首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
TAMBIS: transparent access to multiple bioinformatics information sources   总被引:4,自引:0,他引:4  
SUMMARY: TAMBIS (Transparent Access to Multiple Bioinformatics Information Sources) is an application that allows biologists to ask rich and complex questions over a range of bioinformatics resources. It is based on a model of the knowledge of the concepts and their relationships in molecular biology and bioinformatics. AVAILABILITY: TAMBIS is available as an applet from http://img.cs.man.ac.uk/tambis SUPPLEMENTARY: A full manual, tutorial and videos can be found at http://img.cs.man.ac.uk/tambis. CONTACT: tambis@cs.man.ac.uk  相似文献   

2.
A classification of tasks in bioinformatics   总被引:3,自引:0,他引:3  
MOTIVATION: This paper reports on a survey of bioinformatics tasks currently undertaken by working biologists. The aim was to find the range of tasks that need to be supported and the components needed to do this in a general query system. This enabled a set of evaluation criteria to be used to assess both the biology and mechanical nature of general query systems. RESULTS: A classification of the biological content of the tasks gathered offers a checklist for those tasks (and their specialisations) that should be offered in a general bioinformatics query system. This semantic analysis was contrasted with a syntactic analysis that revealed the small number of components required to describe all bioinformatics questions. Both the range of biological tasks and syntactic task components can be seen to provide a set of bioinformatics requirements for general query systems. These requirements were used to evaluate two bioinformatics query systems.  相似文献   

3.
4.

Background

Biology is moving fast toward the virtuous circle of other disciplines: from data to quantitative modeling and back to data. Models are usually developed by mathematicians, physicists, and computer scientists to translate qualitative or semi-quantitative biological knowledge into a quantitative approach. To eliminate semantic confusion between biology and other disciplines, it is necessary to have a list of the most important and frequently used concepts coherently defined.

Results

We propose a novel paradigm for generating new concepts for an ontology, starting from model rather than developing a database. We apply that approach to generate concepts for cell and molecule interaction starting from an agent based model. This effort provides a solid infrastructure that is useful to overcome the semantic ambiguities that arise between biologists and mathematicians, physicists, and computer scientists, when they interact in a multidisciplinary field.

Conclusions

This effort represents the first attempt at linking molecule ontology with cell ontology, in IMGT-ONTOLOGY, the well established ontology in immunogenetics and immunoinformatics, and a paradigm for life science biology. With the increasing use of models in biology and medicine, the need to link different levels, from molecules to cells to tissues and organs, is increasingly important.  相似文献   

5.
Modelling biological processes using workflow and Petri Net models   总被引:4,自引:0,他引:4  
MOTIVATION: Biological processes can be considered at many levels of detail, ranging from atomic mechanism to general processes such as cell division, cell adhesion or cell invasion. The experimental study of protein function and gene regulation typically provides information at many levels. The representation of hierarchical process knowledge in biology is therefore a major challenge for bioinformatics. To represent high-level processes in the context of their component functions, we have developed a graphical knowledge model for biological processes that supports methods for qualitative reasoning. RESULTS: We assessed eleven diverse models that were developed in the fields of software engineering, business, and biology, to evaluate their suitability for representing and simulating biological processes. Based on this assessment, we combined the best aspects of two models: Workflow/Petri Net and a biological concept model. The Workflow model can represent nesting and ordering of processes, the structural components that participate in the processes, and the roles that they play. It also maps to Petri Nets, which allow verification of formal properties and qualitative simulation. The biological concept model, TAMBIS, provides a framework for describing biological entities that can be mapped to the workflow model. We tested our model by representing malaria parasites invading host erythrocytes, and composed queries, in five general classes, to discover relationships among processes and structural components. We used reachability analysis to answer queries about the dynamic aspects of the model. AVAILABILITY: The model is available at http://smi.stanford.edu/projects/helix/pubs/process-model/.  相似文献   

6.
7.
Formalization of mouse embryo anatomy   总被引:2,自引:0,他引:2  
  相似文献   

8.
9.
10.
Globally distributed object identification for biological knowledgebases   总被引:3,自引:0,他引:3  
The World-Wide Web provides a globally distributed communication framework that is essential for almost all scientific collaboration, including bioinformatics. However, several limits and inadequacies have become apparent, one of which is the inability to programmatically identify locally named objects that may be widely distributed over the network. This shortcoming limits our ability to integrate multiple knowledgebases, each of which gives partial information of a shared domain, as is commonly seen in bioinformatics. The Life Science Identifier (LSID) and LSID Resolution System (LSRS) provide simple and elegant solutions to this problem, based on the extension of existing internet technologies. LSID and LSRS are consistent with next-generation semantic web and semantic grid approaches. This article describes the syntax, operations, infrastructure compatibility considerations, use cases and potential future applications of LSID and LSRS. We see the adoption of these methods as important steps toward simpler, more elegant and more reliable integration of the world's biological knowledgebases, and as facilitating stronger global collaboration in biology.  相似文献   

11.
Ontology for immunogenetics: the IMGT-ONTOLOGY   总被引:6,自引:0,他引:6  
  相似文献   

12.
13.
Ramu C 《Nucleic acids research》2003,31(13):3771-3774
SIRW (http://sirw.embl.de/) is a World Wide Web interface to the Simple Indexing and Retrieval System (SIR) that is capable of parsing and indexing various flat file databases. In addition it provides a framework for doing sequence analysis (e.g. motif pattern searches) for selected biological sequences through keyword search. SIRW is an ideal tool for the bioinformatics community for searching as well as analyzing biological sequences of interest.  相似文献   

14.
15.
Structuring an event ontology for disease outbreak detection   总被引:1,自引:0,他引:1  
BACKGROUND: This paper describes the design of an event ontology being developed for application in the machine understanding of infectious disease-related events reported in natural language text. This event ontology is designed to support timely detection of disease outbreaks and rapid judgment of their alerting status by 1) bridging a gap between layman's language used in disease outbreak reports and public health experts' deep knowledge, and 2) making multi-lingual information available. CONSTRUCTION AND CONTENT: This event ontology integrates a model of experts' knowledge for disease surveillance, and at the same time sets of linguistic expressions which denote disease-related events, and formal definitions of events. In this ontology, rather general event classes, which are suitable for application to language-oriented tasks such as recognition of event expressions, are placed on the upper-level, and more specific events of the experts' interest are in the lower level. Each class is related to other classes which represent participants of events, and linked with multi-lingual synonym sets and axioms. CONCLUSIONS: We consider that the design of the event ontology and the methodology introduced in this paper are applicable to other domains which require integration of natural language information and machine support for experts to assess them. The first version of the ontology, with about 40 concepts, will be available in March 2008.  相似文献   

16.
Developing and extending a biomedical ontology is a very demanding task that can never be considered complete given our ever-evolving understanding of the life sciences. Extension in particular can benefit from the automation of some of its steps, thus releasing experts to focus on harder tasks. Here we present a strategy to support the automation of change capturing within ontology extension where the need for new concepts or relations is identified. Our strategy is based on predicting areas of an ontology that will undergo extension in a future version by applying supervised learning over features of previous ontology versions. We used the Gene Ontology as our test bed and obtained encouraging results with average f-measure reaching 0.79 for a subset of biological process terms. Our strategy was also able to outperform state of the art change capturing methods. In addition we have identified several issues concerning prediction of ontology evolution, and have delineated a general framework for ontology extension prediction. Our strategy can be applied to any biomedical ontology with versioning, to help focus either manual or semi-automated extension methods on areas of the ontology that need extension.  相似文献   

17.
An upper-level ontology for the biomedical domain   总被引:1,自引:0,他引:1  
At the US National Library of Medicine we have developed the Unified Medical Language System (UMLS), whose goal it is to provide integrated access to a large number of biomedical resources by unifying the vocabularies that are used to access those resources. The UMLS currently interrelates some 60 controlled vocabularies in the biomedical domain. The UMLS coverage is quite extensive, including not only many concepts in clinical medicine, but also a large number of concepts applicable to the broad domain of the life sciences. In order to provide an overarching conceptual framework for all UMLS concepts, we developed an upper-level ontology, called the UMLS semantic network. The semantic network, through its 134 semantic types, provides a consistent categorization of all concepts represented in the UMLS. The 54 links between the semantic types provide the structure for the network and represent important relationships in the biomedical domain. Because of the growing number of information resources that contain genetic information, the UMLS coverage in this area is being expanded. We recently integrated the taxonomy of organisms developed by the NLM's National Center for Biotechnology Information, and we are currently working together with the developers of the Gene Ontology to integrate this resource, as well. As additional, standard, ontologies become publicly available, we expect to integrate these into the UMLS construct.  相似文献   

18.
19.
Text mining and ontologies in biomedicine: making sense of raw text   总被引:1,自引:0,他引:1  
The volume of biomedical literature is increasing at such a rate that it is becoming difficult to locate, retrieve and manage the reported information without text mining, which aims to automatically distill information, extract facts, discover implicit links and generate hypotheses relevant to user needs. Ontologies, as conceptual models, provide the necessary framework for semantic representation of textual information. The principal link between text and an ontology is terminology, which maps terms to domain-specific concepts. This paper summarises different approaches in which ontologies have been used for text-mining applications in biomedicine.  相似文献   

20.
The discovery of candidate biomarkers from biological materials coupled with the development of detection methods holds both incredible clinical potential as well as significant challenges. However, the proteomic techniques still provide the low dynamic range of protein detection at lower abundances. This review describes the current development of potential methods to enhance the detection and quantification in proteome studies. It also includes the bioinformatics tools that are helpfully used for data mining of protein ontology. Therefore, we believe that this review provided many proteomic approaches, which would be very potent and useful for proteome studies and for further diagnostic and therapeutic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号