomes from fish oil fed animals (21.4% (n-3) fatty acids), the fluorescence anisotropy was significantly less than the corresponding phosphatidylcholine from olive oil fed animals (5.6% (n-3) fatty acids), indicating a more disordered or fluid bilayer in the presence of higher levels of (n-3) fatty acids. Phosphatidylethanolamine (n-3) fatty acids were also elevated after fish oil supplementation (41.3% of total fatty acids), compared to the level after olive oil supplementation (21.4%). The major effect of the fish oil supplementation was a replacement of (n-6) arachidonic acid by the (n-3) fatty acids and when this was 'modeled', using liposomes of synthetic lipids, 1-palmitoyl-2-arachidonyl(n-6) or docosahexaenoyl(n-3)-phosphatidylcholine, significant differences in lipid motional properties were found, with the docosahexaenoate conferring a more disordered or fluid lipid environment. Thus it appears that although lipid order/fluidity can be significantly decreased by increases in the highly unsaturated (n-3) fatty acid levels, alterations in membrane domain organization and/or phospholipid molecular species composition effectively compensated for the changes, at least as far as average lipid motional properties in the intact membranes was concerned.  相似文献   

6.
Rats were fed diets containing a high level of saturated fatty acids (hydrogenated beef tallow) versus a high level of linoleic acid (safflower oil) at both low and high levels of fish oil containing 7.5% (w/w) eicosapentaenoic and 2.5% (w/w) docosahexaenoic acids for a period of 28 days. The effect of feeding these diets on the cholesterol content and fatty acid composition of serum and liver lipids was examined. Feeding diets high in fish oil with safflower oil decreased the cholesterol content of rat serum, whereas feeding fish oil had no significant effect on the cholesterol content of serum when fed in combination with saturated fatty acids. The serum cholesterol level was higher in animals fed safflower oil compared to animals fed saturated fat without fish oil. Consumption of fish oil lowered the cholesterol content of liver tissue regardless of the dietary fat fed. Feeding diets containing fish oil reduced the arachidonic acid content of rat serum and liver lipid fractions, the decrease being more pronounced when fish oil was fed in combination with hydrogenated beef tallow than with safflower oil. These results suggest that dietary n-3 fatty acids of fish oil interact with dietary linoleic acid and saturated fatty acids differently to modulate enzymes of cholesterol and fatty acid metabolism.  相似文献   

7.
We have studied the effects of semisynthetic diets containing 5% by weight (12% of the energy) of either olive oil (70% oleic acid, OA) or corn oil (58% linoleic acid), or fish oil (Max EPA, containing about 30% eicosapentaenoic, EPA C 20:5 n-3, plus docosahexaenoic, DHA C 22:6 n-3, acids, and less than 2% linoleic acid), fed to male rabbits for a period of five weeks, on plasma and platelet fatty acids and platelet thromboxane formation. Aim of the study was to quantitate the absolute changes of n-6 and n-3 fatty acid levels in plasma and platelet lipid pools after dietary manipulations and to correlate the effects on eicosanoid-precursor fatty acids with those on platelet thromboxane formation. The major differences were found when comparing the group fed fish oil and depleted linoleic acid vs the other groups. The accumulation of n-3 fatty acids in various lipid classes was associated with modifications in the distribution of linoleic acid and arachidonic acid in different lipid pools. In platelets maximal incorporation of n-3 fatty acids occurred in phosphatidyl ethanolamine, which also participated in most of the total arachidonic acid reduction occurring in platelets, and linoleic acid, more than archidonic acid, was replaced by n-3 fatty acids in various phospholipids. The archidonic acid content of phosphatidyl choline was unaffected and that of phosphatidyl inositol only marginally reduced. Thromboxane formation by thrombin stimulated platelets did not differ among the three groups, and this may be related to the minimal changes of arachidonic acid in phosphatidyl choline and phosphatidyl inositol.  相似文献   

8.
The influence of dietary polyunsaturated fatty acids on fatty acid composition, cholesterol and phospholipid content as well as 'fluidity' (assessed by fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) probes) of brain synaptic plasma membranes (SPM) and their interactions with chronic ethanol effects were studied in rats fed for two generations with diets either devoid of (n-3) fatty acids (sunflower oil diet), rich in alpha-linolenic acid (soya oil diet) or in long chain (n-3) fatty acids (sunflower + cod liver oil diet). Results were compared with rats fed standard lab chow. Sunflower oil led to an increase in the (n-6)/(n-3) ratio in the membranes with an increase of the 'fluidity' at membrane apolar level; sunflower + cod liver oil decreased the (n-6)/(n-3) ratio without affecting membrane 'fluidity' while no difference was seen between the SPM of rats fed soya oil and standard diet. After 3 weeks alcohol intoxication in rat fed the standard diet: oleic alpha-linoleic acids and cholesterol levels were increased, arachidonic acid and the double bond index/saturated fatty acids were decreased and there was a decrease of 'fluidity' in the lipid core of the SPM. Soya oil almost totally abolished these usually observed changes in the SPM fatty acids composition but increased oleic acid and cholesterol without any change in fluidity. Sunflower oil led to the same general alterations of fatty acid as seen with standard diet but to a greater extent, with decrease of the 'fluidity" at the apolar level and in the region probed by TMA-DPH. When sunflower oil was supplemented with cod liver oil, oleic and alpha-linoleic acids were increased while the 'fluidity' of the apolar core of SPM was decreased. So, the small changes in fatty acid pattern seem able to modulate neural properties i.e. the responses to a neurotoxic like ethanol. A structurally specific role of PUFA is demonstrated by the pernicious effects of the alpha-linolenic acid deficient diet which are not totally prevented by the supply of long chain (n-3) PUFA.  相似文献   

9.
The role played by membrane lipid environment on cardiac function remains poorly defined. The polyunsaturated fatty acid profile of myocardial phospholipids could be of utmost importance in the regulation of key-enzyme activities. This study was undertaken to determine whether selective incorporation of n-6 or n-3 fatty acids in membrane phospholipids might influence cardiac mechanical performances and metabolism. For 8 wk, male weaning Wistar rats were fed a semi-purified diet containing either 10% sunflower seed oil (72% C18:2 n-6) or 10% linseed oil (54% C18:3 n-3) as the sole source of lipids. The hearts were then removed and perfused according to working mode with a Krebs-Henseleit buffer containing glucose (11 mM) and insulin (10 Ul/l). Cardiac rate, coronary and aortic flows and ejection fraction were monitored after 30 min of perfusion. Myocardial metabolism was estimated by evaluating the intracellular fate of 1-14C palmitate. Sunflower seed oil and linseed oil feeding did not modify either coronary or aortic flow, which suggests that cardiac mechanical work was not affected by the diets. Conversely, cardiac rate was significantly decreased (-18%; P less than 0.01) when rats were fed the n-3 polyunsaturated fatty acid rich diet. Radioanalysis of the myocardial metabolism suggested that replacing n-6 polyunsaturated fatty acids by n-3 polyunsaturated fatty acids: i) did not alter palmitate uptake; ii) prolonged palmitate incorporation into cardiac triglycerides; iii) reduced beta-oxidation of palmitic acid. These results support the assumption that dietary fatty acids, particularly n-6 and n-3 fatty acids, play an important role in the regulation of cardiac mechanical and metabolic activity.  相似文献   

10.
Female Wistar rats were fed with diets containing as dietary lipids 10% of hydrogenated coconut oil, grape-seed oil, olive oil, linseed oil and fish oil, respectively, for a period of 60 days. At the end of dietary treatment plasma, platelets and aorta phospholipids were extracted and fatty acid spectra determined. Plasma and platelet phospholipids showed the largest diet dependent changes. Anyway in aorta samples too, phospholipids showed marked increase in oleic (olive oil group) linoleic (grape-seed oil group) and alpha linoleic (linseed oil group) acids percentage. Conversely decreased amounts of arachidonic acid were detected in rats fed with diets containing linseed and fish oils. In these samples eicosapentenoic acid partly replaced arachidonic one.  相似文献   

11.
The newly hatched chick obtains its fatty acids almost completely from the lipids of the egg yolk as these are transferred to the developing embryo during its 21-day period of incubation. Since the diet of the laying hen greatly influences the fatty acid composition of the egg lipids, and presumably also the fatty acid composition of the resulting chick, we tested how quickly and to what extent varying the amount of n-3 fatty acids in the diet of the hen would modulate the level of n-3 fatty acids in the brain and retina of the newly hatched chick. White Leghorn hens were fed commercial or semi-purified diets supplemented with 10% fish oil, linseed oil, soy oil, or safflower oil. Eggs, together with the brain, retina, and serum of newly hatched chicks, were then analyzed for fatty acid composition. The fatty acids of egg yolk responded quickly to the hen's diet with most of the change occurring by 4 weeks. There was a linear relationship between the linolenic acid content of the diets and levels of this fatty acid in egg yolk and chick serum. In chicks from hens fed the fish oil diet, the total n-3 fatty acids, including 22:6(n-3), were elevated twofold in the brain and retina and sevenfold in serum relative to commercial diet controls. The safflower oil diet led to a very low n-3 fatty acid content in egg yolks and only 25% of the control n-3 fatty acid content in the brain and retina of chicks.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Cholesterol and lipoprotein metabolism were investigated in a group of rats fed a fish oil-supplemented diet, a rich source of n-3 fatty acids. For comparison purposes, other groups of rats were fed either safflower oil (n-6 fatty acids) or coconut oil (saturated fatty acids). Diets were isocaloric and contained identical amounts of cholesterol. Rats fed fish oils for 2 weeks showed a 35% lower plasma cholesterol level than rats fed safflower oil, who in turn showed a 14% lower plasma cholesterol level than those fed coconut oil. The fall in plasma cholesterol level with fish oils was associated with significant falls in low density and high density lipoprotein cholesterol levels, but with no significant change in the ratio of low density to high density lipoprotein cholesterol. The fatty acid compositions of plasma, hepatic, and biliary lipids showed relative enrichment with n-3 fatty acids, reflecting the composition of the diet. The fish oil diet increased the basal secretion rate of cholesterol into bile, but the bile acid secretion rate remained unchanged. It is suggested that n-3 fatty acids reduce the plasma cholesterol level in rats by increasing the transfer of cholesterol into bile.  相似文献   

13.
The effect of dietary n-6/n-3 fatty acid ratio on alpha-tocopherol homeostasis was investigated in rats. Animals were fed diets containing fat (17% w/w) in which the n-6/n-3 ratio varied from 50 to 0.8. This was achieved by combining corn oil, fish oil, and lard. The polyunsaturated to saturated ratio and total alpha-tocopherol remained constant in all diets. Results showed that enrichment of n-3 polyunsaturated fatty acids in the diet, even at a low amount (3.9% w/w), resulted in a dramatic reduction of blood alpha-tocopherol concentration, which, in fact, is the result of a decrease in plasma lipids, since the alpha-tocopherol to total lipids ratio was not significantly altered. The most striking effect observed was a considerable alpha-tocopherol enrichment (x 4) of the heart as its membranes became enriched with n-3 polyunsaturated fatty acids. This process appeared even with a low amount of fish oil (3.9% w/w) added to the diet. Accordingly, a strong positive correlation was found between heart alpha-tocopherol and docosahexaenoic acid (r = 0.86) or docosahexaenoic acid plus eicosapentaenoic acid levels (r = 0.84). Conversely, the liver alpha-tocopherol level dropped dramatically when n-3 polyunsaturated fatty acids were gradually added to the diet. It is concluded that fish oil intake dramatically alters the alpha-tocopherol homeostasis in rats.  相似文献   

14.
Dietary fish oil increases levels of (n-3) fatty acids in the brain and retina of younger animals but has less effect in adults. The duration of the effects of fish oil in young animals, as well as the extent of reversibility of the effects, are unknown. Laying hens were fed either a fish oil diet or a soybean oil-based control diet. Resulting chicks were assigned to three diet groups: chicks from fish oil and soybean oil hens were continued on fish oil and soybean oil diets, respectively, for 0, 3, 6, or 9 weeks, and additional chicks from the fish oil hens were fed the fish oil diet for 0, 3, or 6 weeks and then reversed to the soybean oil diet for a period of 3 weeks. The fatty acid composition of the brain, retina, liver, and serum of the reversal chicks was compared with chicks fed the fish oil diet only or the soybean oil diet only. Brain levels of docosahexaenoic acid (22:6(n-3)) decreased substantially when reversal from the fish oil diet to the control diet was begun at hatching, but did not decrease when reversal was begun at later times. Other (n-3) fatty acids in the brain, docosapentaenoic acid (22:5(n-3)) and eicosapentaenoic acid (20:5(n-3)), decreased substantially at all ages, and to a greater extent than 22:6(n-3). Brain arachidonic acid (20:4(n-6)), which was low in fish oil chicks, rose to control after reversal at hatching, but recovered only partially when reversal was begun at later times. A similar patterns was observed in the retina. Serum and liver (n-3) fatty acids fell to control in all reversal chicks, and (n-6) fatty acids increased to control, except in chicks reversed at 6 weeks. This study demonstrates that by 3 weeks of age the chick brain strongly resists diet-induced lowering of high levels of 22:6(n-3).  相似文献   

15.
Essential fatty acid deficient male Sprague Dawley rats were fed for 7 days a fat-free semi-synthetic diet supplemented with 10% by weight of different oil supplements. The oil supplement was a mixture of olive, safflower and linseed oils prepared at different proportions so the dietary n-9/n-6/n-3 ratios were approximate 2/1/1, 1/2/1, 1/1/2, and 1/1/1. The fatty acid compositions of plasma and liver lipids were then examined. Our results show polyunsaturated n-6 and n-3 fatty acids were selectively incorporated into plasma and liver phospholipids, and also into plasma cholesteryl esters. A preferential incorporation of n-6 over n-3 fatty acids into plasma cholesteryl esters and phospholipids was also observed.  相似文献   

16.
The physiological activity of fish oil, and ethyl esters of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) affecting hepatic fatty acid oxidation was compared in rats. Five groups of rats were fed various experimental diets for 15 days. A group fed a diet containing 9.4% palm oil almost devoid of n-3 fatty acids served as a control. The test diets contained 4% n-3 fatty acids mainly as EPA and DHA in the form of triacylglycerol (9.4% fish oil) or ethyl esters (diets containing 4% EPA ethyl ester, 4% DHA ethyl ester, and 1% EPA plus 3% DHA ethyl esters). The lipid content of diets containing EPA and DHA ethyl esters was adjusted to 9.4% by adding palm oil. The fish oil diet and ethyl ester diets, compared to the control diet containing 9.4% palm oil, increased activity and mRNA levels of hepatic mitochondrial and peroxisomal fatty acid oxidation enzymes, though not 3-hydroxyacyl-CoA dehydrogenase activity. The extent of the increase was, however, much greater with the fish oil than with EPA and DHA ethyl esters. EPA and DHA ethyl esters, compared to the control diet, increased 3-hydroxyacyl-CoA dehydrogenase activity, but fish oil strongly reduced it. It is apparent that EPA and DHA in the form of ethyl esters cannot mimic the physiological activity of fish oil at least in affecting hepatic fatty acid oxidation in rat.  相似文献   

17.
Abstract: In a previous work, we calculated the dietary α-linolenic requirements (from vegetable oil triglycerides) for obtaining and maintaining a physiological level of (n-3) fatty acids in developing animal membranes as determined by the cervonic acid content [22:6(n-3), docosahexaenoic acid]. The aim of the present study was to measure the phospholipid requirement, as these compounds directly provide the very long polyunsaturated fatty acids found in membranes. Two weeks before mating, eight groups of female rats (previously fed peanut oil deficient in α-linolenic acid) were fed different semisynthetic diets containing 6% African peanut oil supplemented with different quantities of phospholipids obtained from bovine brain lipid extract, so as to add (n-3) polyunsaturated fatty acids to the diet. An additional group was fed peanut oil with rapeseed oil, and served as control. Pups were fed the same diet as their respective mothers, and were killed at weaning. Forebrain, sciatic nerve, retina, nerve endings, myelin, and liver were analyzed. We conclude that during the combined maternal and perinatal period, the (n-3) fatty acid requirement for adequate deposition of (n-3) polyunsaturated fatty acids in the nervous tissue (and in liver) of pups is lower if animals are fed (n-3) very long chain polyunsaturated fatty acids found in brain phospholipids [this study, ˜60 mg of (n-3) fatty acids/100 g of diet, i.e., ˜130 mg/1,000 kcal] rather than α-linolenic acid from vegetable oil triglycerides [200 mg of (n-3) fatty acids/100 g of diet, i.e., ˜440 mg/1,000 kcal].  相似文献   

18.
The whole-body fatty acid balance method was used to investigate the fatty acid metabolism in Murray cod (Maccullochella peelii peelii) fed diets containing canola (CO) or linseed oil (LO). Murray cod were able to elongate and desaturate both 18:2n-6 and 18:3n-3. In fish fed the CO diet, 54.4% of the 18:2n-6 consumed was accumulated, 38.5% oxidized and 6.4% elongated and desaturated to higher homologs. Fish fed the LO diet accumulated 52.9%, oxidized 37% and elongated and desaturated 8.6% of the consumed 18:3n-3. The overall roles of n-6 fatty acids appeared more important in Murray cod compared to other freshwater species. Murray cod also showed a preferential order of utilization of C18 fatty acid for energy production (18:3n-3 > 18:2n-6 > 18:1n-9). Moreover, it is demonstrated that an increase in dietary 18:3n-3 is directly responsible of increased desaturase activity and augmented saturated fatty acid accumulation in the fish body. The present study also suggests that, in the context of the possible maximization of the natural ability of fish to produce long chain polyunsaturated fatty acids, the whole-body approach can be considered well suited and informative and Murray cod is a suited candidate to fish oil replacement for its diets.  相似文献   

19.
The aim of the present study was to determine the effects of conjugated linoleic acid (CLA) on lipid and fatty acid metabolism in Atlantic salmon. The overall objective being to test the hypotheses that CLA has beneficial effects in salmon including growth enhancement, improved flesh quality through decreased adiposity and lipid deposition thereby minimising detrimental effects of feeding high fat diets, and increased nutritional quality through increased levels of beneficial fatty acids including n-3 highly unsaturated fatty acids (HUFA) and CLA itself. Salmon smolts were fed diets containing two levels of fish oil (low, approximately 18% and high, approximately 34%) containing three levels of CLA (a 1:1 mixture of 9-cis,trans-11 and trans-10,cis-12. at 0, 1 and 2% of diet) for 3 months and the effects on growth performance, liver and muscle (flesh) lipid contents and class compositions, and fatty acid compositions determined. The diets were also specifically formulated to investigate whether the effects of CLA, if any, were more dependent upon absolute content of CLA in the diet (as percentage of total diet) or the relative level of CLA to other fatty acids. Dietary CLA in salmon smolts had no effect on growth parameters or biometric parameters. However, there was a clear trend of increased total lipid and triacylglycerol contents in both liver and flesh in fish fed CLA, particularly in fish fed the high oil diets. Finally, CLA was incorporated into tissue lipids, with levels in flesh being 2-fold higher than in liver, but importantly, incorporation in liver was at the expense of saturated and monounsaturated fatty acids whereas in flesh it was at the expense of n-3HUFA.  相似文献   

20.
This study aimed to investigate the effects and possible interactions of birth weight and n-3 polyunsaturated fatty acid (PUFA) supplementation of the maternal diet on the fatty acid status of different tissues of newborn piglets. These effects are of interest as both parameters have been associated with pre-weaning mortality. Sows were fed a palm oil diet or a diet containing 1% linseed, echium or fish oil from day 73 of gestation. As fish oil becomes a scarce resource, linseed and echium oil were supplemented as sustainable alternatives, adding precursor fatty acids for DHA to the diet. At birth, the lightest and heaviest male piglet per litter were killed and samples from liver, brain and muscle were taken for fatty acid analysis. Piglets that died pre-weaning had lower birth weights than piglets surviving lactation (1.27±0.04 v. 1.55±0.02 kg; P<0.001), but no effect of diet on mortality was found. Lower DHA concentrations were observed in the brain of the lighter piglets compared with their heavier littermates (9.46±0.05 v. 9.63±0.04 g DHA/100 g fatty acids; P=0.008), suggesting that the higher incidence of pre-weaning mortality in low birth weight piglets may be related to their lower brain DHA status. Adding n-3 PUFA to the sow diet could not significantly reduce this difference in DHA status, although numerically the difference in the brain DHA concentration between the piglet weight groups was smaller when fish oil was included in the sow diet. Independent of birth weight, echium or linseed oil in the sow diet increased the DHA concentration of the piglet tissues to the same extent, but the concentrations were not as high as when fish oil was fed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号