首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
In most streptococci, glucose is transported by the phosphoenolpyruvate (PEP):glucose/mannose phosphotransferase system (PTS) via HPr and IIAB(Man), two proteins involved in regulatory mechanisms. While most strains of Streptococcus thermophilus do not or poorly metabolize glucose, compelling evidence suggests that S. thermophilus possesses the genes that encode the glucose/mannose general and specific PTS proteins. The purposes of this study were to determine (i) whether these PTS genes are expressed, (ii) whether the PTS proteins encoded by these genes are able to transfer a phosphate group from PEP to glucose/mannose PTS substrates, and (iii) whether these proteins catalyze sugar transport. The pts operon is made up of the genes encoding HPr (ptsH) and enzyme I (EI) (ptsI), which are transcribed into a 0.6-kb ptsH mRNA and a 2.3-kb ptsHI mRNA. The specific glucose/mannose PTS proteins, IIAB(Man), IIC(Man), IID(Man), and the ManO protein, are encoded by manL, manM, manN, and manO, respectively, which make up the man operon. The man operon is transcribed into a single 3.5-kb mRNA. To assess the phosphotransfer competence of these PTS proteins, in vitro PEP-dependent phosphorylation experiments were conducted with purified HPr, EI, and IIAB(Man) as well as membrane fragments containing IIC(Man) and IID(Man). These PTS components efficiently transferred a phosphate group from PEP to glucose, mannose, 2-deoxyglucose, and (to a lesser extent) fructose, which are common streptococcal glucose/mannose PTS substrates. Whole cells were unable to catalyze the uptake of mannose and 2-deoxyglucose, demonstrating the inability of the S. thermophilus PTS proteins to operate as a proficient transport system. This inability to transport mannose and 2-deoxyglucose may be due to a defective IIC domain. We propose that in S. thermophilus, the general and specific glucose/mannose PTS proteins are not involved in glucose transport but might have regulatory functions associated with the phosphotransfer properties of HPr and IIAB(Man).  相似文献   

3.
4.
We have studied the transport of trehalose and maltose in the thernophilic bacterium Thermus thermophilus HB27, which grows optimally in the range of 70 to 75 degrees C. The K(m) values at 70 degrees C were 109 nM for trehalose and 114 nM for maltose; also, a high K(m) (424 nM) was found for the uptake of sucrose. Competition studies showed that a single transporter recognizes trehalose, maltose, and sucrose, while d-galactose, d-fucose, l-rhamnose, l-arabinose, and d-mannose were not competitive inhibitors. In the recently published genome of T. thermophilus HB27, two gene clusters designated malEFG1 (TTC1627 to -1629) and malEFG2 (TTC1288 to -1286) and two monocistronic genes designated malK1 (TTC0211) and malK2 (TTC0611) are annotated as trehalose/maltose and maltose/maltodextrin transport systems, respectively. To find out whether any of these systems is responsible for the transport of trehalose, the malE1 and malE2 genes, lacking the sequence encoding the signal peptides, were expressed in Escherichia coli. The binding activity of pure recombinant proteins was analyzed by equilibrium dialysis. MalE1 was able to bind maltose, trehalose, and sucrose but not glucose or maltotetraose (K(d) values of 103, 67, and 401 nM, respectively). Mutants with disruptions in either malF1 or malK1 were unable to grow on maltose, trehalose, sucrose, or palatinose, whereas mutants with disruption in malK2 or malF2 showed no growth defect on any of these sugars. Therefore, malEFG1 encodes the binding protein and the two transmembrane subunits of the trehalose/maltose/sucrose/palatinose ABC transporter, and malK1 encodes the ATP-binding subunit of this transporter. Despite the presence of an efficient transporter for trehalose, this compound was not used by HB27 for osmoprotection. MalE1 and MalE2 exhibited extremely high thermal stability: melting temperatures of 90 degrees C for MalE1 and 105 degrees C for MalE2 in the presence of 2.3 M guanidinium chloride. The latter protein did not bind any of the sugars examined and is not implicated in a maltose/maltodextrin transport system. This work demonstrates that malEFG1 and malK1 constitute the high-affinity ABC transport system of T. thermophilus HB27 for trehalose, maltose, sucrose, and palatinose.  相似文献   

5.
Thirteen glucose analogues bearing electrophilic groups were synthesized (five of them for the first time) and screened as inhibitors of the glucose transporter (EIIGlc) of the Escherichia coli phosphoenolpyruvate-sugar phosphotransferase system (PTS). 2',3'-Epoxypropyl beta-d-glucopyranoside (3a) is an inhibitor and also a pseudosubstrate. Five analogues are inhibitors of nonvectorial Glc phosphorylation by EIIGlc but not pseudosubstrates. They are selective for EIIGlc as demonstrated by comparison with EIIMan, another Glc-specific but structurally different transporter. 3a is the only analogue that inhibits EIIGlc by binding to the high-affinity cytoplasmic binding site and also strongly inhibits sugar uptake mediated by this transporter. The most potent inhibitor in vitro, methyl 6,7-anhydro-d,l-glycero-alpha-d-gluco-heptopyranoside (1d), preferentially interacts with the low-affinity cytoplasmic site but only weakly inhibits Glc uptake. Binding and/or phosphorylation from the cytoplasmic side of EIIGlc is more permissive than sugar binding and/or translocation of substrates via the periplasmic site. EIIGlc is rapidly inactivated by the 6-O-bromoacetyl esters of methyl alpha-d-glucopyranoside (1a) and methyl alpha-d-mannopyranoside (1c), methyl 6-deoxy-6-isothiocyanato-alpha-d-glucopyranoside (1e), beta-d-glucopyranosyl isothiocyanate (3c) and beta-d-glucopyranosyl phenyl isothiocyanate (3d). Phosphorylation of EIIGlc protects, indicating that inactivation occurs by alkylation of Cys421. Glc does not protect, but sensitizes EIIGlc for inactivation by 1e and 3d, which is interpreted as the effect of glucose-induced conformational changes in the dimeric transporter. Glc also sensitizes EIIGlc for inactivation by 1a and 1c of uptake by starved cells. This indicates that Cys421 which is located on the cytoplasmic domain of EIIGlc becomes transiently accessible to substrate analogues on the periplasmic side of the transporter.  相似文献   

6.
We have investigated the effect of oxidizing agents on methyl alpha-glucoside phosphorylation by the Escherichia coli phosphotransferase system (PTS). Oxidizing agents inhibited methyl alpha-glucoside phosphorylation at low methyl alpha-glucoside concentrations, and the degree of inhibition was shown to decrease with increasing concentrations of methyl alpha-glucoside. Results of studies with mutant bacteria and substrate analogues of the glucose and mannose enzymes II showed that contrary to the interpretation of Robillard and Konings [Robillard, G. T., & Konings, W. N. (1981) Biochemistry 20, 5025-5032] the apparent change in the Km value for methyl alpha-glucoside phosphorylation induced by sulfhydryl oxidation is not due to the formation of a low-affinity, oxidized form of the glucose enzyme II. Rather, the results are explained by the presence of two phosphotransferase systems that phosphorylate methyl alpha-glucoside with different affinities and that are differentially sensitive to oxidizing agents. The low Km system corresponds to the glucose enzyme II, which is strongly inhibited by potassium ferricyanide, phenazine methosulfate, and plumbagin. The high Km system corresponds to the mannose enzyme II, which is less sensitive to inhibition by these oxidizing agents. This differential sensitivity to inhibition by oxidizing agents can account for the apparent Km change for methyl alpha-glucoside phosphorylation reported by Robillard and Konings. The physiological significance of sulfhydryl oxidation in the enzymes II of the PTS has yet to be ascertained.  相似文献   

7.
8.
Natural transformation permits the transport of DNA through bacterial membranes and represents a dominant mode for the transfer of genetic information between bacteria and between microorganisms of distant evolutionary lineages and even between members of different domains. This phenomenon, known as horizontal, or lateral, gene transfer, has been a major force for genome plasticity over evolutionary history, and is largely responsible for the spread of fitness-enhancing traits, including antibiotic resistance and virulence factors. In particular, for adaptation of prokaryotes to extreme environments, lateral gene transfer seems to have played a crucial role. Here, we present a survey of the natural transformation machinery of the thermophile Thermus thermophilus HB27. A tentative model of the transformation machinery comprising of components similar to proteins of type IV pili and type II secretion systems is presented. A comparative discussion of the subunits and the structure of the DNA translocator and the underlying mechanism of transfer of free DNA in T. thermophilus highlights conserved and unique features of the DNA translocator in T. thermophilus . We hypothesize that the extraordinary broad substrate specificity and the high efficiency of the T. thermophilus DNA uptake system is of major importance for thermoadaptation and interdomain DNA transfer in hot environments.  相似文献   

9.
The crystal structures of the cytoplasmic domain of the putative zinc transporter CzrB in the apo and zinc-bound forms reported herein are consistent with the protein functioning in vivo as a homodimer. NMR, X-ray scattering, and size-exclusion chromatography provide support for dimer formation. Full-length variants of CzrB in the apo and zinc-loaded states were generated by homology modeling with the Zn2+/H+ antiporter YiiP. The model suggests a way in which zinc binding to the cytoplasmic fragment creates a docking site to which a metallochaperone can bind for delivery and transport of its zinc cargo. Because the cytoplasmic domain may exist in the cell as an independent, soluble protein, a proposal is advanced that it functions as a metallochaperone and that it regulates the zinc-transporting activity of the full-length protein. The latter requires that zinc binding becomes uncoupled from the creation of a metallochaperone-docking site on CzrB.  相似文献   

10.
[目的]优化噬热栖热菌Thermus thermophilus的转化体系。[方法]将质粒DNA的形态、浓度及转化时间作为变量设计噬热栖热菌T.thermophilus的转化体系,以通过直接双交换同源重组法获取Δpyr E突变体的概率为依据判定转化效率。[结果]在转化时间为2 h,使用3.0μg/m L线性质粒DNA,获取表观Δpyr E的概率为3.44×10-5;而使用同样浓度的超螺旋质粒DNA,该概率可达1.03×10-3;说明超螺旋质粒的转化效率高于线状质粒。质粒DNA的使用浓度及转化反应时间对转化效率亦有影响,但并非完全成正相关。使用浓度为15μg/m L超螺旋质粒DNA,在转化时间为3 h时,获取表观Δpyr E的概率达到最大值(1.36×10-2);超过该阈值,转化效率降低。[结论]在T.thermophilus中,通过优化转化体系将基因无痕敲除突变体获取概率提高到10-2。  相似文献   

11.
12.
The effect of membrane-impermeable sulfhydryl reagents on glucose-specific enzyme II (EIIGlc) activity has been studied in Salmonella typhimurium whole cells and in properly sealed inverted cytoplasmic membrane vesicles. Glutathione N-hexylmaleimide and N-polymethylenecarboxymaleimides inactivate methyl alpha-D-glucopyranoside (alpha-MeGlc) transport and phosphorylation in whole cell preparations at a dithiol that can be protected by oxidizing reagents, trivalent arsenicals, or phosphorylation of EIIGlc. Accessibility to this activity-linked site is restricted to small apolar reagents or to polar reagents with a hydrophobic spacer between the polar group and the reactive maleimide moiety. These same reagents inactivate alpha-MeGlc phosphorylation in inverted cytoplasmic membrane vesicles. Inhibition results from reaction at a dithiol that can be protected by nonpermeant mercurials, oxidants, and arsenicals as well as by phosphorylation of EII. The characteristics of this site are virtually identical with those of the activity-linked dithiol elucidated in intact cells. No evidence could be found for a second activity-linked site on the other side of the membrane when the permeable reagent N-ethylmaleimide was used. Since only one activity-linked dithiol can be detected with sealed inverted membrane vesicles or intact cells and it is accessible to membrane-impermeable sulfhydryl reagents from both sides of the cytoplasmic membrane, we suggest that it is located in a channel constructured by the carrier and that the channel spans the membrane. A second dithiol, not essential for activity, is located near the outer surface of the cytoplasmic membrane.  相似文献   

13.
A cell-associated mannose/glucose-specific hemagglutinin (MSHA) has been purified from a strain of Vibrio cholerae O1 by chromatography on a chitin column followed by affinity purification on Sephadex G100. The purified protein gave a single stained band of 40 kDa by SDS-PAGE, exhibited high affinity towards D-mannose and D-glucose but was resistant to L-fucose and N-acetyl-D-glucosamine. The purified MSHA was revealed as a globular form of protein under electron microscope. In immunodiffusion tests the purified MSHA produced a single precipitin band against homologous antisera and antisera raised against the whole cell bacteria without any reactivity towards antisera raised against the purified N-acetyl-D-glucosamine-specific lectin of the same bacterial strain. Immunogold labelling confirmed the location of hemagglutinin on the surface of the bacteria. Purified MSHA reacted strongly with sera from convalescent cholera patients in immunodiffusion tests.  相似文献   

14.
Beutler R  Kaufmann M  Ruggiero F  Erni B 《Biochemistry》2000,39(13):3745-3750
The IICB(Glc) subunit of the glucose transporter acts by a mechanism which couples vectorial translocation with phosphorylation of the substrate. It contains 8 transmembrane segments connected by 4 periplasmic, 2 short, 1 long (80 residues), cytoplasmic loops and an independently folding cytoplasmic domain at the C-terminus. Random DNase I cleavage, EcoRI linker insertion, and screening for transport-active mutants afforded 12 variants with between 46% and 116% of wild-type sugar phosphorylation activity. They carried inserts of up to 29 residues and short deletions in periplasmic loops 1, 2, and 3, in the long cytoplasmic loop 3, and in the linker region between the membrane spanning IIC(Glc) and the cytoplasmic IIB(Glc) domains. Disruption of the gene at the sites of linker insertion decreased the expression level and diminished phosphotransferase activity to between 7% and 32%. IICB(Glc) with a discontinuity in the cytoplasmic loop was purified to homogeneity as a stable complex. It was active only if encoded by a dicistronic operon but not if encoded by two genes on two different replicons, suggesting that spatial proximity of the nascent polypeptide chains is important for folding and membrane assembly.  相似文献   

15.
The membrane proteins IIC and IID of the mannose phosphotransferase system (Man-PTS) together form a membrane-located complex that serves as a receptor for several different bacteriocins, including the pediocin-like class IIa bacteriocins and the class IIc bacteriocin lactococcin A. Bacterial strains sensitive to class IIa bacteriocins readily give rise to resistant mutants upon bacteriocin exposure. In the present study, we have therefore investigated lactococcin A-resistant mutants of Lactococcus lactis as well as natural food isolates of Listeria monocytogenes with different susceptibilities to class IIa bacteriocins. We found two major mechanisms of resistance. The first involves downregulation of Man-PTS gene expression, which takes place both in spontaneous resistant mutants and in natural resistant isolates. The second involves normal expression of the Man-PTS system, but the underlying mechanism of resistance for these cells is unknown. In some cases, the resistant phenotype was linked to a shift in the metabolism; i.e., reduced growth on glucose due to reduction in Man-PTS expression was accompanied by enhanced growth on another sugar, such as galactose. The implications of these findings in terms of metabolic heterogeneity are discussed.  相似文献   

16.
ATP-binding cassette (ABC) systems translocate a wide range of solutes across cellular membranes. The thermophilic gram-negative eubacterium Thermus thermophilus, a model organism for structural genomics and systems biology, discloses ~46 ABC proteins, which are largely uncharacterized. Here, we functionally analyzed the first two and only ABC half-transporters of the hyperthermophilic bacterium, TmrA and TmrB. The ABC system mediates uptake of the drug Hoechst 33342 in inside-out oriented vesicles that is inhibited by verapamil. TmrA and TmrB form a stable heterodimeric complex hydrolyzing ATP with a K(m) of 0.9 mm and k(cat) of 9 s(-1) at 68 °C. Two nucleotides can be trapped in the heterodimeric ABC complex either by vanadate or by mutation inhibiting ATP hydrolysis. Nucleotide trapping requires permissive temperatures, at which a conformational ATP switch is possible. We further demonstrate that the canonic glutamate 523 of TmrA is essential for rapid conversion of the ATP/ATP-bound complex into its ADP/ATP state, whereas the corresponding aspartate in TmrB (Asp-500) has only a regulatory role. Notably, exchange of this single noncanonic residue into a catalytic glutamate cannot rescue the function of the E523Q/D500E complex, implicating a built-in asymmetry of the complex. However, slow ATP hydrolysis in the newly generated canonic site (D500E) strictly depends on the formation of a posthydrolysis state in the consensus site, indicating an allosteric coupling of both active sites.  相似文献   

17.
The success rate of introducing new functions into a living species is still rather unsatisfactory. Much of this is due to the very essence of the living state, i.e. its robustness towards perturbations. Living cells are bound to notice that metabolic engineering is being effected, through changes in metabolite concentrations. In this study, we asked whether one could engage in such engineering without changing metabolite concentrations. We have illustrated that, in silico, one can do so in principle. We have done this for the case of substituting the yeast glucose transporter plus hexokinase for the Lactococcus lactis phosphotransferase system, in an L. lactis network, this engineering is 'silent' in terms of metabolite concentrations and almost all fluxes.  相似文献   

18.
19.
Current evidence suggests that extracellular mannose can be transported intracellularly and utilized for glycoprotein synthesis; however, the identity and the functional characteristics of the transporters of mannose are controversial. Although the glucose transporters are capable of transporting mannose, it has been postulated that the entry of mannose in mammalian cells is mediated by a transporter that is insensitive to glucose [Panneerselvam, K., and Freeze, H. (1996) J. Biol. Chem. 271, 9417-9421] or by a transporter induced by cell treatment with metformin [Shang, J., and Lehrman, M. A. (2004) J. Biol. Chem. 279, 9703-9712]. We performed a detailed analysis of the uptake of mannose in normal human erythrocytes and in leukemia cell line HL-60. Short uptake assays allowed the identification of a single functional activity involved in mannose uptake in both cell types, with a K(m) for transport of 6 mM. Transport was inhibited in a competitive manner by classical glucose transporter substrates. Similarly, the glucose transporter inhibitors cytochalasin B, genistein, and myricetin inhibited mannose transport by 100%. Using long uptake experiments, we identified a second, high-affinity component associated with the intracellular trapping of mannose in the HL-60 cells that is not directly involved in the transport of mannose via the glucose transporters. Thus, the transport of mannose via glucose transporters is a process which is kinetically and biologically separable from its intracellular trapping. A general survey of human cells revealed that mannose uptake was entirely blocked by concentrations of cytochalasin B that obliterates the activity of the glucose transporters. The transport and inhibition data demonstrate that extracellular mannose, whose physiological concentration is in the micromolar range, enters cells in the presence of physiological concentrations of glucose. Overall, our data indicate that transport through the glucose transporter is the main mechanism by which human cells acquire mannose.  相似文献   

20.
The trehalose/maltose-binding protein (MalE1) is one component of trehalose and maltose uptake system in the thermophilic organism Thermus thermophilus. MalE1 is a monomeric 48 kDa protein predominantly organized in alpha-helix conformation with a minor content of beta-structure. In this work, we used Fourier-infrared spectroscopy and in silico methodologies for investigating the structural stability properties of MalE1. The protein was studied in the absence and in the presence of maltose as well as in the absence and in the presence of SDS at different p(2)H values (neutral p(2)H and at p(2)H 9.8). In the absence of SDS, the results pointed out a high thermostability of the MalE1 alpha-helices, maintained also at basic p(2)H values. However, the obtained data also showed that at high temperatures the MalE1 beta-sheets underwent to structural rearrangements that were totally reversible when the temperature was lowered. At room temperature, the addition of SDS to the protein solution slightly modified the MalE1 secondary structure content by decreasing the protein thermostability. The infrared data, corroborated by molecular dynamics simulation experiments performed on the structure of MalE1, indicated that the protein hydrophobic interactions have an important role in the MalE1 high thermostability. Finally, the results obtained on MalE1 are also discussed in comparison with the data on similar thermostable proteins already studied in our laboratories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号