首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 70 毫秒
1.
Studies on the biodiversity and evolution of octocorals are hindered by the incomplete knowledge of their taxonomy, which is due to few reliable morphological characters. Therefore, assessment of true species diversity within abundant and ecologically important families such as Xeniidae is difficult. Mitochondrial genes provide a reliable solution to this problem for a wide range of taxa. However, low mutation rates of the mitochondrial DNA in octocorals result in insufficient variability for species discrimination. We compared the variation of a fragment of the Signal Recognition Particle 54 gene (SRP54, proposed for octocorals) and the mitochondrial ND6/ND3 marker among members of the xeniid genera Ovabunda, Xenia, Heteroxenia and Bayerxenia. The mean uncorrected pairwise sequence divergence was 39 % for SRP54 compared to 2 % for ND6/ND3. Morphological assignments were not always supported by genetics: Species diversity was underestimated (one case) or overestimated, probably reflecting intraspecific polymorphisms or hinting at recent speciations. ND6/ND3 is informative for some species-level assignments, whereas SRP54 shows the variability needed for species delimitations within this understudied taxon. Our results on both genes show their potential for evolutionary and biodiversity studies in Xeniidae.  相似文献   

2.
In 2001 Carijoa riisei, an octocoral native to the tropical Western Atlantic, was discovered overgrowing black corals in the Au’au Channel in Hawaii. In this paper data from a 2001 survey are reanalyzed and combined with new data from 2003 and 2004 to assess the ecological impact in greater detail. C. riisei differentially affected reproductively mature black coral colonies with maximum impact between 80 and 105 m. The pattern of C. riisei overgrowth on black corals and C. riisei on the substrata appears to be bounded by high irradiance in shallow water and cold temperature in deep water. Evidence suggests that the C. riisei settlement on black corals is facilitated by other epifauna. Once established, C. riisei spreads vegetatively and smothers the coral. The success of the C. riisei invasion appears to be unaided by anthropogenic disturbance and is at least partially attributable to Hawaii’s depauperate shallow-water (<100 m) octocoral fauna.
Richard W. GriggEmail:
  相似文献   

3.
France  Scott C.  Hoover  Loretta L. 《Hydrobiologia》2002,471(1-3):149-155
We are analyzing genetic diversity in deep-seamount octocorals with the ultimate goal of studying the effect of retention and dispersal of larvae on genetic population structure. Here we report on the sequence diversity of the mitochondrial cytochrome oxidase I (COI) gene among 11 species. Uncorrected pairwise sequence divergences ranged from 0.4–10.3% for comparisons among species spanning the intrageneric to interordinal levels. Relative to other invertebrates, these divergences are very low, suggesting that COI may not be useful as a genetic marker for studying dispersal among deep-sea octocoral populations. Possible explanations for the reduced rates of divergence observed include a lower rate of evolution for octocoral mitochondrial genomes and the presence of a gene, mtMSH, which may code for a mitochondrial DNA mismatch-repair system. We report the finding of mtMSH in three deep-sea octocorals (Acanthogorgia sp., Corallium ducale, and Paramuricea sp.), which brings the total published observations of this gene to six species, all in the subclass Octocorallia.  相似文献   

4.
The giant garter snake, Thamnophis gigas, is a threatened species endemic to California’s Central Valley. We tested the hypothesis that current watershed boundaries have caused genetic differentiation among populations of T. gigas. We sampled 14 populations throughout the current geographic range of T. gigas and amplified 859 bp from the mitochondrial gene ND4 and one nuclear microsatellite locus. DNA sequence variation from the mitochondrial gene indicates there is some genetic structuring of the populations, with high FST values and unique haplotypes occurring at high frequency in several populations. We found that clustering populations by watershed boundary results in significant between-region genetic variance for mtDNA. However, analysis of allele frequencies at the microsatellite locus NSU3 reveals very low FST values and little between-region variation in allele frequencies. The discordance found between mitochondrial and microsatellite data may be explained by aspects of molecular evolution and/or T. gigas life history characteristics. Differences in effective population size between mitochondrial and nuclear DNA, or male-biased gene flow, result in a lower migration rate of mitochondrial haplotypes relative to nuclear alleles. However, we cannot exclude homoplasy as one explanation for homogeneity found for the single microsatellite locus. The mitochondrial nucleotide sequence data supports conservation practices that identify separate management units for T. gigas.  相似文献   

5.
Musk Ducks (Biziura lobata) are endemic to Australia and occur as two geographically isolated populations separated by the Nullarbor Plain, a vast arid region in southern Australia. We studied genetic variation in Musk Duck populations at coarse (eastern versus western Australia) and fine scales (four sites within eastern Australia). We found significant genetic structure between eastern and western Australia in the mtDNA control region (ΦST = 0.747), one nuclear intron (ΦST = 0.193) and eight microsatellite loci (FST = 0.035). In contrast, there was little genetic structure between Kangaroo Island and adjacent mainland regions within eastern Australia. One small population of Musk Ducks in Victoria (Lake Wendouree) differed from both Kangaroo Island and the remainder of mainland eastern Australia, possibly due to genetic drift exacerbated by inbreeding and small population size. The observed low pairwise distance between the eastern and western mtDNA lineages (0.36%) suggests that they diverged near the end of the Pleistocene, a period characterised by frequent shifts between wet and arid conditions in central Australia. Our genetic results corroborate the display call divergence and Mathews’ (Austral Avian Record 2:83–107, 1914) subspecies classification, and confirm that eastern and western populations of Musk Duck are currently isolated from each other.  相似文献   

6.
A previous mtDNA study indicated that female-mediated gene flow was extremely rare among alligator snapping turtle populations in different drainages of the Gulf of Mexico. In this study, we used variation at seven microsatellite DNA loci to assess the possibility of male-mediated gene flow, we augmented the mtDNA survey with additional sampling of the large Mississippi River System, and we evaluated the hypothesis that the consistently low within-population mtDNA diversity reflects past population bottlenecks. The results show that dispersal between drainages of the Gulf of Mexico is rare (F STmsat  = 0.43, ΦSTmtDNA = 0.98). Past range-wide bottlenecks are indicated by several genetic signals, including low diversity for microsatellites (1.1–3.9 alleles/locus; H e = 0.06–0.53) and mtDNA (h = 0.00 for most drainages; π = 0.000–0.001). Microsatellite data reinforce the conclusion from mtDNA that the Suwannee River population might eventually be recognized as a distinct taxonomic unit. It was the only population showing fixation or near fixation for otherwise rare microsatellite alleles. Six evolutionarily significant units are recommended on the basis of reciprocal mtDNA monophyly and high levels of microsatellite DNA divergence.  相似文献   

7.
Zheng JS  Xia JH  He SP  Wang D 《Biochemical genetics》2005,43(5-6):307-320
Understanding the population genetic structure is a prerequisite for conservation of a species. The degree of genetic variability characteristic of the mitochondrial DNA control region has been widely exploited in studies of population genetic structure and can be useful in identifying meaningful population subdivisions. To estimate the genetic profile of the Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis), an endangered freshwater population endemic to China, the complete mtDNA control region was examined in 39 individuals belonging to seven different stocks inhabiting the middle and lower reaches of the Yangtze River. Very low genetic diversity was found (nucleotide diversity 0.0011± 0.0002 and haplotypic diversity 0.65± 0.05). The mtDNA genetic pattern of the Yangtze population appears to indicate a founder event in its evolutionary history and to support the marine origin for this population. Analyses by Fst and Φst yielded statistically significant population genetic structure (Fst = 0.44, P < 0.05; Φst = 0.36, P < 0.05). These results may have significant implications for the management and conservation of the Yangtze finless porpoise in the future.  相似文献   

8.
Phylogeographic and population genetic studies using sequence information are frequently used to infer species boundaries and history; and to assess hybridization and population level processes. In this study, partial mitochondrial DNA (mtDNA) control region (423 bp) and cytochrome b sequences (666 bp) of Oryx beisa sampled from five isolated localities in its entire current range in Africa were analyzed to investigate the extent of genetic variation and differentiation between populations. We observed high nucleotide diversity at the control region in the total sample (6.3%) but within populations, it varied considerably ranging from 1.6% to 8.1%. Population pairwise genetic differentiation was generally significantly high (ranging from F ST = 0.15, P<0.01 to F ST = 0.54, P<0.001). In the total sample, 29 and 12 haplotypes were observed in the control region and the cytochrome b data sets respectively. For both data sets, the haplotypes cluster into three distinct clades (sequence divergence ranged from 6.0%–12.9% to 0.8%–1.0% for the control region and cytochrome b sequences, respectively) that do not correspond to sampling locations. Two of these clades are found in the same localities (Samburu and Marsabit), which represent the O.beisa beisa subspecies, whereas the last clade represents the fringe-eared oryx (O. beisa callotis). We interpret these findings in terms of an ancient hybridization and introgression between two formerly isolated taxa of Oryx beisa.  相似文献   

9.
Geographic variation in mitochondrial DNA (mtDNA) restriction sites was studied in samples of two sympatric passerine birds, fox (Passerella iliaca) and song (Melospiza melodia) sparrows, collected at the same sites in the western United States. Different levels of variation and differentiation were observed in each species. In 46 fox sparrows taken at nine sites, five clones were observed, partitioned into two distinct east-west groups that meet at the Great Basin-Sierra Nevada interface; percent nucleotide divergence was 0.86 between groups and 0.08 within groups. An additional 43 individuals were examined using at least one of seven diagnostic endonucleases, and all supported the east-west groupings. Considering common mtDNA haplotypes as alleles, an FST of 0.50 was computed, which is an order of magnitude greater than that computed from allozyme comparisons (0.019); mtDNA analyses suggest little intergroup gene exchange. Compared to allozymic variation, analysis of mtDNA revealed a greater degree of population structuring and greater consistency with broad patterns of morphological variation. Fifteen clones were observed in 27 song sparrows taken at seven of the same sites at which fox sparrows were sampled; the percent nucleotide divergence averaged 0.27. There was no detectable geographic pattern to the variation, and no evidence of an east-west division as in the fox sparrow. However, the mosaic nature of mtDNA variation in song sparrows suggests limited gene exchange. Considering the 15 clones as alleles yielded an Fst of 0.24, which is reduced to 0.039 when corrected for sampling error. In spite of occupying the same geographic area, mtDNA analyses showed that the two species (or at least their mtDNA gene genealogies) have had different evolutionary histories.  相似文献   

10.
Are the population genomic patterns underlying local adaptation and the early stages of speciation similar? Addressing this question requires a system in which (i) local adaptation and the early stages of speciation can be clearly identified and distinguished, (ii) the amount of genetic divergence driven by the two processes is similar, and (iii) comparisons can be repeated both taxonomically (for local adaptation) and geographically (for speciation). Here, we report just such a situation in the hamlets (Hypoplectrus spp), brightly colored reef fishes from the wider Caribbean. Close to 100,000 SNPs genotyped in 126 individuals from three sympatric species sampled in three repeated populations provide genome‐wide levels of divergence that are comparable among allopatric populations (Fst estimate = 0.0042) and sympatric species (Fst estimate = 0.0038). Population genetic, clustering, and phylogenetic analyses reveal very similar patterns for local adaptation and speciation, with a large fraction of the genome undifferentiated (Fst estimate ≈ 0), a very small proportion of Fst outlier loci (0.05–0.07%), and remarkably few repeated outliers (1–3). Nevertheless, different loci appear to be involved in the two processes in Hypoplectrus, with only 7% of the most differentiated SNPs and outliers shared between populations and species comparisons. In particular, a tropomyosin (Tpm4) and a previously identified hox (HoxCa) locus emerge as candidate loci (repeated outliers) for local adaptation and speciation, respectively. We conclude that marine populations may be locally adapted notwithstanding shallow levels of genetic divergence, and that from a population genomic perspective, this process does not appear to differ fundamentally from the early stages of speciation.  相似文献   

11.
Allozyme variation was examined in 223 samples of the operculate land snail Cyclophorus fulguratus from 13 localities across three regions of Thailand. Using horizontal starch gel electrophoresis, 13 allozyme presumed loci (12 polymorphic) were screened. Heterozygosity was moderate in C. fulguratus (Hexp = 0.008–0.127) with a high genetic heterogeneity among samples (Fst = 0.734). Populations showed a greater genetic differentiation in central Thailand (Fst = 0.380) than in northeastern Thailand (Fst = 0.108), suggesting frequent gene flow among populations in northeastern Thailand. C. fulguratus exhibits a strong pattern of isolation by distance over the entire tested species range in Thailand and may potentially have been involved in an extensive local fragmentation. Results of the distance analysis revealed that large genetic divergence has occurred among the central, northeastern and eastern Thailand groups [D = 0.361–0.701], strongly suggesting populations from these three geographical regions may actually represent or else be evolving into separate species.  相似文献   

12.
 Stearic acid is one of the two saturated fatty acids found in soybean [Glycine max (L.) Merr.] oil, with its content in the seed oil of commercial cultivars averaging 4.0%. Two mutants, KK-2 and M25 with two- and six-fold higher stearic acid contents in the seed oil than cv ‘Bay’, were identified after X-ray seed irradiation. Our objective was to determine the genetic control of high stearic acid content in these mutants. Reciprocal crosses were made between each mutant and ‘Bay’, and between the two mutants. No maternal effect for stearic acid content was observed from the analysis of F1 seeds in any of the crosses. Low stearic acid content in ‘Bay’ was partially dominant to high stearic acid content in KK-2 and M25, and high stearic acid content in KK-2 was partially dominant to high stearic acid content in M25. Cytoplasmic effects were not observed, as demonstrated by the lack of reciprocal cross differences for stearic acid content in our analysis of F2 seeds from F1 plants. The stearic acid content in F2 seeds of KK-2בBay’ and M25בBay’ crosses segregated into three phenotypic classes which satisfactorily fit a 1:2:1 ratio, indicating that high stearic acid content in KK-2 and M25 was controlled by recessive alleles at a single locus. The data for stearic acid content in F2 seeds of the KK-2×M25 cross satisfactorily fit a 3:9:1:3 phenotypic ratio. The F2 segregation ratio and the segregation of F3 seeds from individual F2 plants indicated that KK-2 and M25 have different alleles at different loci for stearic acid content. The alleles in KK-2 and M25 have been designated as st 1 and st 2, respectively. The stearic acid content (>30.0%) found in the st 1 st 1 st 2 st 2 genotype is the highest known to date in soybean, but it was not possible to develop the line with this genotype because the irregular seeds failed to grow into plants after germination. Therefore, tissue culture methods must be developed to perpetuate this genotype. Received: 28 March 1997 / Accepted: 18 April 1997  相似文献   

13.
The tropical snowflake octocoral Carijoa riisei, which is thought to be native to the Indo-Pacific biogeographical region, has been increasingly reported from the Colombian Tropical Eastern Pacific (TEP) over the past two decades. Massive mortalities of native octocorals, particularly in Pacifigorgia spp. and Muricea spp., were observed due to C. riisei overgrowth. However, the area of origin of TEP C. riisei remains unknown and its potential invasive status has not been addressed yet. We evaluated geographical scenarios for the colonization of the Colombian TEP by conducting phylogeographical analyses based on nuclear and mitochondrial sequences of 306 individual specimens from across the species’ (native/non-native) range and applying hypothesis-specific operational criteria. Additionally, we assessed whether C. riisei has to be considered an invasive species based on the previously proposed ‘unified framework for biological invasions’. Our results showed relatively high genetic differentiation between Colombian TEP populations, on the one side, and Indo-Pacific and Hawaiian populations, on the other side. In contrast, we could not identify genetic differentiation and significant isolation by distance (IBD) between Colombian TEP and Tropical Atlantic populations. C. riisei might have been introduced from the Atlantic into the Colombian TEP, possibly via the Panama Canal. Based on the criteria of the ‘unified framework for biological invasions’, we also conclude that this octocoral constitutes an invasive species. Our study may serve as a basis for establishing strategies to protect native species from one of the very few invasive coral species worldwide.  相似文献   

14.
Many cnidarians (e.g., corals, octocorals, sea anemones) maintain a symbiosis with dinoflagellates (zooxanthellae). Zooxanthellae are grouped into clades, with studies focusing on scleractinian corals. We characterized zooxanthellae in 35 species of Caribbean octocorals. Most Caribbean octocoral species (88.6%) hosted clade B zooxanthellae, 8.6% hosted clade C, and one species (2.9%) hosted clades B and C. Erythropodium caribaeorum harbored clade C and a unique RFLP pattern, which, when sequenced, fell within clade C. Five octocoral species displayed no zooxanthella cladal variation with depth. Nine of the ten octocoral species sampled throughout the Caribbean exhibited no regional zooxanthella cladal differences. The exception, Briareum asbestinum, had some colonies from the Dry Tortugas exhibiting the E. caribaeorum RFLP pattern while elsewhere hosting clade B. In the Caribbean, octocorals show more symbiont specificity at the cladal level than scleractinian corals. Both octocorals and scleractinian corals, however, exhibited taxonomic affinity between zooxanthella clade and host suborder.Communicated by R.C. Carpenter  相似文献   

15.
To understand the impact of various factors on the maintenance of genetic variation in natural populations, we need to focus on situations where at least some of these factors are removed or controlled. In this study, we used highly variable, presumably neutral, microsatellite and mtDNA markers to assess the nature of genetic variation in 14 island and two mainland populations of the Australian bush rat, where there is no migration between islands. Thus we are controlling for selection and gene flow. Both marker sets revealed low levels of diversity within the small island populations and extreme differentiation between populations. For six microsatellite loci, all of the small island populations had less genetic variation than the mainland populations; reduction in allelic diversity was more pronounced than loss of heterozygosity. Kangaroo Island, the large island population, had similar levels of diversity to the mainland populations. A 442 base pair (bp) section of the mtDNA control region was screened for variation by outgroup heteroduplex analysis/temperature gradient gel electrophoresis (OHA/TGGE). Only three of the 13 small island populations showed haplotypic diversity: Gambier (2), Waldegrave (2), and Eyere (3). The level of haplotypic diversity in the small island populations was similar to that on the mainland, most likely reflecting a recent population bottleneck on the mainland. In contrast, Kangaroo Island had 9 mtDNA haplotypes. The dominant factor influencing genetic diversity on the islands was island size. No correlation was detected between genetic diversity and the time since isolation or distance form the mainland. The combination of genetic drift within and complete isolation among the small island populations has resulted in rapid and extreme population divergence. Population pair-wise comparisons of allele frequency distributions showed significant differences for all populations for all loci (F st = 0.11–0.84, R st = 0.07–0.99). For the mtDNA control region, 92.6% of variation was apportioned between populations; only the Pearson islands shared a haplotype. Mantel tests of pair-wise genetic distance with pair-wise geographic distance showed no significant geographical clustering of haplotypes. However, population substructuring was detected within populations where sampling was conducted over a broader geographical range, as indicated by departures from Hardy-Weinberg equilibrium. Thus substructuring in the ancestral population cannot be ruled out. The dominant evolutionary forces on the islands, after the initial founder event, are stochastic population processes such as genetic drift and mutation. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Understanding the causes and consequences of population phenotypic divergence is a central goal in ecology and evolution. Phenotypic divergence among populations can result from genetic divergence, phenotypic plasticity or a combination of the two. However, few studies have deciphered these mechanisms for populations geographically close and connected by gene flow, especially in the case of personality traits. In this study, we used a common garden experiment to explore the genetic basis of the phenotypic divergence observed between two blue tit (Cyanistes caeruleus) populations inhabiting contrasting habitats separated by 25 km, for two personality traits (exploration speed and handling aggression), one physiological trait (heart rate during restraint) and two morphological traits (tarsus length and body mass). Blue tit nestlings were removed from their population and raised in a common garden for up to 5 years. We then compared adult phenotypes between the two populations, as well as trait‐specific Qst and Fst. Our results revealed differences between populations similar to those found in the wild, suggesting a genetic divergence for all traits. QstFst comparisons revealed that the trait divergences likely result from dissimilar selection patterns rather than from genetic drift. Our study is one of the first to report a QstFst comparison for personality traits and adds to the growing body of evidence that population genetic divergence is possible at a small scale for a variety of traits including behavioural traits.  相似文献   

17.
Using mitochondrial and microsatellite DNA data and a population genetic approach, we tested male‐mediated gene flow in the toad‐headed lizards Phrynocephalus przewalskii. The mitochondrial DNA (ND2 gene), on the one hand, revealed two major lineages and a strong population genetic structure (FST = 0.692; FST = 0.995). The pairwise differences between the two lineages ranged from 2.1% to 6.4% and the geographical division of the two lineages coincided with a mountain chain consisting of the Helan and Yin Mountains, suggesting a historical vicariant pattern. On the other hand, the nuclear microsatellite DNA revealed a significant but small population genetic structure (FST = 0.017; FST = 0.372). The pairwise FST among the nine populations examined with seven microsatellite DNA loci ranged from 0.0062 to 0.0266; the assignment test failed to detect any naturally occurring population clusters. Furthermore, the populations demonstrated a weak isolation by distance and a northeast to southwest clinal variation, rather than a vicariant pattern. A historical vicariant event followed by male‐mediated gene flow appears to be the best explanation for the data. Approximately 2–5 Ma, climatic change may have created an uninhabitable zone along the Helan‐Yin mountain chain and initiated the divergence between the two mitochondrial lineages. With further climatic changes, males were able to disperse across the mountain chain, causing sufficient gene flow that eventually erased the vicariant pattern and drastically reduced the population genetic structure, while females remained philopatric and maintained the mitochondrial DNA (mtDNA) divergence. Although polygyny mating system and female philopatry may partially contribute to the reduced movement of females, other hypotheses, such as female intrasexual aggression, should also be explored.  相似文献   

18.
Genetic variability within and among 10 geographically distinct populations of Greenfinches (Carduelis chloris) was assayed by directly sequencing a 637 BP part of the mtDNA control region from 194 individuals. Thirteen variable positions defined 18 haplotypes with a maximum sequence divergence of 0.8%. Haplotype (h = 0.28–0.77) and nucleotide (π = 0.058–0.17%) diversities within populations were low, and decreased with increasing latitude (h:rs = –0.81; π: rs = –0.89). The distribution of pairwise nucleotide differences fit better with expectations of a “sudden expansion” than of an “equilibrium” model, and the estimates of long term effective population sizes were considerably lower than current census estimates, especially in northern European samples. Selection is an unlikely cause of observed patterns because the distribution of variability conformed to expectations of neutral infinite alleles model and haplotype diversity across populations was positively correlated with heterozygosity (HE) in nuclear genes (rs = 0.74, P < 0.05). Hence, a recent bottleneck, followed by serial bottlenecking during the process of post-Pleistocene recolonization of northern Europe, together with recent population expansion provide a plausible explanation for the low genetic diversity in the north. Genetic distances among populations showed a clear pattern of isolation-by-distance, and 14% of the haplotypic variation was among populations, the rest being distributed among individuals within populations. In accordance with allozyme and morphological data, a hierarchical analysis of nucleotide diversity recognized southern European populations as distinct from northern European ones. However, the magnitude of divergence in mtDNA, allozymes and morphology were highly dissimilar (morphology > mtDNA > allozymes).  相似文献   

19.
Abstract A sexual reproduction is thought to doom organisms to extinction due to mutation accumulation and parasite exploitation. Theoretical models suggest that parthenogens may escape the negative effects of conspecific and biological enemiecs through escape in space. Through intensive sequencing of a mitochondrial DNA (mtDNA) and a nuclear intron locus in sexual and pathenogenetic freshwater snails (Campelom), I examine three questionss: (1) Are sexual mtDNA lineage more restricted geographically than parthenogenetic mtDNA lineages? (2) Are independent pathenogenetic lineages shorter lived than sexual lineages? (3) Do pathenogens have higher intraindividual nuclear sequence diversity and form well‐differentiated monophyletic groups as expected under the Meselson effect? Geographic ranges of parthenogenetic lineages are significantly larger than geographic ranges of sexual lineages. Based on coalescence times under different deographic assumptions, asexual lineages are short lived, but there is variation in clonal ages. Although alternative explanations exit, these results suggest that asexual lineages may persist in the short term through dispersal, and that various constraints may cause geographic restriction of sexual lineagess. Both allotriploid and diploid Campleloma parthenogens have significantly higher allelic divergence within individuals, but show limited nuclear sequence divergence from sexual ancestors. In contrast to previous allozyme evidence for nonhybrid origins of diploid Campeloma parthenogens, cryptic hybridization may account for elevated heterozygosity.  相似文献   

20.
The population genetic structure of the Anopheles gambiae in western Kenya was studied using length variation at five microsatellite loci and sequence variation in a 648-nt mtDNA fragment. Mosquitoes were collected from houses in villages spanning up to 50 km distance, The following questions were answered, (i) Are mosquitoes in a house more related genetically to each other than mosquitoes between houses? (ii) What degree of genetic differentiation occurs on these geographical scales? (iii) How consistent are the results obtained with both types of genetic markers? At the house level, no differentiation was detected by FST and RST, and the band sharing index test revealed no significant associations of alleles across loci. Likewise, indices of kinship based on mtDNA haplotypes in houses were even lower than in the pooled sample. Therefore, the hypothesis that mosquitoes in a house are more related genetically was rejected. At increasing geographical scales, microsatellite allele distributions were similar among all population samples and no subdivision of the gene pool was detected by FST or RST. Likewise, estimates of haplotype divergence of mtDNA between populations were not higher than the within population estimates, and mtDNA-based FST values were not significantly different from zero. That sequence variation in mtDNA provided matching results with microsatellite loci (while high genetic variation was observed in all loci), suggested that this pattern represents the whole genome. The minimum area associated with a deme of A. gambiae in western Kenya is therefore larger than 50 km in diameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号