首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Specificity of chicken liver carbohydrate binding protein   总被引:2,自引:0,他引:2  
T B Kuhlenschmidt  Y C Lee 《Biochemistry》1984,23(16):3569-3575
Chicken hepatic lectin was isolated with affinity chromatography by using neoglycoproteins of bovine serum albumin (BSA) to which n moles of glycosides has been attached by amidination (Glycn-AI-BSA) [Lee, Y. C., Stowell, C. P., & Krantz, M. J. (1976) Biochemistry 15, 3956-3963] attached to Sepharose 4B. The same protein could be isolated from Man-, GlcNAc-, and Glc-AI-BSA-Sepharose columns and was identical with the protein previously reported [Kawasaki, T., & Ashwell, G. (1977) J. Biol. Chem. 252, 6536-6543]. The sugar specificity for binding to the isolated chicken hepatic lectin examined with Glycn-AI-BSA showed the order of potency for binding Glycn-AI-BSA to be D-GlcNAc greater than D-Glc, D-Man, L-Fuc greater than D-Gal, and the estimated Ki's for binding GlcNAc36-AI-BSA, Glc37-AI-BSA, Man33-AI-BSA, and L-Fuc28-AI-BSA were (6-20) X 10(-11), (2-3) X 10(-8), (3-9) X 10(-8), and 5 X 10(-8) M, respectively. The binding requirements of the binding protein were studied with a wide variety of Glycn-BSA's with different sugars and aglyconic linkages, as well as simple sugars and glycosides. It was concluded that (1) GlcNAc is the most potent sugar for binding, (2) the requirement for C-2 substituents is flexible, (3) an equatorial OH group at C-3 and C-4 must be present, (4) the 5-CH2OH group is not required for binding, (5) the lectin cannot accommodate a negative charge at C-6, and (6) D-Man and L-Fuc bind equally well.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Chicken muscle AMP aminohydrolase is cleared from the circulation of chickens after intravenous injection of the purified enzyme with a half-life of 3-5 min (Husic, H.D., and Suelter, C.H. (1980) Biochem. Biophys. Res. Commun. 95, 228-235). The enzyme is not inactivated before clearance, the clearance is inhibited by sulfated polysaccharides, and the enzyme is cleared primarily by the spleen and the parenchymal cells of the liver where it is internalized and degraded in lysosomes (Husic, H.D., and Suelter, C.H. (1984) J. Biol. Chem. 259, 4359-4364). The binding of AMP aminohydrolase to hepatocyte monolayers in vitro at 4 degrees C is saturable with a dissociation constant of 11.3 X 10(-8) M; there are 2.6 X 10(6) AMP aminohydrolase binding sites/hepatocyte. The interaction of the enzyme with hepatocyte monolayers is inhibited by sulfated polysaccharides, effectors of its enzymatic activity and high salt concentrations; various monosaccharides had little effect on the binding of the enzyme to hepatocyte monolayers. Heparitinase treatment of hepatocyte monolayers abolished 77% of the binding of the enzyme. Heparin promotes the dissociation of 125I-labeled or [14C]sucrose-labeled enzyme bound to the cell surface; radioactivity which is not dissociated by heparin is assumed to be internalized at 37 degrees C. Low molecular weight 125I-labeled degradation products are released into the media with time when the 125I-labeled enzyme, bound to hepatocytes at 4 degrees C, is incubated at 37 degrees C; when [14C]sucrose-labeled enzyme is incubated with hepatocytes at 37 degrees C, low molecular weight 14C-labeled degradation products are not released into the media but instead accumulate in the cells. The half-life for internalization of the bound enzyme based on this rate of accumulation is 0.77 h. These results suggest that glycosaminoglycans are involved in the binding of AMP aminohydrolase to the hepatocyte cell surface and that the bound enzyme is internalized and degraded.  相似文献   

3.
Rabbit hepatocytes were isolated by a collagenase perfusion technique, and used to study the binding and endocytosis of the glycoprotein, asialo-orosomucoid, and the neoglycoprotein, Gal39-bovine serum albumin. Both of these proteins contain exposed galactosyl residues, and were avidly bound by the lectin on the hepatic parenchymal cell surface. Steady state and kinetic experiments performed at 2 degrees C and at 37 degrees C revealed the presence of two apparent classes of binding sites totalling 4.7 X 10(5) sites/cell at 2 degrees C, and 6.3 X 10(5) sites/cell at 37 degrees C. At 37 degrees C, both classes of sites participated in internalization of bound ligand. The cells were capable of internalizing about 60 000 molecules/min per cell. The process appeared to be first-order, with a rate constant k = 0.098 min-1 and t1/2 = 7.1 +/- 0.6 min. Binding could be inhibited by galactose-containing compounds, EGTA, and by anti-(hepatic lectin) immunoglobulin G. The inhibition by antibody appeared to be reversible upon removal of antibody-containing medium.  相似文献   

4.
Prostaglandin E1 (PGE1) was bound to primary cultured rat hepatocytes in a receptor-dependent manner in serum-free medium at 4 degrees C. When added at a concentration of 2 X 10(-9) M, maximal specific binding occurred within 60-90 min. Trypsin treatment of the cells reduced the binding capacity to about 50% of that of untreated cells. Scatchard-analysis of the binding data showed that the cells had an apparent dissociation constant of 1.2 X 10(-8) M and a binding capacity of 580 fmol (approximately 3.5 X 10(11) PGE1 receptors)/mg of protein. In experiments at 37 degrees C, maximal specific binding occurred within 5 min and was 6-7 times that at 4 degrees C, but the amount of bound PGE1 decreased rapidly after 5 min due to metabolism of PGE1 in the hepatocytes. Thin-layer chromatographic analysis showed that the material bound to the cell surface consisted of intact PGE1 and its metabolites at 37 degrees C, but PGE1 only at 4 degrees C.  相似文献   

5.
The fluorescence properties of fluorescein bound to protein are used to quantitate by flow cytofluorometry the degradation of fluorescein-labeled alpha-glucosylated serum albumin (fluorescein-labeled neoglycoprotein) after endocytosis by the membrane lectin of Lewis lung carcinoma cells (3LL cells). The quantum yield of fluorescein bound to a protein decreases when the number of fluorescein residues per protein molecule increases; however, after proteolytic digestion the mean fluorescence intensity of a fluorescein molecule is constant and equal to that of free fluorescein. The extent of the degradation of the endocytosed neoglycoprotein was determined with a flow cytofluorometer by using two neoglycoproteins containing either a small or a large number of fluorescein residues per neoglycoprotein molecule. At 4 degrees C, 3LL cells bind 750,000 molecules of fluorescein-labeled alpha-glucosylated serum albumin with an apparent binding constant of 2 X 10(6) 1 X mole-1. At 37 degrees C, after 4 hr incubation 2.2 X 10(6) molecules of fluorescent alpha-glucosylated serum albumin were cell-associated, and of these at least one third were degraded.  相似文献   

6.
Purified natural and recombinant murine gamma interferons (MuIFN-gamma) bind at 4 degrees C to cultured L929 mouse fibroblasts with comparable receptor-binding affinity (Kd = 9 x 10(-10) M). Both 125I-labeled MuIFNs are rapidly internalized by cells at 37 degrees C, although recombinant IFN is internalized somewhat more slowly than natural IFN (t1/2 = 90 sec and 45 sec, respectively). Immunoelectronmicroscopy showed that the majority of bound recombinant MuIFN-gamma was located on the plasma membrane outside of coated areas, whereas natural interferon was found mainly in coated pits. At 37 degrees C most of the recombinant molecules entered the cytoplasm in pinocytotic vesicles, while natural interferon was internalized by the specific mechanism of receptor-mediated endocytosis [1]. However, nearly equal amounts of immunocytochemically detectable molecules of both IFNs were found in the cell nucleus within 2-3 min incubation at 37 degrees C. Thus, the process of translocation of the recombinant IFN-gamma appears to differ from that of the natural product.  相似文献   

7.
125I-Hemoglobin.haptoglobin injected intravenously into rats was incorporated into liver parenchymal cells as evidenced by a cell separation technique. A mixture of freshly isolated liver parenchymal and nonparenchymal cells failed to internalize and degrade the 125I-hemoglobin.haptoglobin added, although it retained the ability to bind the molecule. The liver parenchymal cells in primary culture also lacked the ability to degrade 125I-hemoglobin.haptoglobin, although they bound the molecule more extensively as compared with the freshly isolated liver cells. It was confirmed that the 125I-hemoglobin.haptoglobin which was bound to the freshly isolated liver parenchymal cells localized on the outer surface of liver plasma membranes. Scatchard plots revealed the existence of two binding sites for 125I-hemoglobin-haptoglobin on the isolated liver plasma membrane: an apparent high affinity binding site (Kd = 1.3 X 10(-7) M) and an apparent low affinity binding site (Kd = 4.0 X 10(-6) M) at 37 degrees C. In contrast, freshly isolated liver parenchymal cells had only an apparent low affinity binding site (Kd = 1.4 X 10(-6) M) at 37 degrees C. Impairment of the apparent high affinity binding site during the isolation procedure with collagenase seemed to be related to loss of the ability to internalize and degrade the 125I-hemoglobin.haptoglobin molecules into the freshly isolated liver parenchymal cells or liver parenchymal cells in primary culture.  相似文献   

8.
A combination of biochemistry and morphology was used to demonstrate that more than 95 percent of the isolated rat hepatocytes prepared by collagenase dissociation of rat livers retained the pathway for receptor-mediated endocytosis of asialoglycoproteins (ASGPs). Maximal specific binding of (125)I-asialoorosomucoid ((125)I-ASOR) to dissociated hepatocytes at 5 degrees C (at which temperature no internalization occurred) averaged 100,000-400,000 molecules per cell. Binding, uptake, and degredation of (125)I- ASOR at 37 degrees C occurred at a rate of 1 x 10(6) molecules per cell over 2 h. Light and electron microscopic autoradiography (LM- and EM-ARG) of (125)I-ASOR were used to visualize the surface binding sites at 5 degrees C and the intracellular pathway at 37 degrees C. In the EM-ARG experiments, ARG grains corresponding to (125)I-ASOR were distributed randomly over the cell surface at 5 degrees C but over time at 37 degrees C were concentrated in the lysosome region. Cytochemical detection of an ASOR-horseradish peroxidase conjugate (ASOR-HRP) at the ultrastructural level revealed that at 5 degrees C this specific ASGP tracer was concentrated in pits at the cell surface as well as diffusely distributed along the rest of the plasma membrane. Such a result indicates that redistribution of ASGP surface receptors had occurred. Because the number of surface binding sites of (125)I-ASOR varied among cell preparations, the effect of collagenase on (125)I-ASOR binding was examined. When collagenase-dissociated hepatocytes were re-exposed to collagenase at 37 degrees C, 10-50 percent of control binding was observed. However, by measuring the extent of (125)I-ASOR binding at 5 degrees C in the same cell population before and after collagenase dissociation, little reduction in the number of ASGP surface receptors was found. Therefore, the possibility that the time and temperature of the cell isolations allowed recovery of cell surface receptors following collagenase exposure was tested. Freshly isolated cells, dissociated cells that were re-exposed to collagenase, and perfused livers exposed to collagenase without a Ca(++)-free pre-perfusion, were found to bind 110-240 percent more(125)I-ASOR after 1 h at 37 degrees C that they did at 0 time. This recovery of surface ASGP binding activity occurred in the absence of significant protein synthesis (i.e., basal medium or 1 mM cycloheximide). Suspensions of isolated, unpolarized hepatocytes were placed in monolayer culture for 24 h and confluent cells were demonstrated to reestablish morphologically distinct plasma membrane regions analogous to bile canalicular, lateral, and sinusoidal surfaces in vivo. More than 95 percent of these cells maintained the capacity to bind, internalize, and degrade (125)I-ASOR at levels comparable to those of the freshly isolated population. ASOR-HRP (at 5 degrees C) was specifically bound to all plasma membrane surfaces of repolarized hepatocytes (cultured for 24 h) except those lining bile canalicular-like spaces. Thus, both isolated, unpolarized hepatocytes and cells cultured under conditions that promote morphological reestablishment of polarity maintain the pathway for receptor- mediated endocytosis of ASGPs.  相似文献   

9.
The asialoglycoprotein receptor has been identified on a continuous human hepatoma cell line, HepG2. This receptor requires Ca2+ for ligand binding and is specific for asialoglycoprotein. There are approximately 150,000 ligand molecules bound/cell at 4 degrees C. These receptors represent a homogeneous population of high affinity binding sites with Kd = 7 X 10(-9) M. From the rate of 125I-ASOR binding at 4 degrees C, kon was 0.95 X 10(6) M-1 min-1. Uptake of 125I-ASOR at 37 degrees C was approximately 0.02 pmol/min/10(6) cells.  相似文献   

10.
Primary cultures of rabbit hepatocytes which were preincubated for 20 h in a medium containing lipoprotein-deficient serum subsequently bound, internalized and degraded 125I-labeled high-density lipoproteins2 (HDL2). The rate of degradation of HDL2 was constant in incubations from 3 to 25 h. As the concentration of HDL2 in the incubation medium was increased, binding reached saturation. At 37 degrees C, half-maximal binding (Km) was achieved at a concentration of 7.3 micrograms of HDL2 protein/ml (4.06 X 10(-8)M) and the maximum amount bound was 476 ng of HDL2 protein/mg of cell protein. At 4 degrees C, HDL2 had a Km of 18.6 micrograms protein/ml (1.03 X 10(-7)M). Unlabeled low-density lipoproteins (LDL) inhibited only at low concentrations of 125I-labeled HDL2. Quantification of 125I-labeled HDL2 binding to a specific receptor (based on incubation of cells at 4 degrees C with and without a 50-fold excess of unlabeled HDL) yielded a dissociation constant of 1.45 X 10(-7)M. Excess HDL2 inhibited the binding of both 125I-labeled HDL2 and 125I-labeled HDL3, but excess HDL3 did not affect the binding of 125I-labeled HDL3. Preincubation of hepatocytes in the presence of HDL resulted in only a 40% reduction in specific HDL2 receptors, whereas preincubation with LDL largely suppressed LDL receptors. HDL2 and LDL from control and hypercholesterolemic rabbits inhibited the degradation of 125I-labeled HDL2, but HDL3 did not. Treatment of HDL2 and LDL with cyclohexanedione eliminated their capacity to inhibit 125I-labeled HDL2 degradation, suggesting that apolipoprotein E plays a critical role in triggering the degradative process. The effect of incubation with HDL on subsequent 125I-labeled LDL binding was time-dependent: a 20 h preincubation with HDL reduced the amount of 125I-labeled LDL binding by 40%; there was a similar effect on LDL bound in 6 h but not on LDL bound in 3 h. The binding of 125I-labeled LDL to isolated liver cellular membranes demonstrated saturation kinetics at 4 degrees C and was inhibited by EDTA or excess LDL. The binding of 125I-labeled HDL2 was much lower than that of 125I-labeled LDL and was less inhibited by unlabeled lipoproteins. The binding of 125I-labeled HDL3 was not inhibited by any unlabeled lipoproteins. EDTA did not affect the binding of either HDL2 or HDL3 to isolated liver membranes. Hepatocytes incubated with [2-14C]acetate in the absence of lipoproteins incorporated more label into cellular cholesterol, nonsaponifiable lipids and total cellular lipid than hepatocytes incubated with [2-14C]acetate in the presence of any lipoprotein fraction. However, the level of 14C-labeled lipids released into the medium was higher in the presence of medium lipoproteins, indicating that the effect of those lipoproteins was on the rate of release of cellular lipids rather than on the rate of synthesis.  相似文献   

11.
The present study demonstrates that U-937 monocytelike human cells possess specific LDL receptors. 125I-LDL binds at 4 degrees C on the cell surface. The bound molecules are releasable by heparin. The reaction requires Ca2+ and the binding sites are sensitive to proteolysis. Unlabeled LDL compete with 125I-LDL, whereas HDL are ineffective. At 37 degrees C, LDL are internalized and degraded by a chloroquine-sensitive pathway. Tumor-promoting phorbol esters inhibit the binding of 125I-LDL to its receptor on U-937 cells. This inhibition exhibits temperature, time, and concentration dependence. At 37 degrees C, inhibition is 50% at 5 X 10(-9) M of TPA. After removal of phorbol esters, treated cells recover their 125I-LDL-binding activity in 60 min. The inhibitory activities of various phorbol esters are proportional to their tumor-promoting activities. Inhibition appears to be due to a reduction in the number of available LDL receptors rather than a decrease in receptor affinity.  相似文献   

12.
Interaction of 125I-labeled human antithrombin III (125I-AT III) X protease complexes with bovine corneal endothelial cells has been studied in tissue culture. 125I-AT III does not bind to endothelial cells, but its complexes with either thrombin or trypsin bind specifically to the cultures. The binding of 125I-AT III X protease complexes is not via the moiety of the free antithrombin III (AT III) or the free protease, since neither AT III nor thrombin compete on the binding of 125I-AT III X thrombin complexes. Only unlabeled AT III X thrombin complexes compete on the binding of the iodinated ligand. 125I-AT III X trypsin complexes bind with a KD of 1.4 X 10(-7) M to high affinity-binding sites present on the cell surface of corneal endothelial cells. Saturation of binding to the cell surface is observed at a concentration of 2.5 X 10(-7) M 125I-AT III X trypsin complexes and the number of binding sites per cell is about 4 X 10(4). The cell surface binding reaches a maximum by 15 min and then decreases with time. The cells, when incubated at 37 degrees C, appear to internalize the bound complexes by adsorptive endocytosis which proceeds at a rate of 0.5-0.8 pmole/1 X 10(6) cells/h. The internalization process of 125I-AT III X protease complexes is saturated at a concentration of 2.5 X 10(-7) M. Since the cells release 125I-labeled material into the extracellular media which cannot be precipitated by trichloroacetic acid (TCA), it probably represents degradation of 125I-AT III X protease complexes into small fragments at a linear rate of about 0.5 pmole/1 X 10(6) cells/h. The described process of AT III X protease complexes binding, internalization and subsequent degradation by corneal endothelial cells may represent a clearing mechanism for extracellular AT III X protease complexes formed under pathological conditions.  相似文献   

13.
We have investigated the effects of hyperosmolarity induced by sucrose on the fluid phase endocytosis of the fluorescent dye lucifer yellow CH (LY) and the endocytosis of 125I-asialo-orosomucoid (ASOR) by the galactosyl receptor system in isolated rat hepatocytes. Continuous uptake of LY by cells at 37 degrees C is biphasic, occurs for 3-4 h, and then plateaus. Permeabilized cells or crude membranes do not bind LY at 4 or 37 degrees C. Intact cells also do not accumulate LY at 4 degrees C. The rate and extent of LY accumulation are concentration- and energy-dependent, and internalized LY is released from permeabilized cells. Efflux of internalized LY from washed cells is also biphasic and occurs with halftimes of approximately 38 and 82 min. LY is taken up into vesicles throughout the cytoplasm and the perinuclear region with a distribution pattern typical of the endocytic pathway. LY, therefore, behaves as a fluid phase marker in hepatocytes. LY has no effect on the uptake of 125I-ASOR at 37 degrees C. The rate of LY uptake by cells in suspension is not affected for at least 30 min by up to 0.2 M sucrose. The rate of endocytosis of 125I-ASOR, however, is progressively inhibited by increasing the osmolality of the medium with sucrose (greater than 98% with 0.2 M sucrose; Oka and Weigel (1988) J. Cell. Biochem. 36, 169-183). Hyperosmolarity completely inhibits endocytosis of 125I-ASOR by the galactosyl receptor, whereas fluid phase endocytosis of LY is unaffected. Cultured hepatocytes contained about 100 coated pits/mm of apical membrane length as assessed by transmission electron microscopy. In the presence of 0.4 M sucrose, only 17 coated pits/mm of membrane were observed, an 83% decrease. Only a few percent of the total cellular fluid phase uptake in hepatocytes is due to the coated pit endocytic pathway. We conclude that the fluid phase and receptor-mediated endocytic processes must operate via two separate pathways.  相似文献   

14.
We characterized binding and endocytosis of 125I-bovine lactoferrin by isolated rat hepatocytes. Iron-depleted (apo-Lf), approximately 30% saturated (Lf), and iron-saturated (holo-Lf) lactoferrin were used. At 4 degrees C, cells bound 125I-apo-Lf and 125I-holo-Lf with nearly identical apparent first order kinetics (t1/2 = approximately 42 min). Holo-Lf and apo-Lf competed with each other for binding. Hepatocytes bound lactoferrin optimally at pH greater than or equal to 7 but poorly at pH less than or equal to 6. Ca2+ (greater than or equal to 100 microM) enhanced Lf binding to cells, and holo-Lf remained monomeric with Ca2+ present as determined by gel filtration chromatography. With Ca2+, cells exhibited approximately 10(6) high affinity sites (Kd approximately 20 nM) and approximately 10(7) low affinity sites (Kd approximately 700 nM) for both apo- and holo-Lf. Without Ca2+, cells bound 125I-holo-Lf by the low affinity component only. EGTA and dextran sulfate together released greater than or equal to 90% 125I-Lf prebound at 4 degrees C, but individually removed separate populations of surface-bound 125I-Lf. Cells bound 125I-Lf in a Ca(2+)-dependent manner with dextran sulfate present. We conclude that the high affinity but not the low affinity sites require Ca2+; only the low affinity sites are dextran sulfate-sensitive. Neither transferrin nor asialo-orosomucoid blocked lactoferrin binding to hepatocytes. Some cationic proteins but not others inhibited lactoferrin binding. At 37 degrees C, hepatocytes endocytosed 125I-apo-Lf and 125I-holo-Lf similarly, and hyperosmolality (greater than 500 mmol/kg) blocked uptake by approximately 90%. These data support the proposal that hepatocytes regulate blood lactoferrin concentration by receptor-mediated endocytosis.  相似文献   

15.
The rate of endocytosis of cell surface-bound [3H]-asialo-orosomucoid was determined as a function of temperature. Freshly isolated rat hepatocytes were allowed to bind [3H]asialo-orosomucoid at 4 degrees C, washed to remove nonbound ligand, and internalization was then assessed by the resistance of cell-associated radioactivity to release by the Ca2+ chelator EDTA. At 10 degrees C or below, endocytosis is negligible. Above 10 degrees C, the rate of endocytosis is proportional to temperature but the increase of the rate of endocytosis with increasing temperature changes sharply at about 20 degrees C. From 10-20 degrees C, the apparent activation energy for endocytosis, calculated from an Arrhenius plot, is 45.9 kcal/mol and the temperature coefficient, Q10, is 15.6. However, between 20 and 41 degrees C, the calculated activation energy is 17.0 kcal/mol and the Q10 is 2.6. Although the rate of endocytosis of previously bound [3H]asialo-orosomucoid is very dependent on the temperature, the final extent of endocytosis is essentially temperature-independent between 14 and 37 degrees C. The results suggest that there are at least two steps in the overall process of endocytosis mediated by the asialoglycoprotein receptor on isolated hepatocytes which can be potentially rate-limiting, one at 10 degrees C and another at approximately 20 degrees C.  相似文献   

16.
S J Frost  R H Raja  P H Weigel 《Biochemistry》1990,29(45):10425-10432
125I-HA, prepared by chemical modification at the reducing sugar, specifically binds to rat hepatocytes in suspension or culture. Intact hepatocytes have relatively few surface 125I-HA binding sites and show low specific binding. However, permeabilization of hepatocytes with the nonionic detergent digitonin results in increased specific 125I-HA binding (45-65%) and a very large increase in the number of specific 125I-HA binding sites. Scatchard analysis of equilibrium 125I-HA binding to permeabilized hepatocytes in suspension at 4 degrees C indicates a Kd = 1.8 x 10(-7) M and 1.3 x 10(6) molecules of HA (Mr approximately 30,000) bound per cell at saturation. Hepatocytes in primary culture for 24 h show the same affinity but the total number of HA molecules bound per cell at saturation decreases to approximately 6.2 x 10(5). Increasing the ionic strength above physiologic concentrations decreases 125I-HA binding to permeable cells, whereas decreasing the ionic strength above causes an approximately 4-fold increase. The divalent cation chelator EGTA does not prevent binding nor does it release 125I-HA bound in the presence of 2 mM CaCl2, although higher divalent cation concentrations stimulate 125I-HA binding. Ten millimolar CaCl2 or MnCl2 increases HA binding 3-6-fold compared to EGTA-treated cells. Ten millimolar MgCl2, SrCl2, or BaCl2 increased HA binding by 2-fold. The specific binding of 125I-HA to digitonin-treated hepatocytes at 4 degrees C increased greater than 10-fold at pH 5.0 as compared to pH 7.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
G F Rush  D Alberts 《Life sciences》1987,40(7):679-685
Hepatocytes are known to bind and internalize a variety of small molecular weight proteins by a process known as receptor-mediated endocytosis (RME). The purpose of this investigation was to characterize the binding and uptake kinetics of a small protein known to be taken up by the liver by RME, epidermal growth factor (EGF), using suspensions of freshly isolated rat hepatocytes. Rat hepatocytes accumulated 125I-EGF (90 pM) in a temperature-dependent fashion. Isolated hepatocytes incubated at 37 degrees C with 125I-EGF began to release a TCA-soluble radiolabeled material into the incubation medium with a lag period of 20 min. EGF uptake by isolated hepatocytes was linear for only 60 seconds and displayed saturation kinetics (apparent Km of 4 nM and a Vmax of 105 fM/min/10(6) cells). Hepatocytes incubated at 4 degrees C bound, but did not internalize, EGF. Under these conditions, EGF binding was saturable at concentrations above 8 nM. A Scatchard analysis revealed that the average number of receptors per hepatocyte was 7.7 X 10(4) with a dissociation constant of 2.6 nM. These data demonstrate that freshly isolated hepatocytes are capable of binding, internalizing and metabolizing EGF and thus are a good model to study RME of small molecular weight proteins.  相似文献   

18.
The endocytosis of diferric transferrin and accumulation of its iron by freshly isolated rabbit reticulocytes was studied using 59Fe-125I-transferrin. Internalized transferrin was distinguished from surface-bound transferrin by its resistance to release during treatment with Pronase at 4 degrees C. Endocytosis of diferric transferrin occurs at the same rate as exocytosis of apotransferrin, the rate constants being 0.08 min-1 at 22 degrees C, 0.19 min-1 at 30 degrees C, and 0.45 min-1 at 37 degrees C. At 37 degrees C, the maximum rate of transferrin endocytosis by reticulocytes is approximately 500 molecules/cell/s. The recycling time for transferrin bound to its receptor is about 3 min at this temperature. Neither transferrin nor its receptor is degraded during the intracellular passage. When a steady state has been reached between endocytosis and exocytosis of the ligand, about 90% of the total cell-bound transferrin is internal. Endocytosis of transferrin was found to be negligible below 10 degrees C. From 10 to 39 degrees C, the effect of temperature on the rate of endocytosis is biphasic, the rate increasing sharply above 26 degrees C. Over the temperature range 12-26 degrees C, the apparent activation energy for transferrin endocytosis is 33.0 +/- 2.7 kcal/mol, whereas from 26-39 degrees C the activation energy is considerably lower, at 12.3 +/- 1.6 kcal/mol. Reticulocytes accumulate iron atoms from diferric transferrin at twice the rate at which transferrin molecules are internalized, implying that iron enters the cell while still bound to transferrin. The activation energies for iron accumulation from transferrin are similar to those of endocytosis of transferrin. This study provides further evidence that transferrin-iron enters the cell by receptor-mediated endocytosis and that iron release occurs within the cell.  相似文献   

19.
20.
We have prepared a conjugate (Ri-Au) of the toxic plant protein ricin and colloidal gold (particle size 5 nm) and used it for internalization studies in monolayer cultures of Vero cells. The Ri-Au conjugate was very stable, with only little release of ricin ([125I]Ri) from the gold particles within a pH range of 4.5-8.0. Within 2 h at 37 degrees C, only very little intracellular degradation of the ricin preparation ([125I]Ri-Au) occurred. The cells bound the same proportion of native ricin ([125I]Ri) and Ri-Au from the medium, and the kinetics of toxicity (decrease in cellular incorporation of [3H]leucine) of [125I]Ri and [125I]Ri-Au were also comparable. At 4 degrees C, the cell-surface binding of Ri-Au was continuous and distinct, as revealed by electron microscopy. This binding was specific, since almost no Ri-Au surface binding occurred at 4 degrees C in the presence of 0.1 M lactose or 1 mg/ml native (unlabelled) ricin. Within the first 30 min of warming prelabelled cells to 37 degrees C, the amount of surface-associated Ri-Au decreased considerably (from 150 to 60 gold particles per micron cell surface in 40 nm sections). Coated pits and vesicles were involved in the internalization of Ri-Au, and within 5-30 min at 37 degrees C Ri-Au had been delivered to vacuolar and tubulo-vesicular portions of the endosomal system, and later also to lysosomes. Analysis of very thin (ca 20 nm) serial sections revealed that most of the tubulo-vesicular elements were separate structures not connected to the membrane of the vacuolar portion. Data here presented indicate that our ricin conjugate, like many "physiological' ligands and viruses, is internalized by receptor-mediated endocytosis via the coated pit-endosomal pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号