首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Seasonal patterns of the responses of net photosynthesis, transpiration, leaf diffusive conductance, water-use efficiency and respiration to temperature, light and CO2 concentration were determined on intact plants of the short and tall height forms of Spartina alterniflora. The studies were conducted on in situ plants in an undisturbed marsh community on Sapelo Island, Ga. Net photosynthesis of the tall form at full sunlight was significantly higher than the short form except during the winter months. Tall S. alterniflora did not light saturate during any season, whereas the short form tended to saturate during all seasons except the summer. The temperature optima of photosynthesis of both forms were similar and showed acclimation to prevailing seasonal temperatures. Leaf conductances to water vapor decreased with increasing temperature and were significantly different between the height forms only at higher temperatures. Dark respiration was relatively low at seasonal temperatures, but increased with temperature. Dark respiration and the respiratory Q10 of the short form tended to be slightly higher than those of the tall form during all seasons. Transpiration rates and water-use efficiency of the tall form were generally higher than the short form.The seasonal response patterns showed intrinsic differences in the capacities of the height forms to metabolize CO2 and respond to prevailing environmental parameters. Analyses of the components of the CO2 diffusion pathway suggested that metabolic or internal components were more important than stomatal factors in determining the photosynthetic patterns of the short height form. It is suggested that the observed differences in the physiological responses of the height forms of the C4 species are due to micro-habitat differences between the low and high marsh. Higher salinity, lower nitrogen availability and other soil factors may limit the CO2 and water vapor exchange capacity of the short form compared to the tall.Contribution No. 401 from the University of Georgia Marine Institute  相似文献   

2.
The aboveground production of Spartina alterniflora in a salt marsh in Barataria Bay, Louisiana, USA was estimated using five different harvest methods: peak standing crop (PSC), Milner-Hughes, Smalley, Wiegert-Evans, and Lomnicki et al., and a non-destructive method based on measurement of stem density and longevity. Annual production estimates were 831 ± 41, 831 ± 62, 1231 ± 252, 1873 ± 147 and 1437 ± 96 g dry wt m–2 for each method, respectively. The average longevity of individually tagged young shoots was 5.2 ± 0.2 months, equivalent to an annual turnover rate of 2.3 crops per year. Among the five methods, Wiegert-Evans and Lomnicki et al. were considered more accurate than the other three because they corrected for mortality losses between sampling times. The Lomnicki et al. method was preferred over the Wiegert-Evans method because of its greater simplicity.  相似文献   

3.
Abstract Salt marshes dominated by Spartina alterniflora (smooth cordgrass) are among the most productive ecosystems known, despite nitrogen limitation. Rhizoplane/rhizosphere diazotrophy (nitrogen fixation) serves as a significant source of combined nitrogen in these systems. Several recent studies have demonstrated remarkable physiological and phylogenetic macro- and microdiversity within this important functional group of organisms. However, the ecological significance of this diversity is presently unknown. The physiological characteristics of the culturable, oxygen-utilizing fraction of the rhizoplane diazotroph assemblages from Spartina alterniflora and from another salt marsh grass, the black needle rush Juncus roemerianus, were examined in combination with an assessment of the phylogenetic relatedness by whole genome DNA–DNA hybridization. Analysis of substrate utilization data permitted quantitative evaluation of fully cross-hybridizing strain groups and physiological clusters. Phylogenetically related strains, defined by DNA homology ≥90% relative to the positive control, displayed extensive physiological diversity. Seven bootstrap-supported physiological clusters, composed largely of phylogenetically dissimilar strains, showed similar utilization patterns for at least one class of ecologically relevant substrates (carbohydrates, carboxylic acids, or amino acids). These diazotrophs appear to be physiologically adapted for utilization of specific substrates or classes of substrates, lending support to diazotrophic functional redundancy. Microenvironmental heterogeneity is credited for promoting this diversity by selecting for physiologically specialized diazotroph populations to occupy defined niches in situ. One outcome of this physiological diversity is maintenance of a crucial environmental function (nitrogen fixation) over a broad range of environmental conditions. Received: 15 October 1999; Accepted: 28 December 1999; Online Publication: 25 April 2000  相似文献   

4.
Carbon assimilation and standing crop biomass of Spartina alterniflora were studied in a contrasting streamside and inland salt marsh in Louisiana Gulf coast, USA. A substantially lower leaf dry weight, leaf area index, and standing crop biomass were recorded for inland plants as compared to streamside plants. Net assimilation rates ranged between 8 to 25 mol m–2 s–1 for streamside and between 4 to 19 mol m–2 s–1 for inland plants. The average photosynthetic rates were significantly lower for inland plants which were growing in an apparently more stressed environment. In addition, the differences were more profound with progression of the growing season. The reduced photosynthetic activity in the inland marsh was attributed to greater soil waterlogging, increased anaerobic root respiration, plant toxins (sulfide), restricted nutrient uptake or a combination of these factors.Abbreviations Eh = redox potential - gw = stomatal conductance - LAI = leaf area index - Pn = net photosynthesis - PPFD = photosynthetic photon flux density - T1 = leaf temperature  相似文献   

5.
6.
Summary Lacunal allocation as the fraction of the total cross sectional area of leaves, stem bases, rhizomes, and roots was determined in both tall and short growth forms of Spartina alterniflora collected from natural monospecific stands. The results indicate that in both growth forms lacunal allocation is greater in stem bases and rhizomes than in leaves and roots and that tall form plants allocate more of their stem and rhizome to lacunae than short form plants.Measurements made in natural stands of Spartina alterniflora suggest that total lacunal area of the stem base increases with increasing stem diameter and that stem diameter increases with increasing plant height and above-ground biomass. However, the fraction of cross section allocated to lacunae was relatively constant and increased only with the formation of a central lacuna.Experimental manipulations of surface and subsurface water exchange were carried out to test the influence of flooding regime on aerenchyma formation. No significant differences in lacunal allocation were detected between plants grown in flooded (reduced) and drained (oxidized) sediments in either laboratory or field experiments. While aerenchyma formation in Spartina alterniflora may be an adaptation to soil waterlogging/anoxia, our results suggest that lacunal formation is maximized as a normal part of development with allocation constrained structurally by the size of plants in highly organic New England and Mid-Atlantic marshes.The cross sectional area of aerenchyma for gas transport was found to be related to the growth of Spartina alterniflora with stands of short form Spartina alterniflora exhibiting a lower specific gas transport capacity (lacunal area per unit below ground biomass) than tall form plants despite having a similar below-ground biomass supported by a 10 fold higher culm density. The increased specific gas transport capacity in tall vs. short plants may provide a new mechanism to explain the better aeration, higher nutrient uptake rates and lower frequency of anaerobic respiration in roots of tall vs. short Spartina alterniflora.  相似文献   

7.
A comprehensive canopy productivity model was built to study the productivity of a primary salt marsh grass, Spartina alterniflora. in Georgia, USA The canopy model was unique in employing plant demographic data to reconstruct canopy profiles and dynamics, which showed many growth processes that are otherwise difficult to discern in the field By linking canopy dynamics and leaf photosynthesis, the net total primary productivity of S alterniflora m a Georgia salt marsh was estimated to be 1421, 749, and 1441 g C m-2 yr-1 for the tall, short, and N-fertilized short populations respectively These estimates are reasonable in terms of the physiological capacity of S alterniflora and well below the range of 3000–4200 g C m-2 yr-1 as reported by some recent harvest studies Our detailed analysis suggested the net total productivity of S alterniflora might be greatly overestimated in the past This is mainly because of 1) failure to consider the translocation of photosynthate between aboveground and belowground parts, and 2) possible overestimates of belowground production We estimated the net belowground production to be 872, 397, and 762 g C m-2 yr-1 for the tall, short, and N-fertilized populations respectively After receiving nitrogen fertilizer, the net leaf carbon fixation in the short population increased from 1489 to 2487 g C m-2 yr-1, and our simulation showed the contribution of elevated leaf N to this increase was small, 21%, compared with that of increased leaf area, 79% Both tall and short populations allocated ca 48-49% of their annual gross leaf carbon fixation to belowground structures Nitrogen enrichment caused more allocation to aboveground parts in the short population, mainly for increasing leaf area The canopy model assumed that there was no leaf photosynthesis under tidal submergence, but if this assumption was relaxed, then leaf carbon fixation might increase 7–13% for different S alterniflora populations Although this research focused only on a salt marsh species, our general approaches, especially the coupling of leaf physiology with the reconstructed canopies, should be applicable to the study of production processes of many other plant populations  相似文献   

8.
9.
10.
The coupling of root-associated nitrogen fixation and plant photosynthesis was examined in the salt marsh grass Spartina alterniflora. In both field experiments and hydroponic assay chambers, nitrogen fixation associated with the roots was rapidly enhanced by stimulating plant photosynthesis. A kinetic analysis of acetylene reduction activity (ARA) showed that a five-to sixfold stimulation occurred within 10 to 60 min after the plant leaves were exposed to light or increased CO2 concentrations (with the light held constant). In field experiments, CO2 enrichment increased plant-associated ARA by 27%. Further evidence of the dependence of ARA on plant photosynthate was obtained when activity in excised roots was shown to decrease after young greenhouse plants were placed in the dark. Seasonal variation in the ARA of excised plant roots from field cores appears to be related to the annual cycle of net photosynthesis in S. alterniflora.  相似文献   

11.
Transpiration, leaf conductance, net photosynthesis, leaf growth, above-ground biomass and regeneration of new culms were studied in a rapidly subsiding Spartina alterniflora Lois. salt marsh following the addition at 47 and 94 Kg m–2 of new sediment. Plant growth was enhanced in response to sediment addition as was evident by a significant increase in leaf area, above-ground biomass production and regeneration of new culms (p 0.05). Leaf conductance and transpiration rates were significantly greater in sediment treated plants than in control plants (p 0.05). Enhanced production of culms per unit area of marsh resulted in increased leaf area which allowed a greater capacity for net photosynthesis and contributed to increases in above-ground biomass of sediment treated plots.  相似文献   

12.
三种盐胁迫对互花米草和芦苇光合作用的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
互花米草(Spartina alterniflora)的入侵给海岸带盐沼生态系统的结构和功能带来了显著影响。互花米草盐沼中的硫含量高于附近的土著芦苇(Phragmites australis)盐沼。为探讨硫元素对互花米草和芦苇竞争过程的可能影响及其作用机制, 以50 mmol·L-1的Na2SO4和Na2S对互花米草和芦苇进行处理, 分析处理前后5天内两种植物光合气体交换和叶绿素荧光指标变化的差异, 实验另设等Na+浓度的NaCl处理作为比较。研究发现: Na2S对互花米草和芦苇光合作用影响的差异最大, NaCl次之, Na2SO4最小。Na2S处理后, 互花米草净光合速率(Pn)出现显著上升, 芦苇Pn值大幅度下降。互花米草的光饱和点(Isat)上升而芦苇的Isat值无变化。表明Na2S处理对互花米草的光合能力有促进作用, 但对芦苇的光合能力有抑制作用。NaCl处理后互花米草Pn值也出现小幅上升, 而芦苇Pn值略有下降。Na2SO4处理对互花米草和芦苇的Pn值均无显著影响。除Na2SO4处理的互花米草外, 不同盐处理后的互花米草和芦苇非光化学淬灭(NPQ)均出现上升趋势。研究结果表明互花米草对环境硫胁迫的适应能力显著高于芦苇, 暗示盐沼高硫环境尤其是硫化物有助于互花米草相对于芦苇的竞争, 也很可能是其形成单一植被的重要原因之一。  相似文献   

13.
互花米草(Spartina alterniflora)的入侵给海岸带盐沼生态系统的结构和功能带来了显著影响。互花米草盐沼中的硫含量高于附近的土著芦苇(Phragmites australis)盐沼。为探讨硫元素对互花米草和芦苇竞争过程的可能影响及其作用机制,以50mmol·L–1的Na2SO4和Na2S对互花米草和芦苇进行处理,分析处理前后5天内两种植物光合气体交换和叶绿素荧光指标变化的差异,实验另设等Na+浓度的Na Cl处理作为比较。研究发现:Na2S对互花米草和芦苇光合作用影响的差异最大,Na Cl次之,Na2SO4最小。Na2S处理后,互花米草净光合速率(Pn)出现显著上升,芦苇Pn值大幅度下降。互花米草的光饱和点(Isat)上升而芦苇的Isat值无变化。表明Na2S处理对互花米草的光合能力有促进作用,但对芦苇的光合能力有抑制作用。Na Cl处理后互花米草Pn值也出现小幅上升,而芦苇Pn值略有下降。Na2SO4处理对互花米草和芦苇的Pn值均无显著影响。除Na2SO4处理的互花米草外,不同盐处理后的互花米草和芦苇非光化学淬灭(NPQ)均出现上升趋势。研究结果表明互花米草对环境硫胁迫的适应能力显著高于芦苇,暗示盐沼高硫环境尤其是硫化物有助于互花米草相对于芦苇的竞争,也很可能是其形成单一植被的重要原因之一。  相似文献   

14.
Tidal wetlands are threatened by global changes related not only to sea level rise but also to altered weather patterns. To predict consequences of these changes on coastal communities, it is necessary to understand how temporally varying abiotic conditions drive wetland production. In 2000–2011, we conducted annual surveys of Spartina alterniflora biomass in tidal marshes at nine sites in and around the Altamaha river estuary on the coast of Georgia, USA. End of the year live biomass was assessed in the creekbank and midmarsh zones to estimate annual net primary production (ANPP). River discharge was the most important driver of S. alterniflora ANPP, especially in creekbank vegetation. Increased river discharge reduces water column salinity, and this was most likely the proximate driver of increased production. In the midmarsh zone, the patterns were less distinct, although river discharge was again the best predictor, but maximum temperature had similar predictive ability. In contrast to results from terrestrial grasslands, we found no consistent evidence for a sharply delimited critical period for any climate driver in the tidal marsh, which indicates that plant growth was responsive to abiotic drivers at any time during the growing season. Results were broadly consistent across multiple sites within a geographic region. Our results differ from previous analyses of production in S. alterniflora marshes, which either identified oceanic drivers of S. alterniflora production or were unable to identify any drivers, likely because the low-latitude sites we studied were hotter and more affected by river discharge than those in previous studies.  相似文献   

15.
The 9,10-dihydrophenanthrene phenolic compound juncusol, from the marsh plant Juncusroemerianus, has been shown to be inhibitory to four species of naturally occurring Bacillus and to two ATCC species Bacillussubtilis and Staphylococcusaureus. Juncusol may regulate populations of bacillus bacteria in the marsh and has potential as an antimicrobial agent particularly to gram positive microorganisms.  相似文献   

16.
The coupling of root-associated nitrogen fixation and plant photosynthesis was examined in the salt marsh grass Spartina alterniflora. In both field experiments and hydroponic assay chambers, nitrogen fixation associated with the roots was rapidly enhanced by stimulating plant photosynthesis. A kinetic analysis of acetylene reduction activity (ARA) showed that a five-to sixfold stimulation occurred within 10 to 60 min after the plant leaves were exposed to light or increased CO2 concentrations (with the light held constant). In field experiments, CO2 enrichment increased plant-associated ARA by 27%. Further evidence of the dependence of ARA on plant photosynthate was obtained when activity in excised roots was shown to decrease after young greenhouse plants were placed in the dark. Seasonal variation in the ARA of excised plant roots from field cores appears to be related to the annual cycle of net photosynthesis in S. alterniflora.  相似文献   

17.
A combination of inhibitors and carbon substrates was used to determine the relative contribution of sulfate-reducing bacteria (SRB) and fermenting bacteria to nitrogen fixation in a salt marsh sediment and on the roots of Spartina alterniflora. Because a lag period precedes acetylene-reducing activity (ARA) in amended sediments, an extensive analysis was done to be sure that this activity was due to the activation of dormant cells, not simply to cell proliferation. Since ARA was not affected by metabolic inhibitors such as rifampin, nalidixic acid, or methionine sulfoximine, it appeared that cell growth was not responsible for this activity. Instead, dormant cells were being activated by the added energy source. Molybdate inhibition studies with glucose-amended sediment slurries indicated that ARA in the upper 5 cm of the salt marsh was due primarily (70%) to SRB and that below that level (5 to 10 cm) it was due primarily (greater than 90%) to fermenting bacteria. ARA associated with washed roots of intact S. alterniflora plants was not inhibited by molybdate, which indicates that bacteria other than SRB were responsible. However, when the roots were excised from the plant, the activity (per unit of root mass) was 10-fold higher and was severely inhibited by molybdate. While this high activity is probably an artifact, due to the release of oxidizable substrates from the excised roots, it indicates that SRB are present in high numbers on Spartina roots.  相似文献   

18.
To investigate how plant invasion affects sulfate-reducing bacteria (SRB) responsible for sulfate reduction, we conducted a comparative study of diversity and composition of SRB in rhizosphere soils of invasive exotic species (Spartina alterniflora) and two native species (Phragmites australis and Scirpus mariqueter) on Jiuduansha Island located in the Yangtze River estuary, China. Throughout the growing season, profiles of DGGE fingerprints of SRB had distinct variations in relation to phenological stages of these three plant species. The higher richness and abundance of SRB in the rhizospheres of native plants mainly occurred when the plants were in vegetative growth and reproductive stages. However, the higher richness and abundance of SRB also occurred in the late growing season (senescent stage) of S. alterniflora rhizosphere, during which Desulfobulbus, Desulfuromonas, Desulfovibrio, and Firmicutes were dominant. Our results adding to our previous studies suggested that abundant SRB in late stage might have close relationships with decomposition of soil organic matters produced by S. alterniflora.  相似文献   

19.
Invasion by the exotic species Spartina alterniflora, which has high net primary productivity and superior reproductive capacity compared with native plants, has led to rapid organic carbon accumulation and increased methane (CH4) emission in the coastal salt marsh of China. To elucidate the mechanisms underlying this effect, the methanogen community structure and CH4 production potential as well as soil organic carbon (SOC), dissolved organic carbon, dissolved organic acids, methylated amines, aboveground biomass, and litter mass were measured during the invasion chronosequence (0–16 years). The CH4 production potential in the S. alterniflora marsh (range, 2.94–3.95 μg kg?1 day?1) was significantly higher than that in the bare tidal mudflat. CH4 production potential correlated significantly with SOC, acetate, and trimethylamine concentrations in the 0–20 cm soil layer. The abundance of methanogenic archaea also correlated significantly with SOC, and the dominant species clearly varied with S. alterniflora-driven SOC accumulation. The acetotrophic Methanosaetaceae family members comprised a substantial proportion of the methanogenic archaea in the bare tidal mudflat while Methanosarcinaceae family members utilized methylated amines as substrates in the S. alterniflora marsh. Ordination analysis indicated that trimethylamine concentration was the primary factor inducing the shift in the methanogenic archaea composition, and regressive analysis indicated that the facultative family Methanosarcinaceae increased linearly with trimethylamine concentration in the increasingly sulfate-rich salt marsh. Our results indicate that increased CH4 production during the S. alterniflora invasion chronosequence was due to increased levels of the non-competitive substrate trimethylamine and a shift in the methanogenic archaea community.  相似文献   

20.
Spartina alterniflora Lois. plants were grown under controlled sediment-pH-redox conditions. Uptake of added 15NH4-nitrogen and subsequent photosynthetic activity under different redox conditions in the plant root rhizosphere were measured. Data for total plant nitrogen and 15N concentration indicated that nitrogen allocation was not altered by anaerobic conditions of the sediment. However, average net photosynthesis was reduced by up to 35% for plants under anaerobiosis. The results indicate that anaerobiosis in the root rhizosphere, rather than limiting nitrogen uptake, influences photosynthesis and growth of S. alterniflora under anaerobic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号