首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
IL-10, IL-13, IFN-γ, tumor necrosis factor (TNF)-α, LT-α, CD154, and TNF-related activation-induced cytokine (TRANCE) were expressed by 2-20% of rheumatoid arthritis (RA) synovial tissue CD4+ memory T cells, whereas CD4+ cells that produced IL-2, IL-4, or IL-6 were not detected. Expression of none of these molecules by individual CD4+ cells correlated with the exception of TRANCE and IL-10, and TRANCE and TNF-α. A correlation between expression of IL-10 and CCR7, LT-α and CCR6, IFN-γ and CCR5, and TRANCE and CXCR4 was also detected.  相似文献   

2.
Phosphoenolpyruvate carboxykinase (PEPCK) catalyzes guanosine or adenosine mononucleotide-dependent reversible conversion of oxaloacetate (OAA) and phosphoenolpyruvate (PEP). Mycobacterium (M) tuberculosis possesses a putative GTP-dependent PEPCK. To analyze the immune responses caused by PEPCK, the effects of PEPCK on the induction of CD4+ T cells and cytokines such as IFN-γ, IL-12 and TNF-α were evaluated in mice. It was found that the number of CD4+ T cells was increased in the PEPCK immunized mice although the change of the number of CD8+ T cells was not significant. The cytokines IFN-γ, IL-12 and TNF-α were increased significantly in the mice immunized with PEPCK than those of incomplete adjuvant. These characteristics were further demonstrated in the mice infected by pckA mutated BCG strain. The results indicate that PEPCK can effectively induce cell-mediated immune response by increasing activity of cytokines and PEPCK may be a promising new subunit vaccine candidate for tuberculosis.  相似文献   

3.
4.
IFN-γ and IFN-α productionin vitro by peripheral blood cells activated by phytohemagglutinin or the Newcastle disease virus was impaired in patients with a benign process, cervical intraepithelial neoplasm and cancerin situ associated with human papillomavirus infection. In case of IFN-γ and IFN-α production impairment following cervical papillomavirus infection, the increased severity of disease was accompanied by remarkable IFN system suppression. The lower synthesis of both IFN correlated with changes of some lymphocyte-subpopulation phenotype in peripheral blood. Lower CD4+ and CD3+ DR+ T cell concentrations were observed in papillomavirus-infected patients with impaired IFN production; impaired IFN-γ production was accompanied by lower CD4/CD8 index.  相似文献   

5.
CD4+ memory T cells (Tm) from rheumatoid arthritis peripheral blood (RAPB) or peripheral blood from normal donors produced IL-2, whereas fewer cells secreted IFN-γ or IL-4 after a brief stimulation. RAPB Tm contained significantly more IFN-γ producers than normal cells. Many rheumatoid arthritis (RA) synovial Tm produced IFN-γ alone (40%) and fewer cells produced IL-2 or IL-4. An in vitro model was employed to generate polarized T-helper (Th) effectors. Normal and RAPB Tm differentiated into both IFN-γ- and IL-4-producing effectors. RA synovial fluid (RASF) Tm demonstrated defective responsiveness, exhibiting diminished differentiation of IL-4 effectors, whereas RA synovial tissue (RAST) Tm exhibited defective generation of IFN-γ and IL-4 producers.  相似文献   

6.
We demonstrate immunomodulatory effects, especially those involving murine intestinal IgA secretion, in Peyer's patch cells following oral administration of Bifidobacterium immunomodulator (BIM) derived from sonicated B. pseudocatenulatum 7041. BALB/c mice were administered BIM orally for 7 consecutive days. The PP cells demonstrated upregulated secretion of total IgA including BIM-specific IgA following BIM administration. In observing the response of PP cells co-cultured with BIM, we found enhanced secretion of interferon-γ (IFN-γ) and interleukin (IL)-6 in the CD4+ T cells. In contrast, IL-12 secretion by Thy1.2 PP cells was enhanced, but secretion of IFN-γ, IL-5, and IL-6 was not significantly affected. Furthermore, the population of CD4+ CD45RBhigh T cells in PP increased following oral administration of BIM. These data suggest that CD4+ T cells were affected by BIM administration. Overall, the results show that oral administration of BIM induced CD4+ PP cells to change their expression of cell surface antigen and cytokine production.  相似文献   

7.
Lymphocyte activation gene-3 (LAG-3) is an MHC class II ligand structurally and genetically related to CD4. Although its expression is restricted to activated T cells and NK cells, the functions of LAG-3 remain to be elucidated. Here, we report on the expression and function of LAG-3 on proinflammatory bystander T cells that are activated in the absence of TCR engagement. LAG-3 is expressed at high levels on human T cells cocultured with autologous monocytes and IL-2 and synergizes with the low levels of CD40 ligand (CD40L) expressed on these cells to trigger TNF-alpha and IL-12 production by monocytes. Indeed, anti-LAG-3 mAb inhibits both IL-12 and IFN-gamma production in IL-2-stimulated cocultures of T cells and autologous monocytes. Soluble LAG-3Ig fusion protein markedly enhances IL-12 production by monocytes stimulated with infra-optimal concentrations of sCD40L, whereas it directly stimulates monocyte-derived dendritic cells (DC) for the production of TNF-alpha and IL-12, unravelling an enhanced responsiveness to MHC class II engagemenent in DC as compared with activated monocytes. Thus similar to CD40L, LAG-3 may be involved in the proinflammatory activity of cytokine-activated bystander T cells and most importantly it may directly activate DC.  相似文献   

8.
Environmental factors including drugs, mineral oils and heavy metals such as lead, gold and mercury are triggers of autoimmune diseases in animal models or even in occupationally exposed humans. After exposure to subtoxic levels of mercury (Hg), genetically susceptible strains of mice develop an autoimmune disease characterized by the production of highly specific anti-nucleolar autoantibodies, hyperglobulinemia and nephritis. However, mice can be tolerized to the disease by a single low dose administration of Hg. Lymphocyte Activation Gene-3 (LAG-3) is a CD4-related, MHC-class II binding molecule expressed on activated T cells and NK cells which maintains lymphocyte homeostatic balance via various inhibitory mechanisms. In our model, administration of anti-LAG-3 monoclonal antibody broke tolerance to Hg resulting in autoantibody production and an increase in serum IgE level. In addition, LAG-3-deficient B6.SJL mice not only had increased susceptibility to Hg-induced autoimmunity but were also unresponsive to tolerance induction. Conversely, adoptive transfer of wild-type CD4+ T cells was able to partially rescue LAG-3-deficient mice from the autoimmune disease. Further, in LAG-3-deficient mice, mercury elicited higher amounts of IL-6, IL-4 and IFN-γ, cytokines known to play a critical role in mercury-induced autoimmunity. Therefore, we conclude that LAG-3 exerts an important regulatory effect on autoimmunity elicited by a common environmental pollutant.  相似文献   

9.
The aim of this study was to compare the effects of TNF-α, IL-1β and IFN-γ on the activation of protein kinase B (PKB), p70S6k, mitogen-activated protein kinase (MAPK) and p90 rsk , and on IGF-I-stimulated glucose uptake and protein synthesis in mouse C2C12 myotubes. 100 nmol/l IGF-I stimulated glucose uptake in C2C12 myotubes by 198.1% and 10 ng/ml TNF-α abolished this effect. Glucose uptake in cells differentiated in the presence of 10 ng/ml IFN-γ increased by 167.2% but did not undergo significant further modification upon the addition of IGF-I. IGF-I increased the rate of protein synthesis by 249.8%. Neither TNF-α nor IFN-γ influenced basal protein synthesis, but both cytokines prevented the IGF-I effect. 10 ng/ml IL-1β did not modify either the basal or IGF-I-dependent glucose uptake and protein synthesis. With the exception of TNF-α causing an 18% decrease in the level of PKB protein, the cellular levels of PKB, p70S6k, p42MAPK, p44MAPK and p90 rsk were not affected by the cytokines. IGF-I caused the phosphorylation of PKB (an approximate 8-fold increase above the basal value after 40 min of IGF-I treatment), p42MAPK (a 2.81-fold increase after 50 min), and the activation of p70S6k and p90 rsk , manifesting as gel mobility retardation. In cells differentiated in the presence of TNF-α or IFN-γ, this IGF-I-mediated PKB and p70S6k phosphorylation was significantly diminished, and the increase in p42MAPK and p90 rsk phosphorylation was prevented. The basal p42MAPK phosphorylation in C2C12 cells treated with IFN-γ was high and comparable with the activation of this kinase by IGF-I. Pretreatment of myogenic cells with IL-1β did not modify the IGF-I-stimulated phosphorylation of PKB, p70S6k, p42MAPK and p90 rsk . In conclusion: i) TNF-α and IFN-γ, but not IL-1β, if present in the extracellular environment during C2C12 myoblast differentiation, prevent the stimulatory action of IGF-I on protein synthesis. ii) TNF-α- and IFN-γ-induced IGF-I resistance of protein synthesis could be associated with the decreased phosphorylation of PKB and p70S6k. iii) The activation of glucose uptake in C2C12 myogenic cells treated with IFN-γ is PKB independent. iv) The similar effects of TNF-α and IFN-γ on the signalling and action of IGF-I on protein synthesis in myogenic cells could suggest the involvement of both of these cytokines in protein loss in skeletal muscle.  相似文献   

10.
11.
The mechanism by which lipopolysaccharide (LPS) or phorbol 12-myristate 13-acetate (PMA) induces production of proinflammatory cytokines in murine macrophages, and the role of phosphatidylinositol 3-kinase (PI3-kinase) have not been well investigated. Activation of nuclear factor κB (NF-κB) is initiated by the phosphorylation of the inhibitory subunit, IκB, which targets IκB for degradation and leads to the release of active NF-κB. In this study we demonstrate that 2- (4-morpholinyl)-8-phenylchromone (LY294002), which inhibits PI3-kinase, specifically inhibited degradation of IκBα in RAW264.7 cells stimulated with interferon-γ (IFN-γ) plus LPS or IFN-γ plus PMA. To elucidate the importance of this activity in RAW264.7 cells, we examined tumor necrosis factor-α (TNF-α) and interleukin IL)-6 production in the activated cells. Pretreatment of the cells with LY294002 resulted in the inhibition of TNF-α and IL-6 production in RAW264.7 cells stimulated with IFN-γ plus LPS or IFN-γ plus PMA. Furthermore, LY294002 inhibited the production of nitric oxide NO) in RAW264.7 cells stimulated with IFN-γ plus LPS or IFN-γ plus PMA. LY294002 also inhibited inducible NO synthase (iNOS) mRNA expression in the activated RAW264.7 cells. In conclusion, the present results suggest that PI3-kinase is involved in the signal transduction pathway responsible for LPS- or PMA-mediated TNF-α and IL-6 production, and that LY294002 inhibits NO generation through blocking the degradation of IκBα in activated RAW264.7 cells. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
A cytokine which augments the expression of major histocompatibility complex (MHC) I antigens on K562 and gastric carcinoma tumour (HR) cells, has been isolated from the culture supernatant of Concanavalin-A (Con-A) activated human peripheral blood mononuclear cells. The factor, termed MHC augmenting factor (MHC- AF) has been partially purified by Sephadex G- 100 column chromatography, preparative isoelectric focusing and HPLC with ion- exchange as well as sizing columns. MHC-AF activity is associated with a 35 kDa molecule which has pI of 6.0. Interferon (IFN)-α, \, tumour necrosis factor (TNF), Interleukin (IL)-2, IL-4, IL-5 and IL-7 had no significant effect in MHC- AF bioassay, but IFN-γ had significant MHC-AF activity. Antibodies to IFN-α, IFN-\ and TNF-α did not block the activity of MHC-AF, but anti-IFN-y antibodies could partially neutralize the activity. However, unlike IFN-γ, MHC-AF activity was resistant to pH 2.0 treatment. Purified MHC-AF preparations did not have any activity in WISH cell/encephalo myocarditis virus (EMC) IFN bioassays. In addition, anti-IFN-y affinity column did not retain MHC-AF activity. These results indicate that a MHC-AF distinct from IFN-γ, is produced by activated human mononuclear cells.  相似文献   

13.
Jung HS  Koo JK  Lee SJ  Park CI  Shin JY  Kim MH  Tan HK  Lim SM  Kim DI 《Biotechnology letters》2006,28(24):2039-2048
The avidity for CD80Ig/CD86Ig and the in vitro immunosuppressive effect of recombinant human cytotoxic T lymphocyte-associated antigen 4-immunoglobulin, produced by transgenic rice cell suspension cultures (hCTLA4IgP) with CHO-derived recombinant hCTLA4Ig (hCTLA4IgM), were measured. Surface plasmon resonance (SPR) was used for kinetic binding analysis: hCTLA4IgP and hCTLA4IgM had higher avidity for CD80Ig/CD86Ig than for CD28Ig, and the avidity for CD80Ig/CD86Ig was similar. hCTLA4IgP and hCTLA4IgM had similar in vitro immunosuppressive activity against the expression of T cell-derived cytokines, such as IL-2, IL-4, and IFN-γ, but did not suppress the expression of macrophage-derived cytokines, including TNF-α and IL-1β, as well as NO. Thus the immunosuppressive mechanism of hCTLA4IgP is also T cell-specific and it could therefore be used as an immunosuppressive agent with an equivalent potency to that of hCTLA4IgM.  相似文献   

14.
Lymphocyte activation gene-3 (LAG-3; CD223) is a transmembrane protein that is structurally similar to CD4. Since LAG-3 has a much higher binding affinity to MHC class II than that of CD4, several approaches using soluble LAG-3 were used to modulate immune responses by activation or inhibition of MHC class II expressing antigen presenting cells. In this study, we constructed soluble pig LAG-3 containing a critical binding site (D1 and D2 region) to MHC class II molecules, combined with a constant region of an immunoglobulin (Ig) heavy chain. Flow cytometry analyses indicated that soluble pig LAG-3 binds to both pig and human MHC class II molecules. Moreover, soluble pig LAG-3 can inhibit human lymphocyte proliferation in the human–pig xenogeneic mixed lymphocyte reaction in a dose-dependent manner. These results indicate that soluble pig LAG-3 may be useful for controlling the xenogeneic T cell immune responses between the human and pig.  相似文献   

15.
Asthma is a multifactor inflammatory disorder, and its management requires understanding of its various pathogenesis and control mechanisms. Cytokines and other inflammatory mediators are important factors in asthma pathophysiology. In this study, we evaluated the role of cytokine polymorphisms in the asthma susceptibility, progress, control, and lung functions. IL-4-C590T polymorphism by PCR-RFLP method, IFN-γ T+874A, TNF-α-A308G, IL-6 G−174C and TGF-β T+869C variants by ARMS-PCR method and IgE serum level by ELISA technique were determined in 81 asthmatic patients and 124 normal subjects. Asthma diagnosis, treatment and control levels were considered using standard schemes and criteria. TNF-α−308GA genotype was more frequent in asthmatics (P = 0.025, OR 3.352), and polymorphisms between different asthma control levels (P > 0.05) were not different. IFN-γ+874AT genotype had a positive correlation with the familial history of asthma (P = 0.034, OR 2.688). IL-6−174C allele (P = 0.045), TNF-α−308GG genotype (P = 0.002) and TNF-α−308G allele (P = 0.004) showed reduced values, and TNF-α−308GA genotype (P = 0.002) increased FEF25-75 value in asthmatics. IFN-γ+874AA genotype caused a decrease in FVC factor (P = 0.045). This study showed that TNF-α−308GA is a risk factor for asthma, but cytokine gene variants do not affect asthma control and IgE serum levels. Variants producing lower levels of IL-6, TNF-α and IFN-γ are associated with reduced pulmonary capacities. To achieve an appropriate schema for asthma management, further studies with consideration of different aspects in a larger group of patients would be more elucidative.  相似文献   

16.
Feeding of a whole casein diet, which abolished the αs1-casein-specific proliferation and IFN-γ productivity of CD4+ T cells, did not affect the proliferative response of CD8+ T cells with regard to the antigen dose response, cell dose response, kinetics of the proliferation and epitope specificity, as well as IFN-γ production. To assess the characteristics of the CD8+ T cells, we established αs1-casein-specific CD8+ T cell clones from both casein-fed and control mice. The established clones produced different amount of IFN-γ and IL-10, and one clone derived from the casein-fed mice produced a remarkable amount of IL-10. The clones from casein-fed mice produced considerable amounts of TGF-β, while those from control mice produced only small amounts. The possible role of CD8+ T cells in oral tolerance is discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Collagen-induced arthritis (CIA) in mice is accompanied by splenomegaly due to the selective expansion of immature CD11b+ myeloblasts. Both disease manifestations are more pronounced in interferon-γ receptor knock-out (IFN-γR KO) mice. We have taken advantage of this difference to test the hypothesis that the expanding CD11b+ splenic cell population constitutes a source from which osteoclast precursors are recruited to the joint synovia. We found larger numbers of osteoclasts and more severe bone destruction in joints of IFN-γR KO mice than in joints of wild-type mice. Osteoclast-like multinucleated cells appeared in splenocyte cultures established in the presence of macrophage colony-stimulating factor (M-CSF) and stimulated with the osteoclast-differentiating factor receptor activator of NF-κB ligand (RANKL) or with tumour necrosis factor-α (TNF-α). Significantly larger numbers of such cells could be generated from splenocytes of IFN-γR KO mice than from those of wild-type mice. This was not accompanied, as might have been expected, by increased concentrations of the intracellular adaptor protein TRAF6, known to be involved in signalling of RANKL- and TNF-α-induced osteoclast formation. Splenocyte cultures of IFN-γR KO mice also produced more TNF-α and more RANKL than those of wild-type mice. Finally, splenocytes isolated from immunised IFN-γR KO mice contained comparatively low levels of pro-interleukin-1β (pro-IL-1β) and pro-caspase-1, indicating more extensive conversion of pro-IL-1β into secreted active IL-1β. These observations provide evidence that all conditions are fulfilled for the expanding CD11b+ splenocytes to act as a source of osteoclasts and to be indirectly responsible for bone destruction in CIA. They also provide a plausible explanation for the higher susceptibility of IFN-γR KO mice to CIA.  相似文献   

18.
Objective Chronic inflammation and cancer development are associated with dysregulated immune responses and the presence of regulatory T cells (Treg). To study the role of Treg in tumor cell escape from immune surveillance, an in vitro model simulating the tumor microenvironment and promoting the induction and expansion of IL-10+ Treg type 1 (Tr1) was established. Methods An in vitro co-culture system (IVA) included an irradiated head and neck squamous cell carcinoma cell line, immature dendritic cells (iDC), CD4+CD25T cells and cytokines, IL-2 (10 IU/ml), IL-10 (20 IU/ml), IL-15 (20 IU/ml) ± 1 nM rapamycin. Autologous iDC and CD4+CD25 T cells were obtained from the peripheral blood of 15 normal donors. Co-cultures were expanded for 10 days. Proliferating lymphocytes were phenotyped by multi-color flow cytometry. Their suppressor function was measured in CFSE inhibition assays ± neutralizing anti-IL-10 mAb and using transwell cultures. Culture supernatants were tested for IL-4, IL-10, TGF-β and IFN-γ in ELISA. Results In the IVA, low doses of IL-2, IL-10 and IL-15 promoted induction and expansion of CD3+CD4+CD25IL2Rβ+IL2Rγ+FoxP3+CTLA-4+IL-10+ cells with suppressor activity (mean suppression ± SD = 58 ± 12%). These suppressor cells produced IL-10 (mean ± SD = 535 ± 12 pg/ml) and TGF-β (mean ± SD = 512 ± 38 pg/ml), but no IL-4 or IFN-γ. Suppressor function of co-cultures correlated with the percent of expanding IL-10+ Tr1 cells (r 2 = 0.9; P < 0.001). The addition of rapamycin enriched Tr1 cells in all co-cultures. Neutralizing anti-IL-10 mAb abolished suppressive activity. Suppression was cell-contact independent. Conclusion The tumor microenvironment promotes generation of Tr1 cells which have the phenotype distinct from that of CD4+CD25highFoxP3+ nTreg and mediate IL-10 dependent immune suppression in a cell-contact independent manner. Tr1 cells may play a critical role in cancer progression.  相似文献   

19.
In this study, we report on the interferon-γ (IFN-γ) and interleukin-4 (IL-4) cytokine responses to phorbol myristate acetate (PMA)+ionomycin-stimulated CD3+ lymphocytes in asthmatic subjects when compared with normal donors. There was a significantly lower production of intracellular IFN-γ in asthmatic patients. No difference was found for IL-4 production between these two groups. After administration of a multivitamin-mineral supplement containing selenium, zinc, vitamin A, vitamin B6, vitamin C, and vitamin E for 6 mo, a significant increase in the percentage of CD3+/IL-4 positive cells (p<0.05) was found. The induction of endothelial cell adhesion molecule (CAM) expression in cultured human umbilical vein endothelial cells (HUVEC) and whole-blood mixture was studied using flow cytometry. The ICAM-1 and VCAM-1 expressions were higher in the patients than in control donors (p<0.05). There is a correlation between the increased percentage of CD3+/IFN-γ positive cells and reduced endothelial ICAM-1 and VCAM-1 expression after 6 mo of intervention period. No apparent effect of supplementation on CAM expression was found, suggesting that these changes do not arise from an antioxidant mechanism. This newly developed whole-blood technique for the assessment of CAM expression can be of use for monitoring therapy in inflammatory diseases.  相似文献   

20.
After severe burn injury, proinflammatory cytokine levels are elevated in serum and skeletal muscle, which in turn increases protein breakdown and decreases protein synthesis. In this study, C2C12 mouse skeletal muscle cell line myotubes were exposed to proinflammatory cytokines tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) as an in vitro cell-line model of catabolic response to burn injury and then treated with des-acyl ghrelin (DAG), a 28 amino acid polypeptide hormone thought to inhibit protein breakdown and increase protein synthesis, to assess its therapeutic potential. Nuclear magnetic resonance-based metabonomics was used to monitor metabolic activity of C2C12 myotubes under four treatment conditions: (1) control, (2) TNF-α/IFN-γ (TI), (3) DAG (DA), and (4) TNF-α/IFN-γ followed by DAG (TIDA) to assess the effect of DAG treatment on cellular metabolic response during basal or catabolic conditions. Twelve metabolites showed significant changes in concentrations following treatments in the hydrophilic cell extracts. Lactate (P < 10−4) and citrulline (P < 10−9) increased with TNF-α/IFN-γ treatment, indicating increased protein degradation, and returned to control levels in the TIDA group. Adenosine nucleotide levels had decreased trends in TI myotubes that returned to baseline levels after DAG treatment (P < 10−4). Guanidinoacetate and pantothenate, metabolites involved in protein synthesis and cell proliferation, had increased concentration trends following DAG treatment in both the DA and TIDA groups. Our metabonomics analysis provides further evidence that DAG counteracts the catabolic response caused by elevated muscle TNF-α/IFN-γ cytokine levels following severe burns and can play a potential therapeutic role in treatment of burn injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号