首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recent evidence has demonstrated that 13-cis-retinoic acid (13-cis-RA, or isotretinoin) is responsible for various craniofacial malformations in the rodent and human embryo. Our studies have been directed toward understanding this effect using mouse whole embryo and primary cell cultures. In whole embryo culture, 13-cis-RA caused significant overall embryonic growth retardation, especially in the primary and secondary palatal processes. In embryos explanted on day 10 of gestation and exposed for 24 or 48 hr, the mesenchyme beneath the epithelium of the nasal and maxillary processes contained pyknotic nuclei as well as a dramatically reduced number of nuclei incorporating 3H-thymidine. The secondary palatal processes and the roof of the oral-nasal cavity had fewer mesenchymal cells than control embryos. The incorporation of 3H-thymidine into TCA-insoluble macromolecules was 30% less in the retinoid-treated heads. In primary cell cultures from day-12 mouse secondary palatal mesenchyme, subsequent cell growth was decreased at concentrations of 13-cis-RA greater than 1 X 10(-5) M. After a 40-hr treatment period, labeling indices in retinoid-treated cells were significantly lower than control values (25% compared with 40%). Retinoic acid also caused a significant, concentration-dependent decrease in 3H-thymidine incorporation. The inhibitory effect of 13-cis-RA on proliferation of oral-nasal mesenchymal cells appears to be related to the production of craniofacial malformations.  相似文献   

2.
The relationship between DNA synthesis and protein accumulation in cell nucleus and cytoplasm has been investigated by the use of a combination of ultramicrointerferometric and ultramicrospectrophotometric methods. 5-Fluoro-2'-deoxyuridine (FUdR) inhibited DNA synthesis, resulting in inhibition of cell proliferation in G-1 and early S-phase. However, synthesis and accumulation of protein continued in the presence of FUdR, as indicated by a 54% increase in the average dry mass value per individual cell during 18-hour exposure to FUdR; due primarily to protein accumulation in the cytoplasm, the average cytoplasmic dry mass increased by as much as 85%, while the dry mass of the nucleus increased by only 21%. The dry mass values of individual nuclei were well-correlated to the nuclear DNA content throughout the period of exposure to FUdR. In contrast to the continued accumulation of protein in the cytoplasm during inhibition of DNA synthesis, protein accumulation in the nucleus was inhibited. When cells were released from inhibition of DNA synthesis by the addition of 2'-deoxythymidine, the nuclear DNA content and nuclear dry mass increased in near-synchrony, there being some evidence that DNA synthesis was initiated somewhat prior to initiation of increase in nuclear dry mass. Thus, it appears that DNA synthesis (or an increase in nuclear DNA content) is intimately related to the regulation of protein accumulation in the nucleus.  相似文献   

3.
5-Fluoro-2'-deoxyuridine (FUdR), a potent anticancer agent, exerts its effects by inhibiting thymidylate synthase, an essential machinery for DNA synthesis in cell proliferation. Also, cell death is caused by FUdR, primarily due to an imbalance in the nucleotide pool resulting from this enzyme inhibition. We have investigated the cancer cell death induced by FUdR, focusing on its molecular mechanisms. Using mouse mammary tumor FM3A cell lines, the original clone F28-7 and its variant F28-7-A cells, we previously reported an interesting observation that FUdR induces a necrotic morphology in F28-7, but induces, in contrast, an apoptotic morphology in F28-7-A cells. In the present study, to understand the molecular mechanisms underlying these differential cell deaths, i.e., necrosis and apoptosis, we investigated the gene expression changes occurring in these processes. Using the cDNA microarray technology, we found 215 genes being expressed differentially in the necrosis and apoptosis. Further analysis revealed differences between these cell lines in terms of the expressions of both a cluster of heat shock protein (HSP)-related genes and a cluster of apoptosis-related genes. Notably, inhibition of HSP90 in F28-7 cells caused a shift from the FUdR-induced necrosis into apoptosis. These findings are expected to lead to a better understanding of this anticancer drug FUdR for its molecular mechanisms and also of the general biological issue, necrosis and apoptosis.  相似文献   

4.
Protein homeostasis (proteostasis) networks are dynamic throughout the lifespan of an organism. During Caenorhabditis elegans adulthood, the maintenance of metastable proteins and the activation of stress responses are inversely associated with germline stem cell proliferation. Here, we employed the thymidylate synthase inhibitor 5-fluoro-2′-deoxyuridine (FUdR) to chemically inhibit reproduction, thus allowing for examination of the interplay between reproduction and somatic proteostasis. We found that treatment with FUdR modulates proteostasis decline both before and after reproduction onset, such that effective induction of the heat shock response was maintained during adulthood and that metastable temperature-sensitive mutant phenotypes were rescued under restrictive conditions. However, FUdR treatment also improved the folding capacity of germline- and gonadogenesis-defective mutants, suggesting that proteostasis modulation by FUdR is independent of germline stem cell proliferation or inhibition of reproduction. Our data, therefore, indicate that FUdR converges on alternative regulatory signals that modulate C. elegans proteostasis capacity during development and adulthood.  相似文献   

5.
Epidermal growth factor (EGF), a hormone that stimulates proliferation of many cell types, induces apoptosis in some cell lines that overexpress the EGF receptor. To evaluate the mechanism of EGF-induced apoptosis, MDA-MB-468 breast cancer cells were examined by microscopy, flow cytometry, immunoblotting, enzyme assays, and affinity labeling after treatment with EGF, paclitaxel, or 5-fluoro-2'-deoxyuridine (5FUdR). Apoptosis induced by all three agents was accompanied by activation of caspases-3, -6, and -7, as indicated by disappearance of the corresponding zymogens from immunoblots, cleavage of substrate polypeptides in situ, and detection of active forms of these caspases in cytosol and nuclei using fluorogenic assays and affinity labeling. Further analysis indicated involvement of the cytochrome c/Apaf-1/caspase-9 pathway of caspase activation, but not the Fas/Fas ligand pathway. Interestingly, caspase activation was consistently lower after EGF treatment than after paclitaxel or 5FUdR treatment. Additional experiments revealed that the majority of cells detaching from the substratum after EGF (but not paclitaxel or 5FUdR) were morphologically normal and retained the capacity to readhere, suggesting that EGF-induced apoptosis involves cell detachment followed by anoikis. These observations not only indicate that EGF- and chemotherapy-induced apoptosis in this cell line involve the same downstream pathways but also suggest that detachment-induced apoptosis is responsible for the paradoxical antiproliferative effects of EGF.  相似文献   

6.
7.
R Jelínek  M Dostál 《Teratology》1975,11(2):193-198
The formation of the secondary palate in mice is accompanied by intensive mitotic activity, which is mainly concentrated at the medial edges of the palatal processes. In control H-Velaz randombred fetuses the mitotic activity culminated approximately 24 h before palatal-shelf horizontalization, so that the period of intensive cell proliferation coincided with the period when cleft palate could be induced by cortisone administration. Effects of teratogenic doses of corticoids, injected directly into amniotic sac of embryos on day 13 (0.3 mg hydrocortisone) or im to pregnant females on day 12 (7.5 mg cortisone acetate), on the proliferative peak in palatal processes were studied using intraamniotic injection of colchicine. Counts of colchicine-blocked mitoses in histological serial sections revealed both a significant decrease in overall mitotic density and a posterior shift of the proliferative peak in the palatal processes of fetuses treated with doses of corticoids producing cleft palate.  相似文献   

8.
Cleft palate, including submucous cleft palate, is among the most common birth defects in humans. While overt cleft palate results from defects in growth or fusion of the developing palatal shelves, submucous cleft palate is characterized by defects in palatal bones. In this report, we show that the Bmpr1a gene, encoding a type I receptor for bone morphogenetic proteins (Bmp), is preferentially expressed in the primary palate and anterior secondary palate during palatal outgrowth. Following palatal fusion, Bmpr1a mRNA expression was upregulated in the condensed mesenchyme progenitors of palatal bone. Tissue-specific inactivation of Bmpr1a in the developing palatal mesenchyme in mice caused reduced cell proliferation in the primary and anterior secondary palate, resulting in partial cleft of the anterior palate at birth. Expression of Msx1 and Fgf10 was downregulated in the anterior palate mesenchyme and expression of Shh was downregulated in the anterior palatal epithelium in the Bmpr1a conditional mutant embryos, indicating that Bmp signaling regulates mesenchymal-epithelial interactions during palatal outgrowth. In addition, formation of the palatal processes of the maxilla was blocked while formation of the palatal processes of the palatine was significantly delayed, resulting in submucous cleft of the hard palate in the mutant mice. Our data indicate that Bmp signaling plays critical roles in the regulation of palatal mesenchyme condensation and osteoblast differentiation during palatal bone formation.  相似文献   

9.
Summary Cell division during embryonic development of the brine shrimp,Artemia salina has been studied by counting nuclei and mitotic figures. No cell division was observed during development of the encysted gastrula until about an hour before emergence of the embryo (a pre-nauplius) from the cyst, and even then only a few mitotic figures were observed. Following emergence, and during further development up to the stage II nauplius larva an increase of about 25% in the number of cells occurs. However, when the newly hatched larva is exposed to FUdR (10 g/ml) cell division is largely inhibited, but observable development nevertheless proceeds normally. Evidently all processes involved with the development of the gastrula into a stage II nauplius larva can occur with far fewer cells than normally are present.  相似文献   

10.
G207 is an oncolytic herpes simplex virus (HSV) which is attenuated by inactivation of viral ribonucleotide reductase (RR) and deletion of both gamma(1)34.5 genes. The cellular counterparts that can functionally substitute for viral RR and the carboxyl-terminal domain of ICP34.5 are cellular RR and the corresponding homologous domain of the growth arrest and DNA damage protein 34 (GADD34), respectively. Because the thymidylate synthetase (TS) inhibitor fluorodeoxyuridine (FUdR) can alter expression of cellular RR and GADD34, we examined the effect of FUdR on G207 bioactivity with the hypothesis that FUdR-induced cellular changes will alter viral proliferation and cytotoxicity. Replication of wild-type HSV-1 was impaired in the presence of 10 nM FUdR, whereas G207 demonstrated increased replication under the same conditions. Combined use of FUdR and G207 resulted in synergistic cytotoxicity. FUdR exposure caused elevation of RR activity at 10 and 100 nM, whereas GADD34 was induced only at 100 nM. The effect of enhanced viral replication by FUdR was suppressed by hydroxyurea, a known inhibitor of RR. These results demonstrate that the growth advantage of G207 in FUdR-treated cells is primarily based on an RR-dependent mechanism. Although our findings show that TS inhibition impairs viral replication, the FUdR-induced RR elevation may overcome this disadvantage, resulting in enhanced replication of G207. These data provide the cellular basis for the combined use of RR-negative HSV mutants and TS inhibitors in the treatment of cancer.  相似文献   

11.
Epidermal growth factor (EGF) injected into pregnant mice increased the frequency of cleft palate (CP) in cortisone-treated mouse fetuses. EGF alone produced proliferation and thickening of the epithelium of the palatal processes, but CP was not significantly increased over saline injected controls. Cortisone alone produced thinning of the palatal epithelium and caused CP in 61 percent of formed fetuses. The combination of EGF and cortisone treatment induced CP in 100 percent of formed fetuses; epithelial thickening still occurred with the combination treatment. Thus, EGF may be teratogenic under special circumstances. These observations suggest that the relative thickness of the palatal shelf epithelium may not be a critical factor in the fusion of the palatal shelves.  相似文献   

12.
The sense of taste, although a relatively undistinguished sensory modality in most mammals, is a highly developed sense in many fishes, e.g., catfish, gadids, and carps including goldfish. In these species, the amount of neural tissue devoted to this modality may approach 20% of the entire brain mass, reflecting an enormous number of taste buds scattered across the external surface of the animal as well as within the oral cavity. The primary sensory nuclei for taste form a longitudinal column of nuclei along the dorsomedial surface of the medulla. Within this column of gustatory nuclei, the sensory system is represented as a fine-grain somatotopic map, with external body parts being represented rostrally within the column, and oropharyngeal surfaces being represented caudally. Goldfish have a specialization of the oral cavity, the palatal organ, which enables them to sort food particles from particulate substrate material such as gravel. The palatal organ taste information reaches the large, vagal lobe with a complex laminar and columnar organization. This lobe also supports a radially-organized reflex system which activates the musculature of the palatal organ to effect the sorting operation. The stereotyped, laminated structure of this system in goldfish has facilitated studies of the circuitry and neurotransmitter systems underlying the goldfish’s ability to sort food from stones.  相似文献   

13.
A study was undertaken to examine the issue of whether achieving a critical mass of cells and/or palatal shelf volume during vertical development of shelf is essential for reorientation to occur. In control and 5-fluorouracil (5FU)-treated hamster embryos' palatal shelves, at different times during gestation, the numbers of both epithelial and mesenchymal cells were counted and cross-sectional area was measured. DNA synthesis was measured by 3H-thymidine incorporation and was used as an index of growth by cell proliferation. The control data indicated that, unlike development during initial 24 hours, the later period of vertical palatal development was characterized by a steady level of mesenchymal and epithelial cell numbers and palatal shelf area. Following 5FU treatment all the measurements were reduced, and until they reached the equivalent of control values, the palatal shelves did not reorient. The density of mesenchymal cells in the developing palate did not seem to affect cell number. On the basis of the analysis of results of the present study, along with those reported in the literature, it is suggested that, in hamsters, acquisition and maintenance of both a specified number of mesenchymal cells and shelf area, at least 24 hours prior to reorientation, may be critical for ensuing mesenchymal differentiation to enforce palatal shelf reorientation on schedule. 5FU affected these features to delay reorientation of the palatal shelf.  相似文献   

14.
We have enhanced the uptake of 5-[125I]iodo-2'-deoxyuridine (125IUdR) in Chinese hamster V79 cells with 5-fluoro-2'-deoxyuridine (FUdR) and have examined the combined toxicity of these agents. Although the uptake of 125IUdR increases approximately 3.2 +/- 0.5-fold in the presence of 1 microM FUdR, when cell survival fraction is plotted as a function of intranuclear 125IUdR content, the biphasic curve obtained reaches a plateau at a higher survival fraction than with control cells not exposed to FUdR. The results suggest that a greater number of cells were prevented from entering the S phase and consequently from incorporating 125IUdR. An FUdR- 125IUdR combination, therefore, does not seem to enhance the therapeutic potential of 125IUdR. Such observations are also of importance when FUdR and other inhibitors are used to enhance cold IUdR uptake in an effort to obtain an increase in radiosensitization effects.  相似文献   

15.
During palatogenesis, the palatal mesenchyme undergoes increased cell proliferation resulting in palatal growth, elevation and fusion of the two palatal shelves. Interestingly, the palatal mesenchyme expresses all three transforming growth factor (TGF) β isoforms (1, 2, and 3) throughout these steps of palatogenesis. However, the role of TGFβ in promoting proliferation of palatal mesenchymal cells has never been explored. The purpose of this study was to identify the effect of TGFβ on human embryonic palatal mesenchymal (HEPM) cell proliferation. Our results showed that all isoforms of TGFβ, especially TGFβ3, increased HEPM cell proliferation by up‐regulating the expression of cyclins and cyclin‐dependent kinases as well as c‐Myc oncogene. TGFβ activated both Smad‐dependent and Smad‐independent pathways to induce c‐Myc gene expression. Furthermore, TBE1 is the only functional Smad binding element (SBE) in the c‐Myc promoter and Smad4, activated by TGFβ, binds to the TBE1 to induce c‐Myc gene activity. We conclude that HEPM proliferation is manifested by the induction of c‐Myc in response to TGFβ signaling, which is essential for complete palatal confluency. Our data highlights the potential role of TGFβ as a therapeutic molecule to correct cleft palate by promoting growth. J. Cell. Biochem. 113: 3069–3085, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
R M Shah  Y P Chen  D N Burdett 《Teratology》1989,40(2):173-180
The contribution made by mesenchymal cells during the later stages of palatal development was examined in control and hydrocortisone-treated hamster embryos. Cross-sectional area of the palatal shelf was measured, and the numbers of both epithelial and mesenchymal cells were counted. DNA synthesis was measured by 3H-thymidine incorporation and was used as an index of growth by cell proliferation. The observations in controls indicated that, unlike development during the initial 24 hr, the later period of vertical palate development, followed by reorientation of shelves and their closure, was characterized by a steady level of mesenchymal cell number and palatal shelf area. An absence of corresponding growth in the epithelial cell number suggests that the cells may accommodate the growth either by increasing their size and/or by stretching along the basal lamina. Hydrocortisone treatment did not alter the growth pattern of cell numbers or shelf area. However, it prevented the fusion between the opposing shelves, perhaps by affecting the cytodifferentiation of the palatal tissues. Although a continuous increase in the number of mesenchymal cells during the latter half of vertical shelf development, i.e., between days 11:00 and 12:00 of gestation, is not required for reorientation and fusion of the shelves, it is not clear from the data from the present study whether a critical number of cells and/or cell density is essential for reorientation and fusion of the palate. It was suggested that, for normal palatal development, information on cell cycle and positioning of mesenchymal cells within the shelf during the vertical development may be crucial for further understanding of subsequent events of palatogenesis.  相似文献   

17.
Cyclophosphamide (CP), when injected in hamster mother between days 9 and 11 of pregnancy, was teratogenic in fetuses. On the basis of a morphological study it was deduced that CP delayed the reorientation of hamster palatal shelves by 16-20 h. In a subsequent experiment, in both control and CP-treated palatal shelves, the numbers of epithelial and mesenchymal cells were counted and cross-sectional area was measured. DNA synthesis, measured by 3H-thymidine incorporation, was used as an index of growth by cell proliferation. The results showed that during the vertical development of palatal shelves, the mesenchymal cells reached their peak number during the initial 24 hours, i.e., at the end of the second peak in DNA synthesis, and remained unchanged thereafter throughout reorientation. The shelf area also showed rapid increase during the initial 24 h followed by a spurt 2 h prior to reorientation. Cyclophosphamide prolonged the acquisition of these features by affecting the mesenchymal cells and consequently delayed the reorientation of the vertical shelves until such time that the number of healthy mesenchymal cells and shelf area were restored to the control values. The data lend further support to the hypothesis that the acquisition of a specific number of cells and shelf volume, during vertical palatal development, may be essential for palatal shelf reorientation.  相似文献   

18.
A DNA base analogue, 5-bromodeoxyuridine (BUdR), promoted floweringof Arabidopsis thaliana in short and long photoperiods and evenin total darkness. The promotive effect of BUdR was nullifiedby thymidine which had a weak inhibitory effect by itself. AnotherDNA base analogue, 5-fluorodeoxyuridine (FUdR), inhibited theflowering at a low concentration (10–8 M), but markedlyenhanced the promotive effect of BUdR if they were present togetherin the culture medium. In the flower-promoting medium containing both BUdR and FUdR,the number of acid phosphatase isozymes decreased temporarily,followed by an increase to the control level with a prolongedculture period. The number of peroxidase isozymes was greaterin plants grown in the medium with BUdR or BUdR $ FUdR thanin those without them. (Received October 22, 1987; Accepted March 25, 1988)  相似文献   

19.
BMP signaling plays many important roles during organ development, including palatogenesis. Loss of BMP signaling leads to cleft palate formation. During development, BMP activities are finely tuned by a number of modulators at the extracellular and intracellular levels. Among the extracellular BMP antagonists is Noggin, which preferentialy binds to BMP2, BMP4 and BMP7, all of which are expressed in the developing palatal shelves. Here we use targeted Noggin mutant mice as a model for gain of BMP signaling function to investigate the role of BMP signaling in palate development. We find prominent Noggin expression in the palatal epithelium along the anterior-posterior axis during early palate development. Loss of Noggin function leads to overactive BMP signaling, particularly in the palatal epithelium. This results in disregulation of cell proliferation, excessive cell death, and changes in gene expression, leading to formation of complete palatal cleft. The excessive cell death in the epithelium disrupts the palatal epithelium integrity, which in turn leads to an abnormal palate-mandible fusion and prevents palatal shelf elevation. This phenotype is recapitulated by ectopic expression of a constitutively active form of BMPR-IA but not BMPR-IB in the epithelium of the developing palate; this suggests a role for BMPR-IA in mediating overactive BMP signaling in the absence of Noggin. Together with the evidence that overexpression of Noggin in the palatal epithelium does not cause a cleft palate defect, we conclude from our results that Noggin mediated modulation of BMP signaling is essential for palatal epithelium integrity and for normal palate development.  相似文献   

20.
Preliminary incubation of logarithmically growing HeLa cells with FUdR decreases an inhibitory effect of hyperthermia (43 degrees C, 1 hour) on DNA synthesis. The hyperthermia alone inhibits DNA synthesis considerably: the label in acid-precipitable material accounts for 30% of control level. Preliminary incubation of the cells with FUdR (10(-6)) for 24 or 6 hours (plus 18 hours in fresh medium) decreases the effect: the label yields account for 50 or 90% of the respective control levels. A molecular weight of nascent DNA synthetized in the cells after hyperthermia or incubation with FUdR is lower than the control one but it increases rapidly during postincubation. Nucleoid of cells treated with FUdR has a sedimentation velocity which exceeds that of the control cells by more than 25%. Preliminary incubation with FUdR sensitizes the cells to hyperthermia. The effect is not believed to be associated with cells synchronization since the treatment of the cells with FUdR for 2 or 6 hours, when FUdR itself does not exert its toxic effect, brings about sensibilization of cells to hyperthermia. It is suggested that modification of the cell viability and DNA replication are related to some changes of chromatine structure induced by FUdR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号