首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of pentobarbital pellet implantation on [3H]baclofen binding in the frontal cortex of cerebellum of rat brains were examined. In the frontal cortex, pentobarbital tolerance caused an increase in the number of binding sites (Bmax) without changing their affinity (KD). Twenty-four hours after withdrawal of the pentobarbital pellets, there was a significant increase in the KD and Bmax values. Cerebellar binding, in contrast, was not significantly changed in any of the treatment groups. Addition of 1 mM of pentobarbital directly to binding assays using cortical membrane produced as increase in KD without a change in Bmax.In vitro, pentobarbital affected neither the KD nor the Bmax in the cerebellar [3H]baclofen binding. These results suggest that like the GABAA receptor, [3H]baclofen binding to the GABAB receptor in rat frontal cortex was affected by pentobarbital tolerance and dependence, and that there are regional differences in the properties of the GABAB receptor.  相似文献   

2.
Gamma-amino butyric acid (GABA), in addition to being a metabolic intermediate and the main inhibitory neurotransmitter in the synaptic cleft, is postulated as a neurohormone, a paracrine signaling molecule, and a trophic factor. It acts through pre- and post-synaptic receptors, named GABAA and GABAC (ionotropic receptors) and GABAB (metabotropic receptor). Here we reviewed the participation of GABAB receptors in the regulation of the hypothalamic-pituitary-gonadal axis, using physiological, biochemical, and pharmacological approaches in rats, as well as in GABAB1 knock-out mice, that lack functional GABAB receptors. Our general conclusion indicates that GABAB receptors participate in the regulation of pituitary hormone secretion acting both in the central nervous system and directly on the gland. PRL and gonadotropin axes are affected by GABAB receptor activation, as demonstrated in the rat and also in the GABAB1 knock-out mouse. In addition, hypothalamic and pituitary GABAB receptor expression is modulated by steroid hormones. GABA participation in the brain control of pituitary secretion through GABAB receptors depends on physiological conditions, being age and sex critical factors. These results indicate that patients receiving GABAB agonists/antagonists should be monitored for possible endocrine side effects.  相似文献   

3.
γ-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the mammalian central nervous system and exerts its actions via ionotropic (GABAA and GABAC) and metabotropic (GABAB) receptors. The GABAB receptor is a dimer composed of R1 and R2 components. In addition to their location on neurons, GABA and functional GABAB receptors also have been detected in some peripheral tissues. In the present study, we combined immunohistochemistry, immunoblot and tension recording to determine if the human fallopian tube express glutamic acid decarboxylase (GAD65/67), two isoforms for synthesis of GABA and functional GABAB receptors. Immunoblots showed that the human fallopian tube tissue contained GABABR1 protein which was localized in the epithelial cells and smooth muscle cells by immunohistochemistry. In addition, epithelial cells also expressed GAD65/67. Tension recording found that both GABA and baclofen, a GABAB receptor agonist increased the spontaneous activity of human fallopian tube. The expressions of GABABR and GAD65/67 were significantly upregulated in the ectopic pregnancy group than in the intrauterine pregnancy group. We conclude that the human fallopian tube is capable of synthesizing GABA and expresses functionally active GABAB receptors. An upregulation of GABA synthesis and corresponding GABAB receptors may involve in ectopic pregnancy.  相似文献   

4.
Gabapentin, a novel anticonvulsant and analgesic, is a -aminobutyric acid (GABA) analogue but was shown initially to have little affinity at GABAA or GABAB receptors. It was recently reported to be a selective agonist at GABAB receptors containing GABAB1a-GABAB2 heterodimers, although several subsequent studies disproved that conclusion. In the present study, we examined whether gabapentin is an agonist at native GABAB receptors using a rat model of postoperative pain in vivo and periaqueductal gray (PAG) slices in vitro; PAG contains GABAB receptors, and their activation results in antinociception. An intrathecal injection of gabapentin or baclofen, a GABAB receptor agonist, induced antiallodynia in this postoperative pain model. Intrathecal injection of GABAB receptor antagonists CGP 35348 and CGP 55845 antagonized baclofen- but not gabapentin-induced antiallodynia. In ventrolateral PAG neurons, baclofen activated G-protein-coupled inwardly rectifying K+ (GIRK) channels in a manner blocked by CGP 35348 or CGP 55845. However, gabapentin displayed no effect on the membrane current. In neurons unaffected by gabapentin, baclofen activated GIRK channels through GABAB receptors. It is concluded that gabapentin is not an agonist at GABAB receptors that are functional in baclofeninduced antiallodynia in the postoperative pain model in vivo and in GIRK channel activation in ventrolateral PAG neurons in vitro.  相似文献   

5.
Regulators of G-protein signaling (RGS) proteins regulate certain G-protein-coupled receptor (GPCR)-mediated signaling pathways. The GABAB receptor (GABABR) is a GPCR that plays a role in the stress response. Previous studies indicate that acute immobilization stress (AIS) decreases RGS4 in the prefrontal cortex (PFC) and hypothalamus (HY) and suggest the possibility of a signal complex composed of RGS4 and GABABR. Therefore, in the present study, we tested whether RGS4 associates with GABABR in these brain regions. We found the co-localization of RGS4 and GABABR subtypes in the PFC and HY using double immunohistochemistry and confirmed a direct association between GABAB2R and RGS4 proteins using co-immunoprecipitation. Furthermore, we found that AIS decreased the amount of RGS4 bound to GABAB2R and the number of double-positive cells. These results indicate that GABABR forms a signal complex with RGS4 and suggests that RGS4 is a regulator of GABABR. [BMB Reports 2014; 47(6): 324-329]  相似文献   

6.
The age-related development of GABABreceptors and their coupling to adenylate cyclase were studied in the brains of spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats. Compared with WKY rats, the specific [3H]GABA binding to GABABreceptors showed a significant decrease not only in the posterior hypothalamus, midbrain, hippocampus and striatum of eleven-week-old SHR, which maintain a hypertensive state, but also in the posterior hypothalamus of four-week-old normotensive SHR. Similarly, the GABABreceptor agonists (baclofen and DN-2327)-induced suppression of adenylate cyclase activity showed a decrease in the posterior hypothalamus of four-week-old SHR as well as in the posterior hypothalamus and striatum of eleven-week-old SHR. These results suggest that the functions of the GABABreceptor in the brain of SHR may be decreased independently from the occurrence of blood pressure elevation and that such changes may even be involved in the pathogenesis of SHR.  相似文献   

7.
The GABAB receptor in brain is one of the GABA receptor subtypes, and has been found to be negatively coupled to adenylate cyclase and phosphatidylinositide turnover. This receptor easily solubilizes from cerebral synaptic membrane preparations by 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS) in the presence of asolectin. GABAB receptor solubilized from bovine cerebral cortex was purified using baclofen-coupled affinity beads (baclofen-coupled Toyopearl beads). Using these procedures, almost pure GABAB receptor (80 KDa protein) was obtained in the affinity eluate. A monoclonal antibody has been also raised against the purified GABAB receptor. The antibody recognized a protein of about 80 KDa in bovine brain synaptic membrane. Immunoabsorbent agarose beads conjugated with the antibody were able to remove more than 90% of the baclofen suppressive GABA binding activity in the solubilized synaptic membrane, and this system was found to be useful for the immunoaffinity column chromatographic separation of GABAB receptor. Preliminary studies of immunohistochemical visualization of GABAB receptor in the rat cerebellum suggested that this receptor may be exclusively localized at the presynaptic site of GABAergic neurons.Special issue dedicated to Dr. Claude Baxter.  相似文献   

8.
GABAB receptors are the G-protein coupled receptors (GPCRs) for GABA, the main inhibitory neurotransmitter in the central nervous system. Native GABAB receptors comprise principle and auxiliary subunits that regulate receptor properties in distinct ways. The principle subunits GABAB1a, GABAB1b, and GABAB2 form fully functional heteromeric GABAB(1a,2) and GABAB(1b,2) receptors. Principal subunits regulate forward trafficking of the receptors from the endoplasmic reticulum to the plasma membrane and control receptor distribution to axons and dendrites. The auxiliary subunits KCTD8, -12, -12b, and -16 are cytosolic proteins that influence agonist potency and G-protein signaling of GABAB(1a,2) and GABAB(1b,2) receptors. Here, we used transfected cells to study assembly, surface trafficking, and internalization of GABAB receptors in the presence of the KCTD12 subunit. Using bimolecular fluorescence complementation and metabolic labeling, we show that GABAB receptors associate with KCTD12 while they reside in the endoplasmic reticulum. Glycosylation experiments support that association with KCTD12 does not influence maturation of the receptor complex. Immunoprecipitation and bioluminescence resonance energy transfer experiments demonstrate that KCTD12 remains associated with the receptor during receptor activity and receptor internalization from the cell surface. We further show that KCTD12 reduces constitutive receptor internalization and thereby increases the magnitude of receptor signaling at the cell surface. Accordingly, knock-out or knockdown of KCTD12 in cultured hippocampal neurons reduces the magnitude of the GABAB receptor-mediated K+ current response. In summary, our experiments support that the up-regulation of functional GABAB receptors at the neuronal plasma membrane is an additional physiological role of the auxiliary subunit KCTD12.  相似文献   

9.
ABSTRACT

In the search for yet unknown subtypes of GABAB receptors, the subunit architecture of GABAB receptors in the retina was analyzed using selective antisera. Immunopurification of the splice variants GABAB1a and GABAB1b demonstrated that both were associated with GABAB2. Quantitative immunoprecipitation experiments indicated that practical the entire GABAB receptor population in the retina consists of the receptor subtypes GABAB1a/GABAB2 and GABAB1b/GABAB2, although low levels of GABAB1c/GABAB2 cannot be excluded. The data rule out the existence of GABAB receptors containing the splice variants GABAB1d and GABAB1e. Moreover, no evidence for homomeric GABAB1 receptors was found. Among the splice variants, GABAB1a is by far the predominant one in neonatal and adult retina, whereas GABAB1b is expressed only late in postnatal development and in the adult retina. Since GABAB1a is expressed at high levels before functional synapses are formed, this specific receptor subtype might be involved in the maturation of the retina. Finally, subcellular fractionation demonstrated that GABAB1a, but not GABAB1b, is present in postsynaptic densities, suggesting a differential pre- and postsynaptic localisation of both splice variants.  相似文献   

10.
A radioiodinated probe, [125I]-CGP 71872, containing an azido group that can be photoactivated, was synthesized and used to characterize GABAB receptors. Photoaffinity labeling experiments using crude membranes prepared from rat brain revealed two predominant ligand binding species at 130 and 100 kDa believed to represent the long (GABABR1a) and short (GABABR1b) forms of the receptor. Indeed, these ligand binding proteins were immunoprecipitated using a GABAB receptor-specific antibody confirming the receptor specificity of the photoaffinity probe. Most convincingly, [125I]-CGP 71872 binding was competitively inhibited in a dose-dependent manner by cold CGP 71872, GABA, saclofen, (−)-baclofen, (+)-baclofen and ( )-glutamic acid with a rank order and stereospecificity characteristic of the GABAB receptor. Photoaffinity labeling experiments revealed that the recombinant GABABR2 receptor does not bind [125I]-CGP 71872, providing surprising and direct evidence that CGP 71872 is a GABABR1 selective antagonist. Photoaffinity labeling experiments using rat tissues showed that both GABABR1a and GABABR1b are co-expressed in the brain, spinal cord, stomach and testis, but only the short GABABR1b receptor form was detected in kidney and liver whereas the long GABABR1a form was selectively expressed in the adrenal gland, pituitary, spleen and prostate. We report herein the synthesis and biochemical characterization of the nanomolar affinity [125I]-CGP 71872 and CGP 71872 GABABR1 ligands, and differential tissue expression of the long GABABR1a and short GABABR1b receptor forms in rat and dog.  相似文献   

11.
The mammalian dorsal cochlear nucleus (DCN) is considered to contribute to the localization of the sound sources. Fusiform cells (FCs), principal projection neurons in the DCN, integrate two excitatory inputs from auditory nerve fibers (ANFs) and parallel fibers (PFs). Although an immunohistochemical study suggested presence of GABAB receptors at excitatory presynaptic terminals in the DCN, it has not been elucidated how GABAB receptors modulate the synaptic transmission to FCs. Here, we examined effects of baclofen on the transmission in vitro. Baclofen reduced both PF-EPSC and ANF-EPSC by reducing transmitter releases, and it enhanced the facilitation in PF-FC synapses and prevented the depression in ANF-FC synapses. The enhancement and prevention were prominent during high-frequency (50 Hz) synaptic input, suggesting the activation of presynaptic GABAB receptors may optimize both PF-FC and ANF-FC synapses for high-frequency transmission. Postsynaptic GABAB receptors activated GIRK current and would further modulate the activity of FCs.  相似文献   

12.
In the central nervous system (CNS), the inhibitory transmitter GABA interacts with three subtypes of GABA receptors, type A, type B, and type C. Historically, GABA receptors have been classified as either the inotropic GABAA receptors or the metabotropic GABAB receptors. Over the past 10 yr, studies have shown that a third class, called the GABAC receptor, also exists. GABAC receptors are found primarily in the vertebrate retina and to some extent in other parts of the CNS. Although GABAA and GABAC receptors both gate chloride channels, they are pharmacologically, molecularly, and functionally distinct. The ρ subunit of the GABAC receptor, which has about 35% amino acid homology to GABAA receptor subunits, was cloned from the retina and, when expressed inXenopus oocytes, has properties similar to retinal GABAC receptors. There are probably distinct roles for GABAC receptors in the retina, because they are found on only a subset of neurons, whereas GABAA receptors are ubiquitous. This article reviews recent electrophysiological and molecular studies that have characterized the unique properties of GABAC receptors and describes the roles that these receptors may play in visual information processing in the retina.  相似文献   

13.
《Life sciences》1994,55(12):PL239-PL243
We investigated the effects of muscimol, the GABAA receptor agonist, and baclofen, the GABAB receptor agonist, injected into the third cerebral ventricle on plasma epinephrine (E) and norepinephrine (NE) levels in anesthetized rats. Baclofen (0.4–5 nmol) increased plasma NE levels in a dose dependent manner but did not affect plasma E levels. Muscimol (2.5 nmol) affected neither plasma E nor NE levels. Concomitant injection of muscimol (2.5 nmol) with baclofen (5 nmol) attenuated the baclofen (5 nmol)-induced NE secretion. These findings suggest that activation of GABAB receptors in the central nervous system (CNS) stimulates the sympathetic nervous system but not the adrenal medullary response. In contrast, activation of GABAA receptors in the CNS affects neither the sympathetic nervous system nor the adrenal medullary response, but inhibits the sympathetic neural activity induced by activation of GABAB receptors in anesthetized rats.  相似文献   

14.
Metabotropic GABAB receptors are crucial for controlling the excitability of neurons by mediating slow inhibition in the CNS. The strength of receptor signaling depends on the number of cell surface receptors, which is thought to be regulated by trafficking and degradation mechanisms. Although the mechanisms of GABAB receptor trafficking are studied to some extent, it is currently unclear whether receptor degradation actively controls the number of GABAB receptors available for signaling. Here we tested the hypothesis that proteasomal degradation contributes to the regulation of GABAB receptor expression levels. Blocking proteasomal activity in cultured cortical neurons considerably enhanced total and cell surface expression of GABAB receptors, indicating the constitutive degradation of the receptors by proteasomes. Proteasomal degradation required Lys48-linked polyubiquitination of lysines 767/771 in the C-terminal domain of the GABAB2 subunit. Inactivation of these ubiquitination sites increased receptor levels and GABAB receptor signaling in neurons. Proteasomal degradation was mediated by endoplasmic reticulum-associated degradation (ERAD) as shown by the accumulation of receptors in the endoplasmic reticulum upon inhibition of proteasomes, by the increase of receptor levels, as well as receptor signaling upon blocking ERAD function, and by the interaction of GABAB receptors with the essential ERAD components Hrd1 and p97. In conclusion, the data support a model in which the fraction of GABAB receptors available for plasma membrane trafficking is regulated by degradation via the ERAD machinery. Thus, modulation of ERAD activity by changes in physiological conditions may represent a mechanism to adjust receptor numbers and thereby signaling strength.  相似文献   

15.
Protein phosphorylation can be regulated by changes in kinase activity, phosphatase activity, or both. GABAB receptor R2 subunit (GABABR2) is phosphorylated at S783 by 5′-AMP-activated-protein kinase (AMPK), and this phosphorylation modulates GABAB receptor desensitization. Since the GABAB receptor is an integral membrane protein, solubilizing GABABR2 is difficult. To circumvent this problem and to identify specific phosphatases that dephosphorylate S783, we employed an in vitro assay based on dephosphorylation of proteins on PVDF membranes by purified phosphatases. Our method allowed us to demonstrate that S783 in GABABR2 is directly dephosphorylated by PP2A (but not by PP1, PP2B nor PP2C) in a dose-dependent and okadaic acid-sensitive manner. We also show that the level of phosphorylation of the catalytic subunit of AMPK at T172 is reduced by PP1, PP2A and PP2C. Our data indicate that PP2A dephosphorylates GABABR2(S783) less efficiently than AMPK(T172), and that additional phosphatases might be involved in S783 dephosphorylation.  相似文献   

16.
Regulation of cell surface expression of neurotransmitter receptors is crucial for determining synaptic strength and plasticity, but the underlying mechanisms are not well understood. We previously showed that proteasomal degradation of GABAB receptors via the endoplasmic reticulum (ER)-associated protein degradation (ERAD) machinery determines the number of cell surface GABAB receptors and thereby GABAB receptor-mediated neuronal inhibition. Here, we show that proteasomal degradation of GABAB receptors requires the interaction of the GABAB2 C terminus with the proteasomal AAA-ATPase Rpt6. A mutant of Rpt6 lacking ATPase activity prevented degradation of GABAB receptors but not the removal of Lys48-linked ubiquitin from GABAB2. Blocking ERAD activity diminished the interaction of Rtp6 with GABAB receptors resulting in increased total as well as cell surface expression of GABAB receptors. Modulating neuronal activity affected proteasomal activity and correspondingly the interaction level of Rpt6 with GABAB2. This resulted in altered cell surface expression of the receptors. Thus, neuronal activity-dependent proteasomal degradation of GABAB receptors by the ERAD machinery is a potent mechanism regulating the number of GABAB receptors available for signaling and is expected to contribute to homeostatic neuronal plasticity.  相似文献   

17.
Metabotropic GABAB receptors are abundantly expressed at glutamatergic synapses where they control excitability of the synapse. Here, we tested the hypothesis that glutamatergic neurotransmission may regulate GABAB receptors. We found that application of glutamate to cultured cortical neurons led to rapid down-regulation of GABAB receptors via lysosomal degradation. This effect was mimicked by selective activation of AMPA receptors and further accelerated by coactivation of group I metabotropic glutamate receptors. Inhibition of NMDA receptors, blockade of L-type Ca2+ channels, and removal of extracellular Ca2+ prevented glutamate-induced down-regulation of GABAB receptors, indicating that Ca2+ influx plays a critical role. We further established that glutamate-induced down-regulation depends on the internalization of GABAB receptors. Glutamate did not affect the rate of GABAB receptor endocytosis but led to reduced recycling of the receptors back to the plasma membrane. Blockade of lysosomal activity rescued receptor recycling, indicating that glutamate redirects GABAB receptors from the recycling to the degradation pathway. In conclusion, the data indicate that sustained activation of AMPA receptors down-regulates GABAB receptors by sorting endocytosed GABAB receptors preferentially to lysosomes for degradation on the expense of recycling. This mechanism may relieve glutamatergic synapses from GABAB receptor-mediated inhibition resulting in increased synaptic excitability.  相似文献   

18.
GABAB receptors modulate transmitter release and postsynaptic membrane potential at various types of central synapses. They function as heterodimers of two related seven-transmembrane domain receptor subunits. Trafficking, activation and signalling of GABAB receptors are regulated both by allosteric interactions between the subunits and by the binding of additional proteins. Recent studies have shed light on the roles of GABAB receptors in plasticity processes at excitatory synapses. This review summarizes our knowledge of the localization, structure and function of GABAB receptors in the central nervous system and their use as drug targets for neurological and psychiatric disorders.  相似文献   

19.
Cerebellar granule cells in culture express receptors for GABA belonging to the GABAA and GABAB classes. In order to characterize the ability of the insecticide lindane to interact with these receptors cells were grown in either plain culture media or media containing 150 M THIP as this is known to influence the properties of both GABAA and GABAB receptors. It was found that lindane regardless of the culture condition inhibited evoked (40 mM K+) release of neurotransmitter ([3H]D-aspartate as label for glutamate). In naive cells both GABAA and GABAB receptor active drugs prevented the inhibitory action of lindane but in THIP treated cultures none of the GABAA and GABAB receptor active drugs had any effect on the inhibitory action of lindane. This lack of effect was not due to inability of baclofen itself to inhibit transmitter release. It is concluded that lindane dependent on the state of the GABAA and GABAB receptors is able to indirectly interfere with both GABAA and GABAB receptors. In case of the latter receptors it was shown using [3H]baclofen to label the receptors that lindane could not displace the ligand confirming that lindane is likely to exert its action at a site different from the agonist binding site.  相似文献   

20.
Yan Z 《Molecular neurobiology》2002,26(2-3):203-216
Serotonergic neurotransmission in prefrontal cortex (PFC) plays a key role in regulating emotion and cognition under normal and pathological conditios. Increasing evidence suggests that serotonin receptors are involved in the complex regulation of GABAergic inhibitory transmission in PFC. Activation of postsynaptic 5-HT2 receptors in PFC pyramidal neurons inhibits GABAA-receptor currents via phosphorylation of GABAA receptor γ2 subunits by RACK1-anchored PKC. In contrast, activation of postsynaptic 5-HT4 receptors produces an activity-dependent bi-directional regulation of GABA-evoked currents in PFC pyramidal neurons, which is mediated through phosphorylation of GABAA-receptor β subunits by anchored PKA. On the presynaptic side, GABAergic inhibition is regulated by 5-HT through the activation of 5-HT2, 5-HT1, and 5-HT3 receptors on GABAergic intereneurons. These data provide a molecular and cellular mechanism for serotonin to dynamically regulate synaptic transmission and neuronal excitability in the PFC network, which may underlie the actions of many antidepressant and antipsychotic drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号