首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We have isolated five cDNA clones (osk15) for protein kinases from rice which are related to SNF1 protein kinase of Saccharomyces cerevisiae. Based on the sequence homology, these cDNAs can be classified into two groups, group 1 (osk1) and group 2 (osk25). The products of these genes were demonstrated to be functional SNF1-related protein kinases by in vitro and in vivo experiments. Recombinant proteins expressed from both groups of genes were fully active as protein kinases and could phosphorylate SAMS peptide, a substrate specific for the SNF1/AMPK family, as well as themselves (autophosphorylation). Moreover, expression of osk3 cDNA in yeast snf1 mutants restored SNF1 function. Northern blot analyses showed differential expression of these two gene groups; group 1 is expressed uniformly in growing tissues (young roots, young shoots, flowers, and immature seeds), whereas group 2 is strongly expressed in immature seeds. SNF1-related protein kinases have been reported from different plant species, such as rye, barley, Arabidopsis, tobacco, and potato, while the type of gene strongly expressed in immature seeds is known only in cereals such as rye, barley, and, from our findings, in rice. Expression levels of the group 2 genes were further analyzed in seeds during seed maturation. Expression is transiently increased in the early stages of seed maturation and then decreases. The expression peak precedes those of the sbe1 and waxy genes, which are involved in starch synthesis in rice. Taken together, these findings suggest that group 2 OSK genes play important roles in the early stages of endosperm development in rice seeds.  相似文献   

2.
3.
Loss of yeast protein kinase C function results in three distinct phenotypes: staurosporine sensitivity, cell lysis and blockage of cell cycle progression at the G2/M boundary. Genetic analysis of the PKC1/STT1 protein kinase C gene and its interactions with STT4, encoding an upstream phosphatidylinositol 4-kinase, and BCK1, encoding a downstream protein kinase, reveal that they form part of a single pathway. However, the BCK1-20 mutation (a gain-of-function mutation of BCK1) or overexpression of PKC1 cannot suppress all of the phenotypes caused by the loss of STT4 function, strongly suggesting the existence of a branch point between STT4 and PKC1. We also describe the MSS4 gene, a multicopy suppressor of the temperature-sensitive stt4-1 mutation. MSS4 is predicted to encode a hydrophilic protein of 779 amino acid residues and is essential for cell growth. Based on genetic and biochemical data, we suggest that MSS4 acts downstream of STT4, but in a pathway that does not involve PKC1. GenBank accession number: The accession number for the MSS4 sequence reported in this paper is D13716.  相似文献   

4.
5.
Summary The product of the CDC7 gene of Saccharomyces cerevisiae has multiple cellular functions, being needed for the initiation of DNA synthesis during mitosis as well as for synaptonemal complex formation and commitment to recombination during meiosis. The CDC7 protein has protein kinase activity and contains the conserved residues characteristic of the protein kinase catalytic domain. To determine which of the cellular functions of CDC7 require this protein kinase activity, we have mutated some of the conserved residues within the CDC7 catalytic domain and have examined the ability of the mutant proteins to support mitosis and meiosis. The results indicate that the protein kinase activity of the CDC7 gene product is essential for its function in both mitosis and meiosis and that this activity is potentially regulated by phosphorylation of the CDC7 protein.  相似文献   

6.
7.
8.
Summary The product of the PHO85 gene, which encodes one of the negative regulatory factors of the PHO system in Saccharomyces cerevisiae, shows significant amino acid sequence homology with the CDC28 protein kinase. However, overexpressing PHO85 did not suppress the temperature sensitive phenotype of the cdc28-1 mutation. The nucleotide sequence of the PHO85 gene strongly suggests the presence of an intron near the sequence encoding the N-terminal region.  相似文献   

9.
Japanese pear (Pyrus serotina Rehd.) exhibits gametophytic self-incompatibility. Following our previous findings that basic ribonucleases in the styles of Japanese pear are associated with self-incompatibility genes (S-RNases), stylar proteins with high pI values were analyzed by two-dimensional gel electrophoresis further to characterize S-RNases. A group of basic proteins of about 30 kDa associated with self-incompatibility genes were identified. These proteins contained sugar chains which reacted with concanavalin A and wheat germ agglutinin, and thus were designated as S-glycoproteins of Japanese pear. The fact that the S-glycoprotein was expressed at a much lower level in a self-compatible mutant than in the original variety suggested a role of S-glycoproteins in mediating self-incompatibility of Japanese pear. Immunoblot analysis indicated that S-glycoproteins are identical to previously identified S-RNases. The S-glycoproteins were predominantly expressed in the style, in the ovary in trace amounts, and not in leaf, pollen or germinated pollen. The N-terminal amino acid sequences of the S-glycoproteins showed homology not only with each other but also with those of the S-allele-associated proteins from plants of the family Solanaceae at levels of about 30–50%.  相似文献   

10.
11.
The Aspergillusniger and Trichodermareesei genes encoding the functional homologues of the small GTP-binding protein SAR1p, which is involved in the secretion pathway in Saccharomyces cerevisiae, have been cloned and characterised. The A. niger gene (sarA) contains five introns, whereas the T. reesei gene (sar1) has only four. In both cases the first intron is at the same position as the single S. cerevisiae SAR1 intron. The encoded proteins show 70–80% identity to the SAR1 protein. Complementation of S. cerevisiaesar1 and sec12 mutants by expression vectors carrying the A. nigersarA and T. reesei sar1 cDNA clones confirmed that the cloned genes are functional homologues of the S. cerevisiae SAR1 gene. Three mutant alleles of the A. nigersarA gene (D29G, E109K, D29G/E109K), generated by site-directed mutagenesis, revealed a thermosensitive dominant-negative phenotype in the presence of the wild-type sarA allele. This result contrasts with the situation in S. cerevisiae, where similar mutations have a thermosensitive phenotype. Taken together, our results indicate that the sarA gene is involved in an essential function in A. niger. Received: 21 January 1997 / Accepted: 21 June 1997  相似文献   

12.
Summary Saccharomyces cerevisiae genomic clones that encode calmodulin-binding proteins were isolated by screening a λgt11 expression library using125I-labeled calmodulin as probe. Among the cloned yeast genes, we found two closely related genes (CMP1 andCMP2) that encode proteins homologous to the catalytic subunit of phosphoprotein phosphatase. The presumed CMP1 protein (62999 Da) and CMP2 protein (68496 Da) contain a 23 amino acid sequence very similar to those identified as calmodulin-binding sites in many calmodulin-regulated proteins. The yeast genes encode proteins especially homologous to the catalytic subunit of mammalian phosphoprotein phosphatase type 213 (calcineurin). The products of theCMP1 andCMP2 genes were identified by immunoblot analysis of cell extracts as proteins of 62000 and 64000 Da, respectively. Gene disruption experiments demonstrated that elimination of either or both of these genes had no effect on cell viability, indicating that these genes are not essential for normal cell growth.  相似文献   

13.
Summary Staurosporine is an antibiotic that specifically inhibits protein kinase C. Fourteen staurosporine- and temperature-sensitive (stt) mutants of Saccharomyces cerevisiae were isolated and characterized. These mutants were divided into ten complementation groups, and characterized for their cross-sensitivity to K-252a, neomycin, or CaCl2, The STT1 gene was cloned and sequenced. The nucleotide sequence of the STT1 gene revealed that STT1 is the same gene as PKC1. The STT1 gene conferred resistance to staurosporine on wild-type cells, when present on a high copy number plasmid. STT1/stt1::HIS3 diploid cells were more sensitive to staurosporine than STT1/STT1 diploid cells. Analysis of temperature-sensitive stt1 mutants showed that the STT1 gene product functioned in S or G2/M phase. These results suggest that a protein kinase (the STT1 gene product) is one of the essential targets of staurosporine in yeast cells.  相似文献   

14.
Abstract The untranslatable, RNA polymerase II-dependent gene ( dutA ) of Dictyostelium discoideum is induced early in development. However, unlike other early genes, dutA induction was not affected by cAMP pulses and occurred normally in various cAMP-related mutant cells, the results indicating that this induction depended solely on factors other than cAMP. In the knockout strain of the catalytic subunit of protein kinase A, dutA expression was severely blocked and not recovered by cAMP pulses. This demonstrates that even the cAMP-independent gene, dutA , requires protein kinase A for its expression.  相似文献   

15.
16.
17.
18.
19.
The utilization of ethanol via acetate by the yeast Saccharomyces cerevisiae requires the presence of the enzyme acetyl-coenzyme A synthetase (acetyl-CoA synthetase), which catalyzes the activation of acetate to acetyl-coenzyme A (acetyl-CoA). We have isolated a mutant, termed acr1, defective for this activity by screening for mutants unable to utilize ethanol as a sole carbon source. Genetic and biochemical characterization show that, in this mutant, the structural gene for acetyl-CoA synthetase is not affected. Cloning and sequencing demonstrated that the ACR1 gene encodes a protein of 321 amino acids with a molecular mass of 35 370 Da. Computer analysis suggested that the ACR1 gene product (ACR1) is an integral membrane protein related to the family of mitochondrial carriers. The expression of the gene is induced by growing yeast cells in media containing ethanol or acetate as sole carbon sources and is repressed by glucose. ACR1 is essential for the utilization of ethanol and acetate since a mutant carrying a disruption in this gene is unable to grow on these compounds.  相似文献   

20.
Cytochrome P450 CYP6D1 from the house fly is important in the detoxication of xenobiotics and in resistance to pyrethroid insecticides. In house fly microsomes CYP6D1 requires cytochrome b5 for the metabolism of some substrates, such as benzo[a]pyrene, but does not require cytochrome b5 for the metabolism of other substrates such as methoxyresorufin. To examine the molecular mechanisms involved in its metabolism of pyrethroids and other substrates, a system for the heterologous expression of CYP6D1 in the yeast Saccharomyces cerevisiae was developed. Heterologous CYP6D1 can be inducibly expressed by culture in media with galactose as the sole carbon source, and is successfully inserted into the yeast microsomes. CYP6D1 is enzymatically active, as measured by methoxyresorufin-O-demethylation, indicating that CYP6D1 is able to interact with yeast P450 reductase. However, CYP6D1 expression did not result in measurable benzo[a]pyrene hydroxylation, suggesting that CYP6D1 cannot interact with yeast cytochrome b5, or that there is insufficient cytochrome b5 in the yeast microsomes to support this CYP6D1-mediated activity. Some suggestions are made for improving the yeast microsomal oxidoreductase environment in order to optimize CYP6D1 function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号