首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Under northern climatic conditions, a temporary decrease in the temperature of anaerobic reactors treating swine manure is likely to happen at the farm. The objective of this study was to evaluate the impact of temperature fluctuations, between 10 and 20 degrees C, on the stability and performance of psychrophilic anaerobic sequencing batch reactors (ASBRs) treating swine manure. Methane yield decreased from 0.266+/-0.014 l/g of total chemical oxygen demand (TCOD) fed to the ASBRs at 20 degrees C to 0.218+/-0.022 and 0.080+/-0.002 l/g TCOD (fed) at 15 and 10 degrees C, respectively. Soluble chemical oxygen demand (SCOD) reduction decreased from 94.2+/-1.1% at 20 degrees C to 78.8+/-3.0% at 15 degrees C and 60.4+/-6.4% at 10 degrees C. Total COD removal also tended to decrease as temperature was lowered, but difference between operating temperatures was not as pronounced. A lower methanogenic activity in the ASBRs operated at 10 degrees C probably favoured quiescent conditions during the settling period, thereby increasing physical removal of the TCOD through sedimentation of the solids with the biomass. When the operating temperature was increased back to 15 and 20 degrees C, methane yield and SCOD reduction improved, but reactor performance remained significantly (P<0.05) lower than that achieved before the cycles at 10 degrees C. Results from this experiment nevertheless suggested that fluctuation in the operating temperature of psychrophilic ASBRs should only have temporary effects on the performance and stability of the process.  相似文献   

2.
High strength slaughterhouse wastewater was treated in four 42 l anaerobic sequencing batch reactors (ASBRs) operated at 30 degrees C, 25 degrees C and 20 degrees C. The wastewater contained between 30% and 53% of its chemical oxygen demand (COD) as suspended solids (SS). The ASBRs could easily support volumetric organic loading rates (OLRs) of 4.93, 2.94 and 2.75 kg/m3/d (biomass OLRs of 0.44, 0.42 and 0.14 g/g volatile SS (VSS)/d) at 30 degrees C, 25 degrees C, and 20 degrees C, respectively. At all operating temperatures, the total COD (TCOD) and soluble COD (SCOD) were reduced by over 92%, while average SS removal varied between 80% and 96%. Over the experimental period, 90.8%, 88.7% and 84.2% of the COD removed was transformed into methane at 30 degrees C, 25 degrees C and 20 degrees C, respectively. The decrease in the conversion of the COD removed into methane as operating temperature was lowered, may be partly explained by a lower degradation of influent SS as temperature was reduced. The reactors showed a high average methanogenic activity of 0.37, 0.34 and 0.12 g CH4-COD/gVSS/d (22.4, 12.7 and 11.8 l/d) at 30 degrees C, 25 degrees C and 20 degrees C, respectively. The average methane content in the biogas increased from 74.7% to 78.2% as temperature was lowered from 30 degrees C to 20 degrees C.  相似文献   

3.
The microflora of a self-heating aerobic thermophilic sequencing batch reactor (AT-SBR) treating swine waste was investigated by a combination of culture and culture-independent techniques. The temperature increased quickly in the first hours of the treatment cycles and values up to 72°C were reached. Denaturing gradient gel electrophoresis of the PCR-amplified V3 region of 16S rDNA (PCR-DGGE) revealed important changes in the bacterial community during 3-day cycles. A clone library was constructed with the near-full-length 16S rDNA amplified from a mixed-liquor sample taken at 60°C. Among the 78 non-chimeric clones analysed, 20 species (here defined as clones showing more than 97% sequence homology) were found. In contrast to other culture-independent bacterial analyses of aerobic thermophilic wastewater treatments, species belonging to the Bacilli class were dominant (64%) with Bacillus thermocloacae being the most abundant species (38%). The other Bacilli could not be assigned to a known species. Schineria larvae was the second most abundant species (14%) in the clone library. Four species were also found among the 19 strains isolated, cultivated and identified from samples taken at 40°C and 60°C. Ten isolates showed high 16S rDNA sequence homology with the dominant bacterium of a composting process that had not been previously isolated.An erratum to this article can be found at  相似文献   

4.
5.
Anaerobic co-digestion of fruit and vegetable waste (FVW) and abattoir wastewater (AW) was investigated using anaerobic sequencing batch reactors (ASBRs). The effects of hydraulic retention time (HRT) and temperature variations on digesters performances were examined. At both 20 and 10 days biogas production for co-digestion was greater thanks to the improved balance of nutrients. The high specific gas productions for the different digestion processes were 0.56, 0.61 and 0.85 l g−1 total volatile solids (TVS) removal for digesters treating AW, FVW and AW + FVW, respectively. At an HRT of 20 days, biogas production rates from thermophilic digesters were higher on average than from mesophilic AW, FVW and AW + FVW digestion by 28.5, 44.5 and 25%, respectively. However, at 10 days of HRT results showed a decrease of biogas production rate for AW and AW + FVW digestion processes due to the high amount of free ammonia at high organic loading rate (OLR).  相似文献   

6.
The influence of bovine rumen fluid inoculum during anaerobic treatment of the organic fraction of municipal solid waste (MSW) was studied in this work. The parameters adopted for evaluation were the biostabilization constant of total volatile solids (TVS) and the biostabilization time of the chemical oxygen demand (COD) applied to the reactors. The work was realized in four anaerobic batch reactors of 20 l capacity each, during a period of 365 days. The proportions between MSW/inoculum loaded in the reactors were Reactor A (100%/0%), Reactor B (95%/5%), Reactor C (90%/10%) and Reactor D (85%/15%). The necessary time for biostabilization of half of the applied COD was 459, 347, 302 and 234 days and the average of methane concentration in the biogas produced was 3.6%, 13.0%, 25.0% and 42.6% for Reactors A, B, C and D, respectively. The data obtained affirm that the inoculum used substantially improved the performance of the process.  相似文献   

7.
The objectives of the study were to measure the levels of manure nutrients retained in psychrophilic anaerobic sequencing batch reactors (PASBRs) digesting swine manure, and to determine the distribution of nutrients in the sludge and supernatant zones of settled bioreactor effluent. Anaerobic digestion reduced the total solids (TS) concentration and the soluble chemical oxygen demand (SCOD) of manure by 71.4% and 79.9%, respectively. The nitrogen, potassium, and sodium fed with the manure to the PASBRs were recovered in the effluent. The bioreactors retained on average 25.5% of the P, 8.7% of the Ca, 41.5% of the Cu, 18.4% of the Zn, and 67.7% of the S fed to the PASBRs. The natural settling of bioreactor effluent allowed further nutrient separation. The supernatant fraction, which represented 71.4% of effluent volume, contained 61.8% of the total N, 67.1% of the NH4-N, and 73.3% of the Na. The settled sludge fraction, which represented 28.6% of the volume, contained 57.6% of the solids, 62.3% of the P, 71.6% of the Ca, 89.6% of the Mg, 76.1% of the Al, 90.0% of the Cu, 74.2% of the Zn, and 52.2% of the S. The N/P ratio was increased from 3.9 in the raw manure to 5.2 in the bioreactor effluent and 9.2 in the supernatant fraction of the settled effluent. The PASBR technology will then substantially decrease the manure management costs of swine operations producing excess phosphorus, by reducing the volume of manure to export outside the farm. The separation of nutrients will also allow land spreading strategies that increase the agronomic value of manure by matching more closely the crop nutrient requirements.  相似文献   

8.
Influence of recirculation on the performance of anaerobic sequencing batch biofilm reactor (AnSBBR) was studied in the process of treating hypersaline (total dissolved inorganic solids (TDIS) approximately 26 g/l) and low biodegradable (BOD/COD approximately 0.3) composite chemical wastewater. Significant enhancement in the substrate removal efficiency and biogas yield was observed after introducing the recirculation to the system. Maximum efficiency (COD removal efficiency - 51%; SDR - 3.14 kg COD/cum-day) was observed at recirculation to feed (R/F) ratio of 2 (OLR - 6.15 kg C OD/cum-day; HLR - 2.30 cum (liquid)/cum day; UFV(A) - 0.023 m/h). Subsequent increase of R/F to 3 (OLR - 6.15 kg COD/cum-day; HLR - 3.07cum (liquid)/cum-day; UFV(A) - 0.035 m/h) resulted in reduction in COD removal efficiency (32%; SDR - 1.97 kg COD/cum-day). The enhanced performance of the system due to the introduction of recirculation was attributed to the improvement in the mass transfer between the substrate present in the bulk liquid and the attached biofilm. The hydrodynamic behavior due to recirculation mode of operation reduced the concentration gradient (substrate inhibition) of substrate and reaction by-products (VFA) resulting in mixed flow conditions.  相似文献   

9.
The aim of this paper was to analyze the biomethanization process of food waste (FW) from a university campus restaurant in six reactors with three different total solid percentages (20%, 25% and 30% TS) and two different inoculum percentages (20-30% of mesophilic sludge). The experimental procedure was programmed to select the initial performance parameters (total solid and inoculum contents) in a lab-reactor with V: 1100mL and, later, to validate the optimal parameters in a lab-scale batch reactor with V: 5000mL. The best performance for food waste biodegradation and methane generation was the reactor with 20% of total solid and 30% of inoculum: give rise to an acclimation stage with acidogenic/acetogenic activity between 20 and 60 days and methane yield of 0.49L CH4/g VS. Also, lab-scale batch reactor (V: 5000mL) exhibit the classical waste decomposition pattern and the process was completed with high values of methane yield (0.22L CH4/g VS). Finally, a protocol was proposed to enhance the start-up phase for dry thermophilic anaerobic digestion of food waste.  相似文献   

10.
11.
This study compares the performance of anaerobic digestion of fruit and vegetable waste (FVW) in the thermophilic (55 °C) process with those under psychrophilic (20 °C) and mesophilic (35 °C) conditions in a tubular anaerobic digesters on a laboratory scale. The hydraulic retention time (HRT) ranged from 10 to 20 days, and raw fruit and vegetable waste was supplied in a semi-continuous mode at various concentrations of total solids (TS) (4, 6, 8 and 10% on dry weight). Biogas production from the experimental thermophilic digester was higher on average than from psychrophilic and mesophilic digesters by 144 and 41%, respectively. The net energy production in the thermophilic digester was 195.7 and 49.07 kJ per day higher than that for the psychrophilic and mesophilic digesters, respectively. The relation between the daily production of biogas and the temperature indicates that for the same produced quantity of biogas, the size of the thermophilic digester can be reduced with regard to that of the psychrophilic and the mesophilic digesters.  相似文献   

12.
This study investigated the characteristics of nitrous oxide (N2O) emission from intermittently aerated sequencing batch reactors (IASBRs) treating high strength slaughterhouse wastewater at 11 °C, where partial nitrification followed by denitrification (PND) was achieved. N2O generation and emission was examined at three aeration rates of 0.4, 0.6, and 0.8 L air/min in three IASBRs (SBR1, SBR2, and SBR3, respectively). The slaughterhouse wastewater contained chemical oxygen demand (COD) of 6057 ± 172.6 mg/L, total nitrogen (TN) of 576 ± 15.1 mg/L, total phosphorus (TP) of 52 ± 2.7 mg/L and suspended solids (SS) of 1843 ± 280.5 g/L. In the pseudo-steady state, the amount of N2O emission was up to 5.7–11.0% of incoming TN. The aeration rate negatively affected N2O emission and the ratio of N2O emission to incoming TN was reduced by 48.2% when the aeration rate was increased from 0.4 to 0.8 L air/min. Results showed that more N2O was generated in non-aeration periods than in aeration periods. Lower DO concentrations enhanced N2O generation in the aeration periods (probably via nitrifier denitrification) while low DO concentrations (lower than 0.2 mg/L) did not affect N2O generation in the non-aeration periods (probably via heterotrophic denitrification). When PHB was utilized as the organic substrate for denitrification, there was a high N2O generation potential. It was estimated that 1.8 mg N2O-N was generated accompanying per mg PHB consumed.  相似文献   

13.
14.
The effects of COD/N ratio (3-6) and salt concentration (0.5-2%) on organics and nitrogen removal efficiencies in three bench top sequencing batch reactors (SBRs) with synthetic wastewater and one SBR with fish market wastewater were investigated under different operating schedules. The solids retention time (SRT, 20-100 days) and aeration time (4-10h) was also varied to monitor the performance. For synthetic wastewater, chemical oxygen demand (COD) removal efficiencies were consistently greater than 95%, irrespective of changes in COD/N ratio, aeration time and salt concentrations. Increasing the salt concentrations decreased the nitrification efficiency, while high COD/N ratio's favored better nitrogen removal (>90%). The treatment of real saline wastewater ( approximately 3.2%) from a fish market showed high COD (>80%) and nitrogen (>40%) removal efficiencies despite high loading rate and COD/N fluctuations, which is due to the acclimatization of the biomass within the SBR.  相似文献   

15.
The performance of an intermittently aerated sequencing batch reactor (IASBR) technology was investigated in achieving partial nitrification, organic matter removal and nitrogen removal from separated digestate liquid after anaerobic digestion of pig manure. The wastewater had chemical oxygen demand (COD) concentrations of 11,540 ± 860 mg/L, 5-day biochemical oxygen demand (BOD5) concentrations of 2,900 ± 200 mg/L and total nitrogen (TN) concentrations of 4,041 ± 59 mg/L, with low COD:N ratios (2.9) and BOD5:COD ratios (0.25). Synthetic wastewater, simulating the separated digestate liquid with similar COD and nitrogen concentrations but BOD5 of 11,500 ± 100 mg/L, was also treated using the IASBR technology. At a mean organic loading rate of 1.15 kg COD/(m3 d) and a nitrogen loading rate of 0.38 kg N/(m3 d), the COD removal efficiency was 89.8% in the IASBR (IASBR-1) treating digestate liquid and 99% in the IASBR (IASBR-2) treating synthetic wastewater. The IASBR-1 effluent COD was mainly due to inert organic matter and can be further reduced to less than 40 mg/L through coagulation. The partial nitrification efficiency of 71–79% was achieved in the two IASBRs and one cause for the stable long-term partial nitrification was the intermittent aeration strategy. Nitrogen removal efficiencies were 76.5 and 97% in IASBR-1 and IASBR-2, respectively. The high nitrogen removal efficiencies show that the IASBR technology is a promising technology for nitrogen removal from low COD:N ratio wastewaters. The nitrogen balance analysis shows that 59.4 and 74.3% of nitrogen removed was via heterotrophic denitrification in the non-aeration periods in IASBR-1 and IASBR-2, respectively.  相似文献   

16.
Treatment of aged (500 day, 4 °C stored) chlortetracycline (CTC; 0, 20, 40, 80 mg/L CTC)-amended swine manure using two cycle, 22 day stage anaerobic sequencing batch reactors (SBR) was assessed. Eighty milligrams per liter CTC treatment inhibited SBR treatment efficiencies, although total gas production was enhanced compared to the no-CTC treatment. The 20 and 40 mg/L CTC treatments resulted in either slight or no differences to SBR treatment efficiencies and microbial diversities compared to the no-CTC treatment, and were generally similar to no-CTC treatments upon completion of the first 22 day SBR cycle. All CTC treatments enhanced SBR gas generation, however CH4 yields were lowest for the 80 mg/L CTC treatment (0.111 L CH4/g tCOD) upon completion of the second SBR react cycle. After a 22 day acclimation period, the 80 mg/L CTC treatment inhibited methanogenesis due to acetate accumulation, and decreased microbial diversity and CH4 yield compared to the no-CTC treatment.  相似文献   

17.
This work reports on the treatment of partially soluble wastewater in an anaerobic sequencing batch biofilm reactor, containing biomass immobilized on polyurethane matrices and stirred mechanically. The results showed that agitation provided optimal mixing and improved the overall organic matter consumption rates. The system showed to be feasible to enhance the treatment of partially soluble wastewaters.  相似文献   

18.
This work reports on experiments for an anaerobic sequencing batch reactor containing immobilized biomass which aimed at verifying the effects of solid-phase mass transfer on the reactor's overall performance. Four experiments were carried out at 30 degrees C with cubic polyurethane foam particles previously inoculated with anaerobic biomass. Different solid-phase mass transfer conditions were reached in each experiment by varying the size of the bioparticle from 0.5 to 3.0 cm. The reactor was fed with a low-strength synthetic wastewater containing protein, carbohydrates and lipid and the effects of mass transfer were evaluated through dynamic substrate concentration profiles during 8-hour batch cycles. A modified first-order kinetic model provided a good representation of the behavior of the dynamic concentration profiles. The solid-phase mass transfer was found to slightly affect the concentration of effluent organic matter expressed as chemical oxygen demand (COD). The concentration of residual effluent substrate increased as the size of the bioparticle was increased. The cycle time was not affected as the size of the bioparticle was increased from 0.5 to 2.0 cm. However, it was found that the cycle time in a reactor with 3.0-cm cubic particles should be higher than that required in systems with smaller particles. The apparent first-order kinetic parameter was estimated as 0.59+/-0.01 h(-1) for experiments with bioparticle sizes ranging from 0.5 to 2.0 cm, while a value of 0.48 h(-1) was obtained in the experiment with 3.0-cm bioparticles.  相似文献   

19.
Shao X  Peng D  Teng Z  Ju X 《Bioresource technology》2008,99(8):3182-3186
Brewery wastewater was treated in a pilot-scale anaerobic sequencing batch reactor (ASBR) in which a floating cover(@) was employed. Long time experiments showed that the reactor worked stably and effectively for COD removal and gas production. When the organic loading rate was controlled between 1.5 kg COD/m3 d and 5.0 kg COD/m(3)d, and hydraulic retention time one day, COD removal efficiency could reach more than 90%. Sludge granulation was achieved in the reactor in approximately 60 days, which is much less than the granulation time ever reported. In addition, high specific methanogenic activity (SMA) for formate was observed. The study suggests that the ASBR technology is a potential alternative for brewery wastewater treatment.  相似文献   

20.
An acetic-acid-based synthetic wastewater of different organic concentrations was successfully treated at 35 degrees C in anaerobic downflow fixed-film reactors operated at high organic loading rates and short hydraulic retention times (HRTs). Substrate removal and methane production rates close to theoretical values of complete volumetric chemical oxygen demand (COD) removal and maximum methane conversion were obtained. A high concentration of biofilm biomass was retained in the reactor. Steady-state biofilm concentration increased with increased organic loading rate and decreased HRTs, reaching a maximum of 8.3 kg VFS/m(3) at a loading rate of 17 kg COD/m(3) day. Biofilm substrate utilization rates of up to 1.6 kg COD/kg VFS day were achieved. Soluble COD utilization rates at various COD concentrations can be described by half-order reaction kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号