首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Barták  M.  Vráblíková  H.  Hájek  J. 《Photosynthetica》2003,41(4):497-504
Two lichen species collected in maritime Antarctica (King George Island) were exposed under laboratory conditions to excess irradiance to evaluate the response of photosystem 2 (PS2). The response was measured on fully hydrated lichen thalli at 5 °C by means of a modulated fluorometer using chlorophyll (Chl) fluorescence induction curve supplemented with analysis of quenching mechanisms. Chl fluorescence parameters [i.e. ratio of variable to maximum Chl fluorescence (FV/FM), quantum yield of PS2 photochemical reactions (2), quenching coefficients] were evaluated before and several times after exposition to high irradiance in order to characterise the extent of photoinhibition, fast and slow phase of recovery. Strong irradiance (2 000 mol m–2 s–1) caused high degree of photoinhibition, particularly higher in fruticose (Usnea antarctica) than in foliose (Umbilicaria decussata) lichen species. Fast phase of recovery from photoinhibition, corresponding to regulatory mechanisms of PS2, was more apparent in U. decussata and 2 than in U. antarctica and FV/FM and 2 within 40 min after photoinhibitory treatment. It was followed by a slow phase lasting several hours, corresponding to repair and re-synthesis processes. After photoinhibitory treatment, recovery of non-photochemical quenching (NPQ) was faster and more pronounced in U. decussata than in U. antarctica. Significant differences were found between the two species in the rate of recovery in fast-(qE) and slow-recovering (qT+I) component of NPQ.  相似文献   

2.
The function of photosystem II (PSII) during desiccation was investigated via analysis of Chl a fluorescence emission in thalli from Parmelia quercina (Willd.) Vainio, Parmelia acetabulum (Necker) Duby, Ramalina farinacea (L.) Ach., Pseudevernia furfuracea (L.) Zopf., and Evernia prunastri (L.) Ach. Water loss followed the same exponential pattern in all these species, the half time being dependent on species. Desiccation affected the fluorescence parameters. Dark-adapted maximum fluorescence (Fm), instantaneous fluorescence (Fo) and the ratio of variable (Fm–Fo) to Fm were dependent on water content and decreased in two distinct phases: a slow and apparently linear phase, followed by a more steep decline at low water content. Actual PSII photochemical yield (φPSII), non-photochemical quenching (NPQ), efficiency of photon capture (φexc), and photochemical quenching (qp) remained nearly constant until 30% relative water content (RWC), decreasing rapidly thereafter. In contrast, increased NPQ appeared to occur only at water content values lower than 20%. Treatment of thalli with dithiothreitol (DTT) effectively reduced NPQ during desiccation and increased susceptibility to photoinhibition caused by exposure to high light as measured by dark recovery of the FvFm ratio. HPLC analysis showed that the level of the de-epoxidized xanthophyll cycle pigments antheraxanthin (Anth) and zeaxanthin (Zea) increased during lichen desiccation. The results point towards the existence of a photoprotective mechanism with the involvement of Zea and Anth in non-radiative dissipation of the desiccation-induced excess of energy.  相似文献   

3.
低温胁迫对2个茶树品种叶片叶绿素荧光特性的影响   总被引:3,自引:0,他引:3  
以茶树〔Camellia sinensis ( Linn.) O. Ktze.〕品种‘黄金芽’(‘Huangjinya’)和‘迎霜’(‘Yingshuang’)为实验材料,研究了4℃低温胁迫1、2、4和6d对茶树叶片叶绿素荧光特性的影响。结果表明:4℃低温胁迫条件下2个茶树品种叶片的PSⅡ最大光化学效率( Fv/Fm )、PSⅡ潜在活性( Fv/F0)和表观光合电子传递速率( ETR)均显著低于各自的对照(25℃),且总体上随胁迫时间延长逐渐下降;‘黄金芽’叶片的光化学淬灭系数(qP)随低温胁迫时间延长持续下降且低于其对照,而‘迎霜’叶片的qP较其对照的变幅较小,且2个品种的qP总体上与各自的对照无显著差异;随低温胁迫时间延长,2个品种叶片的非光化学淬灭系数( NPQ)均先升高后降低,并在胁迫2 d时达到最高,且总体上高于各自的对照;而2个品种叶片的光合功能相对限制值( LPFD )均随低温胁迫时间延长而增大,且大多高于各自的对照。与各自的对照相比,低温胁迫条件下‘迎霜’叶片的各项叶绿素荧光参数的变幅总体上低于‘黄金芽’。研究结果显示:低温胁迫可直接损伤茶树叶片的PSⅡ反应中心,致使过剩的激发能大量积累于PSⅡ反应中心,最终导致茶树光合作用能力减弱。根据叶绿素荧光参数的比较结果,可以初步判定品种‘迎霜’的耐寒性优于品种‘黄金芽’。  相似文献   

4.
高温胁迫对新疆榛光合参数和叶绿素荧光特性的影响   总被引:2,自引:0,他引:2  
在5个温度梯度处理下,研究高温胁迫对4种新疆榛光合参数和叶绿素荧光特性的影响.结果表明:随着温度从25℃持续升高至45℃,新疆榛叶片的净光合速率、气孔导度、胞间CO2浓度、水分利用效率和光能利用效率逐渐降低,且在35~ 45℃之间降幅最大;光系统Ⅱ的实际光化学效率、电子传递速率和光化学猝灭系数随温度的升高缓慢上升,至35℃后急速下降;蒸腾耗水和热耗散随温度的升高而增大.4种新疆榛品种中,新榛3号的光合作用对高温的耐受力较高,属耐热性品种.  相似文献   

5.
Chlorophyll fluorescence measurements were used to evaluate the effect of temperature on photoinhibition inSpirulina platensis cultures grown in tubular reactors outdoors. Cultures grown at 35 °C during the day time showed a lower reduction in the Fv/Fm ratio as compared to cultures grown at 25 °C. It is demonstrated that the lower temperature photoinhibited cells can undergo a complete recovery once transferred to low light and higher temperature. This recovery does not take place when 100 µg ml-1 chloramphenicol is added to cells. The recovery is light dependent and cells incubated in the dark at low temperature do not show a recovery in the Fv/Fm ratio. The data presented strongly support the hypothesis that photoinhibition takes place in outdoorSpirulina cultures. At the same time it is demonstrated that fluorescence measurements can be used as a fast reliable indication for photoinhibition in outdoor algal cultures.Author for correspondencePublication No. 69 of the Microalgal Biotechnology Laboratory.  相似文献   

6.
盐胁迫对植物叶绿素荧光影响的研究进展   总被引:2,自引:0,他引:2  
方怡然  薛立 《生态科学》2019,38(3):225-234
盐胁迫是制约植物生长发育的主要非生物胁迫之一, 研究植物的耐盐机理对开发和有效利用盐碱地有重要的意义。叶绿素荧光动力技术作为研究植物光合生理状况及植物与逆境胁迫关系的理想方法, 可表明外界胁迫环境对植物光合器官的伤害程度。通过总结性阐述盐胁迫对植物叶绿素荧光的影响, 分别从盐分类型、植物类型、光照强度以及盐旱交互作用等方面分析了植物叶绿素荧光对盐胁迫的响应, 进而反映盐胁迫对植物光合能力的影响程度, 并提出增强植物抗盐性的途径, 包括施加外源物质、利用转基因技术、真菌的协同效应和培育耐盐品种。最后对叶绿素荧光动力技术在抗盐胁迫的运用前景进行了展望, 提出了当前研究需要解决的问题, 旨在为提高植物耐盐能力提供一定的理论依据。  相似文献   

7.
Photosynthesis and photoprotection in mangroves under field conditions   总被引:6,自引:2,他引:6  
Net CO2 exchange and in vivo chlorophyll fluorescence were studied in mangrove (Rhizophora stylosa) leaves at a field site in Western Australia, and leaf samples were collected for the analysis of enzymes and substrates potentially involved in anti-oxidant photoprotection. Photosynthesis saturated at 900 μmol quanta m?2 s?1 and at no more than 7.5 μmol CO2 m?2 s?1. However, fluorescence analysis indicated no chronic photoinhibition: Fv:Fm was 0.8 shortly after sunset, and quantum efficiencies of PSII were high up to 500 μmol quanta m?2 s?1. Electron flow through PSII was more than 3 times higher than electron consumption through Calvin cycle activity, however, even with photorespiration and temperature-dependent Rubisco specificities taken into account. Acknowledging the growing body of literature attributing a role to antioxidant systems in photoprotection, we also assayed the activities of superoxide dismutase (SOD) and several enzymes potentially involved in H2O2 metabolism. Their levels of maximal potential activity were compared with those in greenhouse-grown mangroves (R. mangle), and growth chamber-grown peas. Monodehydroascorbate reductase activities were similar in all species, and glutathione reductase was lower, and ascorbate peroxidase ~40% higher, in the mangroves. SOD activities in field-grown mangroves were more than 40 times those in peas. Our results support the hypothesis that O2 may be a significant sink for photochemically derived electrons under field conditions, and suggest an important role for O2? scavenging in photoprotection. However, when relative patterns are compared between species, imbalances between SOD and the other enzymes in the mangroves suggest that more components of the system (e.g. phenolics or peroxidases) are yet to be identified.  相似文献   

8.
Biometric and physiological analyses of salt stress responses were performed in two time-course experiments on giant reed (Arundo donax L). Experiment I evaluated biomass production in plants exposed to 128, 256, 512 mM NaCl for 84 days. For Experiment II, plants grown under 256 mM NaCl were further assessed for chlorophyll a fluorescence, ionic partitioning, and proline content at 14 and 49 days after treatment (DAT). Biomass allocation was affected with all the concentrations of NaCl used from 28 DAT onward. Proline biosynthesis in leaves was more stimulated than that in roots after salt stress. Photosynthetic efficiency of photosystem II (PSII) was not affected by salt stress up to 42 DAT, while 49 DAT plants exhibited a significant reduction of both potential (ΦPSII) and maximal (Fv/Fm) PSII quantum yield. A. donax resulted a moderately sensitive species in response to 256 and 512 mM NaCl, concentrations that are however higher than that commonly found in most marginal lands (such as 128 mM or lower), where the biomass yield is appreciable, especially in short-term cultivation (56 DAT here). Altogether, this study indicates that A. donax can be considered as a promising and valuable energy crop for exploiting the Mediterranean marginal land.  相似文献   

9.
The responses of antioxidative system and photosystem II photochemistry of rice (Oryza sativa L.) to paraquat induced oxidative stress were investigated in a chilling-tolerant cultivar Xiangnuo no. 1, and a chilling-susceptible cultivar, IR-50. Electrolyte leakage and malondialdehyde (MDA) content of Xiangnuo no. 1 were little affected by paraquat, but they increased in IR-50. After paraquat treatment, superoxide dismutase (SOD) activity remained high in Xiangnuo no. 1, while it declined in IR-50. Activities of catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) declined with oxidative stress in both cultivars, but Xiangnuo no. 1 had higher GR activity than IR-50. Under paraquat induced oxidative stress, ascorbic acid (AsA) and reduced glutathione (GSH) concentrations remained high in Xiangnuo no. 1, but decreased in IR-50. The results indicated that higher activities of SOD and GR and higher contents of AsA and GSH in Xiangnuo no. 1 under paraquat induced oxidative stress were associated with its tolerance to paraquat, while paraquat induced damage to IR-50 was related to decreased activities of SOD, APX and GR and contents of AsA and GSH. F v/F m, Φ PSII, and qP remained high in Xiangnuo no. 1, while they decreased greatly in IR-50 under paraquat induced oxidative stress.  相似文献   

10.
Abstract. The kinetics of in vivo chlorophyll fluorescence of photosystem II (PS II) was measured at room temperature and 77 K during frost hardening of seedlings of Scots pine (Pinus sylvestris L.), and after exposure of frost-hardened shoots to sub-freezing temperatures. A more pronounced decrease in variable fluorescence yield for the upper exposed than for the lower shaded surface of the needles suggested that some photoinhibition occurred during prolonged frost hardening at 50 μmol photons m?2 s?1 and 4°C. Reversible inhibition of photosynthesis after exposure to sub-freezing temperatures was initially manifested as an increase of steady-state energy-dependent fluorescence quenching (qE) and a reduction in the rate of O2 evolution. Further inhibition after treatment at still lower temperatures caused a progressive decline of steady-state photochemical quenching (qQ) and the rate of O2 evolution, whereas qE remained high. This implies an inactivation of enzymes in the photosynthetic carbon reduction cycle decreasing the consumption of ATP and NADPH, which is likely to cause an increase of membrane energization and a reduction of the primary electron acceptor (QA) of PS II. Alternatively, the changes in qQ and qE might be attributed to an inhibition of photophosphorylation. Severe, irreversible damage to photosynthesis resulted in a suppression of qE and of variable fluorescence yield, probably because the photochemical efficiency of PS II was impaired. Changes in the fast fluorescence kinetics at room temperature after severe freezing damage were interpreted as an inhibition of the electron flow from QA to the plastoquinone pool. It is suggested that irreversible freezing injury to needles of frost-hardened P. sylvestris causes damage to the QB,-protein.  相似文献   

11.
The photosynthesis-irradiance dependence of natural phytoplankton assemblages from surface waters of Vineyard Sound, Massachusetts, was investigated over a several month period during late winter —early spring, 1982, when water temperatures were ? 0.5 to 8.5°C. Maximal photosynthetic rates not only were consistently observed between 7–15% I0, but were substantially higher than previously reported rates for cold-water assemblages, averaging 10–20 μg C · μg Chl a?1 · h?1. At higher light intensities photo-inhibition was severe and developed within minutes to tens of minutes of the start of the experiment. Several lines of evidence, however, suggest that photoinhibition in situ may be much less that that measured in incubations of > 30 min duration; residence time of phytoplankton at surface light intensities is sufficiently short, and adaptation of photosynthetic capacity appears to have occurred to approximately the mean depth of the water column. These results further highlight the importance of establishing the time-dependent photosynthetic responses of phytoplankton and the relationship to the physical mixing regime in estimating primary productivity.  相似文献   

12.
The role of the xanthophyll cycle in regulating the energy flow to the PS II reaction centers and therefore in photoprotection was studied by measurements of light-induced absorbance changes, Chl fluorescence, and photosynthetic O2 evolution in sun and shade leaves of Hedera canariensis. The light-induced absorbance change at 510 nm (A510) was used for continuous monitoring of zeaxanthin formation by de-epoxidation of violaxanthin. Non-radiative energy dissipation (NRD) was estimated from non-photochemical fluorescence quenching (NPQ).High capacity for zeaxanthin formation in sun leaves was accompanied by large NRD in the pigment bed at high PFDs as indicated by a very strong NPQ both when all PS II centers are closed (F'm) and when all centers are open (F'o). Such Fo quenching, although present, was less pronounced in shade leaves which have a much smaller xanthophyll cycle pool.Dithiothreitol (DTT) provided through the cut petiole completely blocked zeaxanthin formation. DTT had no detectable effect on photosynthetic O2 evolution or the photochemical yield of PS II in the short term but fully inhibited the quenching of Fo and 75% of the quenching of Fm, indicating that NRD in the antenna was largely blocked. This inhibition of quenching was accompanied by an increased closure of the PS II reaction centers.In the presence of DTT a photoinhibitory treatment at a PFD of 200 mol m-2 s-1, followed by a 45 min recovery period at a low PFD, caused a 35% decrease in the photon yield of O2 evolution, compared to a decrease of less than 5% in the absence of DTT. The Fv/Fm ratio, measured in darkness showed a much greater decrease in the presence than in the absence of DTT. In the presence of DTT Fo rose by 15–20% whereas no change was detected in control leaves.The results support the conclusion that the xanthophyll cycle has a central role in regulating the energy flow to the PS II reaction centers and also provide direct evidence that zeaxanthin protects against photoinhibitory injury to the photosynthetic system.Abbreviations F, Fm, Fo, Fv Fluorescence yield at actual degree of PS II center closure, when all centers are closed, when all centers are open, variable fluorescence - NPQ non-photochemical fluorescence quenching - NRD non-radiative energy dissipation - PFD photon flux density - QA primary acceptor PS II  相似文献   

13.
14.
以切花菊品种‘神马’为试材,在偏低温弱光(16℃/12℃,PFD100μmol.m-2.s-1)和临界低温弱光(12℃/8℃,PFD60μmol.m-2.s-1)下分别胁迫11d,然后转入正常条件(22℃/18℃,PFD450μmol.m-2.s-1)恢复11d,研究不同低温弱光强度及恢复对菊花光合作用和叶绿素荧光参数的影响.结果表明:低温弱光导致菊花叶片的净光合速率(Pn)和气孔限制值(Ls)下降,而胞间CO2浓度(Ci)上升.偏低温弱光胁迫下菊花叶片暗适应下最大光化学效率(Fv/Fm)和初始荧光(Fo)无明显变化,但光适应下最大光化学效率(Fv′/Fm′)在处理前期略有下降,后期则有所回升;而临界低温弱光处理的Fo明显升高,Fv/Fm和Fv′/Fm′显著降低.PSⅡ光合电子传递量子效率(ΦPSⅡ)、光化学猝灭系数(qP)和表观光合电子传递速率(ETR)均随着低温弱光胁迫程度的增加和时间的延长而降低;偏低温弱光处理植株在解除胁迫后能迅速恢复到对照水平,而临界低温弱光处理植株回升速度较慢;同时,低温弱光胁迫下吸收光强用于分配光化学反应部分(Prate)的比例减少,而天线热耗散(Drate)和反应中心的能量耗散(Ex)比例上升,但天线热耗散为过剩光能的主要分配途径.  相似文献   

15.
A portable instrument for measuring chlorophyll fluorescence induction kinetics is described and examples of measurements are given. The instrument is centered around a statistically-mixed bifurcated optical fiber. One fiber branch guides the actinic light to the sample, whereas the other branch carries the emitted chlorophyll fluorescence to the photodetector. Scattered actinic light is cut out from the detector by a red interference filter. The instrument measures fast as well as slow fluorescence induction kinetics, but is particularly well designed for analyzing fast kinetics. The high time resolution and strong, variable actinic light mean that both Fo (non-variable fluorescence) and Fm (maximal fluorescence at the P-peak) are well defined. A built in microprocessor unit with attached memory stores the fluorescence induction curve and calculates key fluorescence parameters such as Fo, Fm, Fv (variable fluorescence equals Fm?Fo), Fv/Fm (the photochemical efficiency of photosystem II) and t1/2 (half rise time from Fo, to Fm). These values are digitally displayed after each recording and they (or the whole induction curve) can be stored in a memory and later retrieved. Because of a flexible setting of the instrument it can be used with high accuracy both for optically thick leaves and for diluted suspensions of algae or chloroplasts. A simple, light weight clamp cuvette for dark adaptation of leaves has been developed. It is equipped with a gate allowing the optical fiber to be inserted without daylight reaching the dark adapted portion of the leaf. The instrument has been developed for rapid monitoring of changes in activities and organization of the photosynthetic apparatus in vivo when plants are exposed to environmental stress both in the field and in the laboratory. Examples of measurements are given for differently treated leaves of Pinus sylvestris, Salix sp., Betula verrucosa, Zea mays, Epilobium angustifo-lium and for chloroplast thylakoids isolated from Spinacia oleracea.  相似文献   

16.
A chlorophyll fluorescence technique was applied to anin situ study on the effects of low temperature and high light stresses onSpirulina cultures grown outdoors in controlled tubular photobioreactors at high (1.1 g L–1) and low (0.44 g L–1) biomass concentrations. Diurnal changes in PSII photochemistry (F v/F m) after 15 min of darkness, or in the light (dF/F m), and non-photochemical (qN) quenching were measured using a portable, pulse-amplitude-modulated fluorometer. The depression of theF v/F m ratio ofSpirulina cultures grown outdoors at 25°C (i.e. 10°C below optimum for growth) and 0.44 g L–1, reached 30% at the middle of the day. At the same time of the day thedF/F m ratio showed a reduction of up to 52%. The depression of bothF v/F m anddF/F m was lower in the cultures grown at 1.1 g L–1. Photoinhibition reduced the daily productivity of the culture grown at 0.44 g L–1 and 25°C by 33% with respect to that grown at 35°C. Changes in the growth yields of the cultures grown under different temperatures and growth rates correlate well with analogous changes in photon yield (dF/F m). Simple measurements of photochemical yield (F v/F m) can be used to test the physiological status ofSpirulina cultures. The results indicate that the saturating pulse fluorescence technique, when usedin situ, is a powerful tool for assessment of the photosynthetic characteristics of outdoor cultures ofSpirulina.  相似文献   

17.
Abstract The leaves of olive are long lived and likely to experience both chilling and high temperature stress during their life. Changes in photosynthetic CO2 assimilation resulting from chilling and high temperature stress, in both dim and high light, are investigated. The quantum yield (φ) of photosynthesis at limiting light levels was reduced following chilling (at 5°C for 12 h), in dim light by approximately 10%, and in high light by 75%; the difference being attributed to photoinhibition. Similar reductions were observed in the light-saturated rate of CO2 uptake (Amax). Decrease in Amax correlated with a halving of the leaf internal CO2 concentration (ci), suggesting an increased limitation by stomata following photoinhibition. Leaves were apparently more susceptible to photoinhibitory damage if the whole plant, rather than the leaf alone, was chilled. On return to 26 °C, I he photosynthetic capacity recovered to pre-stress levels within a few hours if leaves had been chilled in high light for 8 h or less, but did not fully recover from longer periods of chilling when loss of chlorophyll occurred. Leaves which were recovering from chilling in high light showed far more damage on being chilled a second time in high light. Three hours in high light at 38 °C reduced φ by 80%, but φ recovered within 4h of return to 26 °C. Although leaves of Olive are apparently less susceptible to photoinhibitory damage during chilling stress than the short-lived leaves of chilling-sensitive annual? crops, the results nevertheless show that photoinhibition during temperature stress is potentially a major factor influencing the photosynthetic productivity of Olive in the field.  相似文献   

18.
The effects of different photooxidative stresses on the function of photosystem I were measured in vivo in Chlamydomonas reinhardtii. Pholooxidative stresses included strong light, light combined with chilling to 0 °C, and light combined with several concentrations of methyl viologen. Photosystem I function was measured in vivo using the absorbance change at 820 nm associated with P700 oxidation. Photosystem II function was measured in vivo using chlorophyll fluorescence. Strong light or light combined with chilling caused inhibition of photosystem II function earlier than inhibition of photosystem I function. When photosystem I was inhibited, however, it did not recover. Light combined with 5 mmol m?3 methyl viologen caused inhibition of photosystem I function earlier than inhibition of photosystem II. If the methyl viologen concentration was reduced to 1 mmol m?3, the damage to PSI was accelerated by addition of 90 mmol m?3 chloramphenicol. This effect of chloroamphenicol suggests a role for chloroplast-encoded proteins in protecting photosystem I against photooxidative damage caused by methyl viologen.  相似文献   

19.
We investigated the potential of salicylic acid (SA) in alleviating the adverse effects of heat stress on photosynthesis in wheat (Triticum aestivum L.) cv WH 711. Activity of ribulose 1,5-bisphosphate carboxylase (Rubisco), photosynthetic-nitrogen use efficiency (NUE), and net photosynthesis decreased in plants subjected to heat stress (40°C for 6 h), but proline metabolism increased. SA treatment (0.5 mM) alleviated heat stress by increasing proline production through the increase in γ-glutamyl kinase (GK) and decrease in proline oxidase (PROX) activity, resulting in promotion of osmotic potential and water potential necessary for maintaining photosynthetic activity. Together with this, SA treatment restricted the ethylene formation in heat-stressed plants to optimal range by inhibiting activity of 1-aminocyclopropane carboxylic acid (ACC) synthase (ACS). This resulted in improved proline metabolism, N assimilation and photosynthesis. The results suggest that SA interacts with proline metabolism and ethylene formation to alleviate the adverse effects of heat stress on photosynthesis in wheat.  相似文献   

20.
In the present study, photosynthetic parameters including gas exchanges, pigment contents, and chlorophyll fluorescence, were compared in two contrasting local Medicago truncatula lines TN6.18 and TN8.20, in response to salt added to the nutrient solution. Plants were cultivated under symbiotic nitrogen fixation (SNF) after inoculation with a reference strain Sinorhizobium meliloti 2011, a very tolerant strain to salinity (700 mM NaCl), and grown in a controlled glasshouse. On one month old plants (with active SNF), salt treatment (75 mM NaCl) was gradually applied. Photosynthesis, assimilating pigments and chlorophyll fluorescence were monitored throughout the experiment during both short and long terms, compared to control (non-saline) conditions. A genotypic variation in salt tolerance was found; TN6.18 was the more sensitive to salinity. The relative tolerance of TN8.20 was concomitant with the highest photochemical quenching coefficient (qP) affecting the maximum quantum yield of PSII (Y); the real quantum yield (?exc) was the most affected in the sensitive line. Moreover, stomatal and PSII reaction centers activities differed clearly between the studied lines. We found that the effect of salinity on photosynthesis of M. truncatula was related to PSII activity reduction rather than to stomatal conductance limitation. Photosynthesis was reduced by the inhibition of CO2 assimilation caused by PSII damage. This was clearly estimated by the Y, ?exc and especially by the quantum yield of electron transport of PSII (ΦPSII). Thus, on the basis of our results on the two local M. truncatula lines, we recommend the use of chlorophyll fluorescence as non-destructive screening method to discriminate susceptible and resistant legumes to salt stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号