首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Expression of mutant ompA genes, encoding the 325 residue Escherichia coli outer membrane protein OmpA, caused an inhibition of synthesis of the structurally unrelated outer membrane porins OmpC and OmpF and of wild-type OmpA, but not of the periplasmic beta-lactamase. There was no accumulation of precursors of the target proteins and the inhibitory mechanism operated at the level of translation. So far only alterations around residue 45 of OmpA have been found to affect this phenomenon. Linkers were inserted between the codons for residues 45 and 46. A correlation between size and sequence of the resulting proteins and presence or absence of the inhibitory effect was not found, indicating that the added residues acted indirectly by altering the conformation of other parts of the mutant OmpA. To be effective, the altered polypeptides had to be channelled into the export pathway. Internal deletions in effector proteins, preventing incorporation into the membrane, abolished effector activity. The results suggest the existence of a periplasmic component that binds to OmpA prior to membrane assembly; impaired release of this factor from mutant OmpA proteins may trigger inhibition of translation. The factor could be a See B-type protein, keeping outer membrane proteins in a form compatible with membrane assembly.  相似文献   

2.
SurA assists the folding of Escherichia coli outer membrane proteins.   总被引:10,自引:3,他引:7       下载免费PDF全文
Many proteins require enzymatic assistance in order to achieve a functional conformation. One rate-limiting step in protein folding is the cis-trans isomerization of prolyl residues, a reaction catalyzed by prolyl isomerases. SurA, a periplasmic protein of Escherichia coli, has sequence similarity with the prolyl isomerase parvulin. We tested whether SurA was involved in folding periplasmic and outer membrane proteins by using trypsin sensitivity as an assay for protein conformation. We determined that the efficient folding of three outer membrane proteins (OmpA, OmpF, and LamB) requires SurA in vivo, while the folding of four periplasmic proteins was independent of SurA. We conclude that SurA assists in the folding of certain secreted proteins.  相似文献   

3.
Pulse-chase experiments were performed to follow the export of the Escherichia coli outer membrane protein OmpA. Besides the pro-OmpA protein, which carries a 21-residue signal sequence, three species of ompA gene products were distinguishable. One probably represented an incomplete nascent chain, another the mature protein in the outer membrane, and the third, designated imp-OmpA (immature processed), a protein which was already processed but apparently was still associated with the plasma membrane. The pro- and imp-OmpA proteins could be characterized more fully by using a strain overproducing the ompA gene products; pro- and imp-OmpA accumulated in large amounts. It could be shown that the imp- and pro-OmpA proteins differ markedly in conformation from the OmpA protein. The imp-OmpA, but not the pro-OmpA, underwent a conformational change and gained phage receptor activity upon addition of lipopolysaccharide. Utilizing a difference in detergent solubility between the two polypeptides and employing immunoelectron microscopy, it could be demonstrated that the pro-OmpA protein accumulated in the cytoplasm while the imp-OmpA was present in the periplasmic space. The results suggest that the pro-OmpA protein, bound to the plasma membrane, is processed, and the resulting imp-OmpA, still associated with the plasma membrane, recognizes the lipid A moiety of the lipopolysaccharide. The resulting conformational change may then force the protein into the outer membrane.  相似文献   

4.
We have studied the folding pathway of a beta-barrel membrane protein using outer membrane protein A (OmpA) of Escherichia coli as an example. The deletion of the gene of periplasmic Skp impairs the assembly of outer membrane proteins of bacteria. We investigated how Skp facilitates the insertion and folding of completely unfolded OmpA into phospholipid membranes and which are the biochemical and biophysical requirements of a possible Skp-assisted folding pathway. In refolding experiments, Skp alone was not sufficient to facilitate membrane insertion and folding of OmpA. In addition, lipopolysaccharide (LPS) was required. OmpA remained unfolded when bound to Skp and LPS in solution. From this complex, OmpA folded spontaneously into lipid bilayers as determined by electrophoretic mobility measurements, fluorescence spectroscopy, and circular dichroism spectroscopy. The folding of OmpA into lipid bilayers was inhibited when one of the periplasmic components, either Skp or LPS, was absent. Membrane insertion and folding of OmpA was most efficient at specific molar ratios of OmpA, Skp, and LPS. Unfolded OmpA in complex with Skp and LPS folded faster into phospholipid bilayers than urea-unfolded OmpA. Together, these results describe a first assisted folding pathway of an integral membrane protein on the example of OmpA.  相似文献   

5.
Results of studies, mostly using the outer membrane, 325 residue protein OmpA, are reviewed which concern its translocation across the plasma membrane and incorporation into the outer membrane ofEscherichia coli. For translocation, neither a unique export signal, acting in a positive fashion within the mature part of the precursor, nor a unique conformation of the precursor is required. Rather, the mature part of a secretory protein has to be export-compatible. Export-incompatibility can be caused by a stretch of 16 (but not 8 or 12) hydrophobic residues, too low a size of the polypeptide (smaller than 75 residue precursors), net positive charge at the N-terminus, or lack of a turn potential at the same site. It is not yet clear whether binding sites for chaperonins (SecB, trigger factor, GroEL) within OmpA are importantin vivo. The mechanism of sorting of outer membrane proteins is not yet understood. The membrane part of OmpA, encompassing residues 1 to about 170, it thought to traverse the membrane eight times in antiparallel -sheet conformation. At least the structure of the last -strand (residues 160–170) is of crucial importance for membrane assembly. It must be amphiphilic or hydrophobic, these properties must extend over at least nine residues, and it must not contain a proline residue at or near its center. Membrane incorporation of OmpA involves a conformational change of the protein and it could be that the last -strand initiates folding and assembly in the outer membrane.  相似文献   

6.
Escherichia coli K1 is the most common gram-negative bacterium causing neonatal meningitis. The outer membrane protein A (OmpA) assembles a beta-barrel structure having four surface-exposed loops in E. coli outer membrane. OmpA of meningitis-causing E. coli K1 is shown to contribute to invasion of the human brain microvascular endothelial cells (HBMEC), the main cellular component of the blood-brain barrier (BBB). However, the direct evidence of OmpA protein interacting with HBMEC is not clear. In this study, we showed that OmpA protein, solubilized from the outer membrane of E. coli, adhered to HBMEC surface. To verify OmpA interaction with the HBMEC, we purified N-terminal membrane-anchoring beta-barrel domain of OmpA and all surface-exposed loops deleted OmpA proteins, and showed that the surface-exposed loops of OmpA were responsible for adherence to HBMEC. These findings indicate that the OmpA is the adhesion molecule with HBMEC and the surface-exposed loops of OmpA are the determinant of this interaction.  相似文献   

7.
Refolding of an integral membrane protein. OmpA of Escherichia coli   总被引:7,自引:0,他引:7  
OmpA is an integral membrane protein from the outer membrane of Escherichia coli. Purified, lipopolysaccharide-free OmpA was denatured by boiling in sodium dodecyl sulfate (SDS). Refolding was then induced by replacement of SDS with the nonionic detergent octylglucoside. The structure of both the denatured and refolded protein were investigated by SDS-gel electrophoresis, protease digestion, Raman and fluorescence spectroscopy. Refolded OmpA could be reconstituted into membranes of the synthetic lipid dimyristoylphosphatidylcholine. Thus, lipopolysaccharide is neither necessary for proper folding of OmpA nor for its insertion into lipid membranes. Based on this result, models for sorting of OmpA into the outer membrane of E. coli are discussed.  相似文献   

8.
The Escherichia coli K-12 outer membrane protein OmpA functions as the receptor for bacteriophage Ox2. We isolated a host range mutant of this phage which was able to grow on an Ox2-resistant ompA mutant producing an altered OmpA protein. From this mutant, Ox2h5, a second-step host range mutant was recovered which formed turbid plaques on a strain completely lacking the OmpA protein. From one of these mutants, Ox2h10, a third-step host range mutant, Ox2h12, was isolated which formed clear plaques on a strain missing the OmpA protein. Ox2h10 and Ox2h12 apparently were able to use both outer membrane proteins OmpA and OmpC as receptors. Whereas there two proteins are very different with respect to primary structures and functions, the OmpC protein is very closely related to another outer membrane protein, OmpF, which was not recognized by Ox2h10 or Ox2h12. An examination of the OmpC amino acid sequence, in the regions where it differs from that of OmpF, revealed that one region shares considerable homology with a region of the OmpA protein which most likely is required for phage Ox2 receptor activity.  相似文献   

9.
The major outer membrane protein (MOMP) of Haemophilus ducreyi is an OmpA homolog that migrates on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels as three species with apparent molecular weights ranging from 37,000 to 43,000. Monoclonal antibodies directed against this macromolecule were used to identify recombinant clones containing fragments of the gene encoding this protein. Nucleotide sequence analysis of these fragments confirmed that the MOMP encoded by the intact gene (momp) was a member of the OmpA family of outer membrane proteins. Construction of an isogenic H. ducreyi mutant unable to express the MOMP led to the discovery of a second outer membrane protein which migrated at the same rate on SDS-PAGE gels as the MOMP. N-terminal amino acid sequence analysis of this second protein revealed that its N terminus was nearly identical to that of the MOMP and also had homology with members of the OmpA family. Nucleotide sequence analysis of the region downstream from the momp gene revealed the presence of a partial open reading frame encoding a predicted OmpA-like protein. A modification of anchored PCR technology was used to obtain the nucleotide sequence of this downstream gene which was shown to encode a second OmpA homolog (OmpA2). The N-terminal amino acid sequence of OmpA2 was identical to that of the OmpA-like protein detected in the momp mutant. The H. ducreyi MOMP and OmpA2 proteins, which comigrated on SDS-PAGE gels and which were encoded by the tandem arranged momp and ompA2 genes, were 72% identical.  相似文献   

10.
The 325-residue outer membrane protein, OmpA, of Escherichia coli, like most other outer membrane proteins with known sequence, contains no long stretch of hydrophobic amino acids. A synthetic oligonucleotide, encoding the sequence Leu-Ala-Leu-Val, was inserted four times between the codons for amino acid residues 153 and 154 and two, three, or four times between the codons for residues 228 and 229, resulting in the OmpA153-4, OmpA-228-2, -3, and -4 proteins, respectively. In the first case, the lipophilic sequence anchored the protein in the plasma membrane. In the OmpA228 proteins, 16 but not 12 or 8 lipophilic residues most likely also acted as an anchor. By removal of the NH2-terminal signal peptide, the function of the insert in OmpA153-4 was converted to that of a signal-anchor sequence. Possibly due to differences in amino acid sequences surrounding the insert, no signal function was observed with the insert in OmpA228-4. Production of the OmpA153-4 protein, with or without the NH2-terminal signal sequence, resulted in a block of export of chromosomally encoded OmpA. Clearly, long hydrophobic regions are not permitted within proteins destined for the bacterial outer membrane, and these proteins, therefore, have had to evolve another mechanism of membrane assembly.  相似文献   

11.
Evidence that TraT interacts with OmpA of Escherichia coli   总被引:10,自引:0,他引:10  
I Riede  M L Eschbach 《FEBS letters》1986,205(2):241-245
The OmpA protein is one of the major outer membrane proteins of Escherichia coli. Among other functions the protein serves as a receptor for several phages and increases the efficiency of F-mediated conjugation when present in recipient cells. TraT is an F-factor-coded outer membrane lipoprotein involved in surface exclusion, the mechanism by which E. coli strains carrying F-factors become poor recipients in conjugation. To determine a possible interaction of TraT with OmpA, the influence of TraT on phage binding to cells was measured. Because TraT inhibits inactivation of OmpA-specific phages it is suggested that TraT interacts directly with OmpA. Sequence homology of TraT with proteins 38, the phage proteins recognizing outer membrane proteins, supports this finding. A model of protein interactions is discussed.  相似文献   

12.
Selection was performed for resistance to a phage, Ox2, specific for the Escherichia coli outer membrane protein OmpA, under conditions which excluded recovery of ompA mutants. All mutants analyzed produced normal quantities of OmpA, which was also normally assembled in the outer membrane. They had become essentially resistant to OmpC and OmpF-specific phages and synthesized these outer membrane porins at much reduced rates. The inhibition of synthesis acted at the level of translation. This was due to the presence of lipopolysaccharides (LPS) with defective core oligosaccharides. Cerulenin blocks fatty acid synthesis and therefore that of LPS. It also inhibits synthesis of OmpC and OmpF but not of OmpA (C. Bocquet-Pagès, C. Lazdunski, and A. Lazdunski, Eur. J. Biochem. 118:105-111, 1981). In the presence of the antibiotic, OmpA synthesis and membrane incorporation remained unaffected at a time when OmpC and OmpF synthesis had almost ceased. The similarity of these results with those obtained with the mutants suggests that normal porin synthesis is not only interfered with by production of mutant LPS but also requires de novo synthesis of LPS. Since synthesis and assembly of OmpA into the outer membrane was not affected in the mutants or in the presence of cerulenin, association of this protein with LPS appears to occur with outer membrane-located LPS.  相似文献   

13.
The mechanism of membrane insertion and folding of a beta-barrel membrane protein has been studied using the outer membrane protein A (OmpA) as an example. OmpA forms an eight-stranded beta-barrel that functions as a structural protein and perhaps as an ion channel in the outer membrane of Escherichia coli. OmpA folds spontaneously from a urea-denatured state into lipid bilayers of small unilamellar vesicles. We have used fluorescence spectroscopy, circular dichroism spectroscopy, and gel electrophoresis to investigate basic mechanistic principles of structure formation in OmpA. Folding kinetics followed a second-order rate law and is strongly depended on the hydrophobic thickness of the lipid bilayer. When OmpA was refolded into model membranes of dilaurylphosphatidylcholine, fluorescence kinetics were characterized by a rate constant that was about fivefold higher than the rate constants of formation of secondary and tertiary structure, which were determined by circular dichroism spectroscopy and gel electrophoresis, respectively. The formation of beta-sheet secondary structure and closure of the beta-barrel of OmpA were correlated with the same rate constant and coupled to the insertion of the protein into the lipid bilayer. OmpA, and presumably other beta-barrel membrane proteins therefore do not follow a mechanism according to the two-stage model that has been proposed for the folding of alpha-helical bundle membrane proteins. These different folding mechanisms are likely a consequence of the very different intramolecular hydrogen bonding and hydrophobicity patterns in these two classes of membrane proteins.  相似文献   

14.
Synthesis of OmpA protein of Escherichia coli K12 in Bacillus subtilis   总被引:5,自引:0,他引:5  
We have inserted a C-terminally truncated gene of the major outer membrane protein OmpA of Escherichia coli downstream from the promoter and signal sequence of the secretory alpha-amylase of Bacillus amyloliquefaciens in a secretion vector of Bacillus subtilis. B. subtilis transformed with the hybrid plasmid synthesized a protein that was immunologically identified as OmpA. All the protein was present in the particulate fraction. The size of the protein compared to the peptide synthesized in vitro from the same template indicated that the alpha-amylase derived signal peptide was not removed; this was verified by N-terminal amino acid sequence determination. The lack of cleavage suggests that there was little or no translocation of OmpA protein across the cytoplasmic membrane. This is an unexpected difference compared with periplasmic proteins, which were both secreted and processed when fused to the same signal peptide. A requirement of a specific component for the export of outer membrane proteins is suggested.  相似文献   

15.
Serratia marcescens New CDC O14:H12 contains major outer membrane proteins of 43.5 kDal, 42 kDal (the porins) and 38 kDal (the OmpA protein) which can be separated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Immunoblotting of whole cell or outer membrane preparations using antiserum raised against the whole cells revealed similar complex patterns of antigens. The OmpA protein was the major immunogen, although six other outer membrane proteins were also detected; the porins reacted only weakly with antibodies in this system. Immunoabsorption of antisera with whole cells showed that only the O antigenic chains of lipopolysaccharide and the H (flagella) antigens were accessible to antibody on the cell surface. Failure to detect the OmpA protein and other envelope antigens in this way suggests that their antigenic sites are not able to react with antibodies and are possibly masked by the O antigen.  相似文献   

16.
The 325-residue OmpA protein is one of the major outer membrane proteins of Escherichia coli K-12. A model, in which this protein crosses the membrane eight times in an antiparallel beta-sheet conformation and in which regions around amino acids 25, 70, 110 and 154 are exposed at the cell surface, had been proposed. Linkers were inserted into the ompA gene with the result that OmpA proteins, carrying non-OmpA sequences between residues 153 and 154 or 160 and 162, were synthesized. Intact cells possessing these proteins were treated with proteases. Insertion of 15 residues between residues 153 and 154 made the protein sensitive to proteinase K and the sizes of the two cleavage products were those expected following proteolysis at the area of the insertion. Addition of at least 17 residues between residues 160 and 162 left the protein completely refractory to protease action. Thus, the former area is cell surface exposed while the latter area appears not to be. The insertions did not cause a decrease in the concentration of the hybrid proteins as compared to that of the OmpA protein, and in neither case was synthesis of the protein deleterious to cell growth. It is suggested that this method may serve to carry peptides of practical interest to the cell surface and that it can be used to probe surface-located regions of other membrane proteins.  相似文献   

17.
In previous investigations, we have examined the effect of OmpA signal peptide mutations on the secretion of the two heterologous proteins TEM beta-lactamase and nuclease A. During these studies, we observed that a given signal peptide mutation could affect differentially the processing of precursor OmpA-nuclease or precursor OmpA-lactamase. This observation led us to further investigate the influence of the mature region of a precursor protein on protein export. Preexisting OmpA signal peptide mutations of known secretion phenotype when directing heterologous protein export (nuclease A or beta-lactamase) were fused to the homologous mature OmpA protein. Four signal peptide mutations that have previously been shown to prevent export of nuclease A and beta-lactamase were found to support OmpA protein export, albeit at reduced rates. This remarkable retention of export activity by severely defective precursor OmpA signal peptide mutants may be due to the ability of mature OmpA to interact with the cytoplasmic membrane. In addition, these same signal peptide mutations can affect the level of OmpA synthesis as well as its proper assembly in the outer membrane of Escherichia coli. Two signal peptide mutations dramatically stimulate the rate of precursor OmpA synthesis three- to fivefold above the level observed when a wild-type signal peptide is directing export. The complete removal of the OmpA signal peptide does not result in increased OmpA synthesis. This finding suggests that the signal peptide mutations function positively to stimulate OmpA synthesis, rather than bypass a down-regulatory mechanism effected by a wild-type signal peptide. Overproduction of wild-type precursor OmpA or precursors containing signal peptide mutations which lead to relatively minor kinetic processing defects results in accumulation of an improperly assembled OmpA species (imp-OmpA). In contrast, signal peptide mutations which cause relatively severe processing defects accumulate no or only small quantities of imp-OmpA. All mutations result in equivalent levels of properly assembled OmpA. Thus, a strong correlation between imp-OmpA accumulation and cell toxicity was observed. A mutation in the mature region of OmpA which prevents the proper outer membrane assembly of OmpA was suppressed when export was directed by a severely defective signal peptide. These findings suggest that signal peptide mutations indirectly influence OmpA assembly in the outer membrane by altering both the level and rate of OmpA secretion across the cytoplasmic membrane.  相似文献   

18.
An alternative topological model for Escherichia coli OmpA.   总被引:3,自引:1,他引:2  
The current topological model for the Escherichia coli outer membrane protein OmpA predicts eight N-terminal transmembrane segments followed by a long periplasmic tail. Several recent reports have raised serious doubts about the accuracy of this prediction. An alternative OmpA model has been constructed using (1) computer-aided predictions developed specifically to predict topology of bacterial outer membrane porins, (2) the results of two reports that identified sequence homologies between OmpA and other peptidoglycan-associated proteins, and (3) biochemical, immunochemical, and genetic topological data on proteins of the OmpA family provided by numerous previous studies. The new model not only agrees with the varied experimental data concerning OmpA but also provides an improved understanding of the relationship between the structure and the multifunctional role of OmpA in the bacterial outer membrane.  相似文献   

19.
Summary The gene ompA encodes a major outer membrane protein of Escherichia coli. Localized mutagenesis of the part of the gene corresponding to the 21-residue signal sequence and the first 45 residues of the protein resulted in alterations which caused cell lysis when expressed. DNA sequence analyses revealed that in one mutant type the last CO2H-terminal residue of the signal sequence, alanine, was replaced by valine. The proteolytic removal of the signal peptide was much delayed and most of the unprocessed precursor protein was fractioned with the outer membrane. However, this precursor was completely soluble in sodium lauryl sarcosinate which does not solubilize the OmpA protein or fragments thereof present in the outer membrane. Synthesis of the mutant protein did not inhibit processing of the OmpA or OmpF proteins. In the other mutant type, multiple mutational alterations had occurred leading to four amino acid substitutions in the signal sequence and two affecting the first two residues of the mature protein. A reduced rate of processing could not be clearly demonstrated. Membrane fractionation suggested that small amounts of this precursor were associated with the plasma membrane but synthesis of this mutant protein also did not inhibit processing of the wild-type OmpA or OmpF proteins. Several lines of evidence left no doubt that the mature, mutant protein is stably incorporated into the outer membrane. It is suggested that the presence, in the outer membrane, of the mutant precursor protein in the former case, or of the mutant protein in the latter case perturbs the membrane architecture enough to cause cell death.  相似文献   

20.
The ompA gene of Escherichia coli codes for a major protein of the outer membrane. When this gene was moved between various unrelated strains (E. coli K-12 and two clinical isolates of E. coli) by transduction, the gene was expressed very poorly. Recombinants carrying “foreign” genes produced no OmpA protein which could be detected on polyacrylamide gels and became resistant to bacteriophage K3, which uses this protein as receptor. The recombinants were sensitive to host-range mutants of K3, indicating a very low level of OmpA protein was produced. When an E. coli K-12 recombinant carrying an unexpressed foreign ompA allele was subjected to two cycles of selection for an OmpA+ phenotype, a mutant strain was obtained which was sensitive to K3 and which expressed nearly normal levels of OmpA protein in the outer membrane. This strain carried mutations in the foreign ompA gene, as indicated both by genetic mapping and the alteration of a peptide in the mutant OmpA protein. The ability of the OmpA protein to bind to lipopolysaccharide (LPS) showed similar strain specificity, and the mutant OmpA protein which was expressed in an unrelated host showed enhanced ability to bind LPS from its new host. Thus, cell surface expression of the ompA gene appears to depend upon the ability of the gene product to bind LPS, suggesting that an interaction between the protein and LPS plays an essential role in biosynthesis of this outer membrane protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号