首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Non-photochemical quenching (NPQ) of Chl fluorescence is a mechanism for dissipating excess photon energy and is dependent on the formation of a DeltapH across the thylakoid membranes. The role of cyclic electron flow around photosystem I (PSI) (CEF-PSI) in the formation of this DeltapH was elucidated by studying the relationships between O2-evolution rate [V(O2)], quantum yield of both PSII and PSI [Phi(PSII) and Phi(PSI)], and Chl fluorescence parameters measured simultaneously in intact leaves of tobacco plants in CO2-saturated air. Although increases in light intensity raised V(O2) and the relative electron fluxes through both PSII and PSI [Phi(PSII) x PFD and Phi(PSI) x PFD] only Phi(PSI) x PFD continued to increase after V(O2) and Phi(PSII) x PFD became light saturated. These results revealed the activity of an electron transport reaction in PSI not related to photosynthetic linear electron flow (LEF), namely CEF-PSI. NPQ of Chl fluorescence drastically increased after Phi(PSII) x PFD became light saturated and the values of NPQ correlated positively with the relative activity of CEF-PSI. At low temperatures, the light-saturation point of Phi(PSII) x PFD was lower than that of Phi(PSI) x PFD and NPQ was high. On the other hand, at high temperatures, the light-dependence curves of Phi(PSII) x PFD and Phi(PSI) x PFD corresponded completely and NPQ was not induced. These results indicate that limitation of LEF induced CEF-PSI, which, in turn, helped to dissipate excess photon energy by driving NPQ of Chl fluorescence.  相似文献   

2.
田间大豆叶片成长过程中的光合特性及光破坏防御机制   总被引:9,自引:0,他引:9  
田间大豆叶片在成长进程中光饱和光合速率持续提高,但气孔导度的增加明显滞后.尽管叶片在成长初期就具有较高的最大光化学效率,但是仍略低于发育成熟的叶片.随着叶片的成长,光下叶片光系统Ⅱ实际效率增加;非光化学猝灭下降.幼叶叶黄素总量与叶绿素之比较高,随着叶面积的增加该比值下降,在光下,幼叶的脱环氧化程度较高.因此认为大豆叶片成长初期就能够有效地进行光化学调节;在叶片生长过程中依赖叶黄素循环的热耗散机制迅速建立起来有效抵御强光的破坏.  相似文献   

3.
Plants respond to excess light by a photoprotective reduction of the light harvesting efficiency. The notion that the non-photochemical quenching of chlorophyll fluorescence can be reliably used as an indicator of the photoprotection is put to a test here. The technique of the repetitive flash fluorescence induction is employed to measure in parallel the non-photochemical quenching of the maximum fluorescence and the functional cross-section (sigma(PS II)) which is a product of the photosystem II optical cross-section a(PS II) and of its photochemical yield Phi(PS II) (sigma (PS II) = a(PS II) Phi(PS II)). The quenching is measured for both, the maximum fluorescence found in a single-turnover flash (F(M) (ST)) and in a multiple turnover light pulse (F(M) (MT)). The experiment with the diatom Phaeodactylum tricornutum confirmed that, in line with the prevalent model, the PS II functional cross-section sigma (PS II) is reduced in high light and restored in the dark with kinetics and amplitude that are closely matching the changes of the F(M) (ST) and F(M) (MT) quenching. In contrast, a poor correlation between the light-induced changes in the PS II functional cross-section sigma (PS II) and the quenching of the multiple-turnover F(M) (MT) fluorescence was found in the green alga Scenedesmus quadricauda. The non-photochemical quenching in Scenedesmus quadricauda was further investigated using series of single-turnover flashes given with different frequencies. Several mechanisms that modulate the fluorescence emission in parallel to the Q(A) redox state and to the membrane energization were resolved and classified in relation to the light harvesting capacity of Photosystem II.  相似文献   

4.
In the mosses Racomitrium lanuginosum, Anomodon viticulosus and Rhytidiadelphus loreus, after a few days air dry, F:(v)/F:(m) reached, within the first minute of remoistening in the dark, two-thirds or more of the value attained after 40 min. A fast initial phase of recovery was completed within 10-20 min after which further change was slow. Initial recovery of Phi(PSII) in the light was somewhat slower, but was generally substantially complete within a similar time. Remoistening with 0.3 mM cycloheximide (CHX) or 3 mM dithiothreitol (DTT) made little difference to this short-term (40 min) recovery of either F:(v)/F:(m) or Phi(PSII); 3 mM chloramphenicol (CMP) had little effect on recovery of F:(v)/F:(m), but resulted in substantial (though not total) depression of Phi(PSII) and (14)CO(2) uptake. Effects of the protein-synthesis inhibitors and DTT were much more clearly apparent in longer-term experiments (>20 h) but only in the light. In the dark, the three inhibitors had at most only slight effects over periods of 60-100 h. In the light, CMP-treated samples of all three species showed a progressive decline of dark-adapted F:(v)/F:(m), falling to zero within 1-5 d (possibly due to blocking of the turnover of the D1 protein of PSII) and accelerated by DTT. CHX-treated samples showed a similar but slower decline. In the shade-adapted and relatively desiccation-sensitive Rhytidiadelphus loreus, slow recovery of F:(v)/F:(m) continued in the dark even in the presence of CMP and CHX for much of the 142 h of the experiment. The results indicate that in desiccation-tolerant bryophytes recovery of photosynthesis after periods of a few days air dry requires only limited chloroplast protein synthesis and is substantially independent of protein synthesis in the cytoplasm.  相似文献   

5.
Using the expression of fluorescence originated from the PSII open reaction center in the light by Oxborough and Baker (1997), we obtained a formula that expresses relationships between the quantum efficiency of PSII photochemistry in the dark (Phi(m)= F(v)/F(m)) and in the light Phi'(m)=F'(v)/F'(m):Phi'(m)=Phi(m)+L(NP), where L(NP)(=F(0)/F'(m)) denotes the quantum yield of light induced non-photochemical losses (heat dissipation and fluorescence de-excitation) in PSII. Using L(NP) and other conventional fluorescence parameters, we conducted quenching analyses with leaves of broad bean plants (Vicia faba L.) grown at 700 (high light; HL) and 80 mumol photons m(-2) s(-1) (low light; LL). We also examined whether behavior of q(0) quenching (q(0)=1-F'(0)/F(0)) is related to the reaction center quenching. When the actinic light (AL) was strong, Stern-Volmer quenching [NPQ=(F(m)-F'(m))/F'(m)] and L(NP) increased rapidly and then decreased slowly in HL leaves, while, in LL leaves, they increased slowly. It is probable that rapid formation of a large proton gradient was responsible for sharp rises in both parameters in HL leaves. The steady-state 'excess' parameter [Phi(Ex)= (1 - qP) Phi(m)/(Phi(m)+ L(NP))], fraction of energy migrating to closed PSII centers, increased with the photon flux density of AL in LL leaves. In contrast, in HL leaves, Phi(Ex) did not increase markedly. The examination of the relationship between Phi(Ex) and L(NP) obtained at various AL revealed that in LL leaves the increase in (1 - qP) with the increase in AL prevailed, while, in HL leaves, the increase in L(NP) suppressed the increase in (1 - qP). Using the difference between L(NP) and L(D) (Phi(ND)= L(NP)- L(D), where L(D)= F(0)/F(m)), q(0) and qN (=1-F'(v)/F(v)) were calculated without using measured F'(0). The relationships between q(0) and qN thus obtained for various AL levels were almost identical for both HL and LL leaves, implying no difference in the fluorescence origin between the HL and LL leaves. Usefulness of these equations expressing non-photochemical loss is discussed.  相似文献   

6.
Barták  M.  Hájek  J.  Gloser  J. 《Photosynthetica》2000,38(4):531-537
Spatial heterogeneity of chlorophyll (Chl) fluorescence over thalli of three foliose lichen species was studied using Chl fluorescence imaging (CFI) and slow Chl fluorescence kinetics supplemented with quenching analysis. CFI values indicated species-specific differences in location of the most physiologically active zones within fully hydrated thalli: marginal thallus parts (Hypogymnia physodes), central part and close-to-umbilicus spots (Lasallia pustulata), and irregulary-distributed zones within thallus (Umbilicaria hirsuta). During gradual desiccation of lichen thalli, decrease in Chl fluorescence parameters (FO - minimum Chl fluorescence at point O, FP - maximum Chl fluorescence at P point, 2 - effective quantum yield of photochemical energy conversion in photosystem 2) was observed. Under severe desiccation (>85 % of water saturation deficit), substantial thalli parts lost their apparent physiological activity and the resting parts exhibited only a small Chl fluorescence. Distribution of these active patches was identical with the most active areas found under full hydration. Thus spatial heterogeneity of Chl fluorescence in foliose lichens may reflect location of growth zones (pseudomeristems) within thalli and adjacent newly produced biomass. When exposed to high irradiance, fully-hydrated thalli of L. pustulata and U. hirsuta showed either an increase or no change in FO, and a decrease in FP. Distribution of Chl fluorescence after the high irradiance treatment, however, remained the same as before the treatment. After 60 min of recovery in the dark, FO and FP did not recover to initial values, which may indicate that the lichen used underwent a photoinhibition. The CFI method is an effective tool in assessing spatial heterogeneity of physiological activity over lichen thalli exposed to a variety of environmental factors. It may be also used to select a representative area at a lichen thallus before application of single-spot fluorometric techniques in lichens.  相似文献   

7.
Light modulation of the ability of three artificial quinones, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), 2,6-dichloro-p-benzoquinone (DCBQ), and tetramethyl-p-benzoquinone (duroquinone), to quench chlorophyll (Chl) fluorescence photochemically or non-photochemically was studied to simulate the functions of endogenous plastoquinones during the thermal phase of fast Chl fluorescence induction kinetics. DBMIB was found to suppress by severalfold the basal level of Chl fluorescence (F(o)) and to markedly retard the light-induced rise of variable fluorescence (F(v)). After irradiation with actinic light, Chl fluorescence rapidly dropped down to the level corresponding to F(o) level in untreated thylakoids and then slowly declined to the initial level. DBMIB was found to be an efficient photochemical quencher of energy in Photosystem II (PSII) in the dark, but not after prolonged irradiation. Those events were owing to DBMIB reduction under light and its oxidation in the dark. At high concentrations, DCBQ exhibited quenching behaviours similar to those of DBMIB. In contrast, duroquinone demonstrated the ability to quench F(v) at low concentration, while F(o) was declined only at high concentrations of this artificial quinone. Unlike for DBMIB and DCBQ, quenched F(o) level was attained rapidly after actinic light had been turned off in the presence of high duroquinone concentrations. That finding evidenced that the capacity of duroquinone to non-photochemically quench excitation energy in PSII was maintained during irradiation, which is likely owing to the rapid electron transfer from duroquinol to Photosystem I (PSI). It was suggested that DBMIB and DCBQ at high concentration, on the one hand, and duroquinone, on the other hand, mimic the properties of plastoquinones as photochemical and non-photochemical quenchers of energy in PSII under different conditions. The first model corresponds to the conditions under which the plastoquinone pool can be largely reduced (weak electron release from PSII to PSI compared to PSII-driven electron flow from water under strong light and weak PSI photochemical capacity because of inactive electron transport on its reducing side), while the second one mimics the behaviour of the plastoquinone pool when it cannot be filled up with electrons (weak or moderate light and high photochemical competence of PSI).  相似文献   

8.
Pulse modulated fluorescence has increasingly been used as an ecological tool to examine changes in the vertical distribution of microphytobenthic cells within the upper layers of estuarine sediments (most often using the minimum fluorescence yield F(o)) as well as to indicate the health of the community (using the maximum PS II quantum efficiency F(v)/F(m)). However, the practicalities of in situ measurements, often dictates that short dark adaptation periods must be used ( approximately 15 min). The use of far-red light as an alternative to dark adaptation was investigated in natural migratory microphytobenthic biofilms and artificial non-migratory biofilms. Prolonged periods of darkness ( approximately 24 h) were not adequate to achieve 'true' measurements of F(o) and F(v)/F(m), which require complete oxidation of Q(A) and full reversal of non-photochemical quenching (NPQ). In some instances, stable values were only achieved using far-red light. Prolonged exposure to dark/far-red light led to a downwards migration of cells in natural assemblages, as seen by a reduction in both F(o) and the maximum fluorescence yield (F(m)). In non-migratory biofilms, F(m) increased in the dark and far-red treatments, indicating a reversal of NPQ, whereas F(o) decreased in far-red light but increased in the dark. It is suggested that far-red light and darkness differentially affected the balance between NPQ reversal and Q(A) oxidation that lead to the measured F(o) yield. The use of far-red light as an alternative to dark adaptation is discussed and the implications of short (e.g., 15 min) dark adaptation times used in situ are discussed with reference to the vertical migration of cells within sediment biofilms.  相似文献   

9.
In illuminated leaves, mitochondria are thought to play roles in optimizing photosynthesis. However, the roles of the cytochrome pathway (CP) and alternative oxidase (AOX) in photosynthesis, in particular in the redox state of the photosynthetic electron transport chain, are not separately characterized. We examined the effects of specific inhibition of two respiratory pathways, CP and AOX, on photosynthetic oxygen evolution and the redox state of the photosynthetic electron transport chain in broad bean (Vicia faba L.) leaves under various light intensities. Under saturating photosynthetic photon flux density (PPFD; 700 micromol photon m(-2) s(-1)), inhibition of either pathway caused a decrease in the steady-state levels of the photosynthetic O(2) evolution rate and the PSII operating efficiency, Phi(II). Because these inhibitors, at the concentrations applied to the leaves, had little effect on photosynthesis in the intact chloroplasts, two respiratory pathways are essential for maintenance of high photosynthetic rates at saturating PPFD. CP or AOX inhibition affected to Chl fluorescence parameters (e.g. photochemical quenching and non-photochemical quenching) differently, suggesting that CP and AOX contribute to photosynthesis in different ways. At low PPFD (100 micromol photon m(-2) s(-1)), only the inhibition of AOX, not CP, lowered the photosynthetic rate and Phi(II). AOX inhibition also decreased the Phi(II)/Phi(I) ratio even at low PPFD levels. These data suggest that AOX inhibition caused the over-reduction of the photosynthetic electron transport chain and induced the cyclic electron flow around PSI (CEF-PSI) even at the low PPFD. Based on these results, we discuss possible roles for CP and AOX in the light.  相似文献   

10.
The differences in pigment levels and photosynthetic activity of green sun and shade leaves of ginkgo (Ginkgo biloba L.) and beech (Fagus sylvatica L.) are described. Sun leaves of both tree species possessed higher levels in chlorophylls (Chl) and carotenoids on a leaf area basis, higher values for the ratio Chl a/b and lower values for the ratio Chl/carotenoids (a+b)/(x+c) in comparison to shade leaves. The higher photosynthetic rates P(N) of sun leaves (ginkgo 5.4+/-0.9 and beech 8.5+/-2.1 micromol m(-2)s(-1)) were also reflected by higher values for the Chl fluorescence decrease ratios R(F)(d) 690 and R(F)(d) 735. In contrast, the shade leaves had lower P(N) rates (ginkgo 2.4+/-0.3 and beech 1.8+/-1.2 micromol m(-2)s(-1)). In both tree species the stomatal conductance G(s) was significantly higher in sun (range: 70-19 1 mmol m(-2)s(-1)) as compared to shade leaves (range: 5-55 mmol m(-2)s(-1)). In fact, at saturating light conditions there existed a close correlation between G(s) values and P(N) rates. Differences between sun and shade leaves also existed in several other Chl fluorescence ratios (F(v)/F(m), F(v)/F(o), and the stress adaptation index Ap). The results clearly demonstrate that the fan-shaped gymnosperm ginkgo leaves show the same high and low irradiance adaptation response as the angiosperm beech leaves.  相似文献   

11.
Papaya mosaic virus (PMV) causes severe mosaic symptoms in the papaya (Carica papaya L.) leaves. The PMV-induced alterations in photosystem II (PS II) structure and photochemical functions were probed. An increase in chlorophyll a (Chl a) fluorescence polarization suggests pathogen-induced transformation of thylakoid membrane to a gel phase. This transformation in physical state of thylakoid membrane may result in alteration in topology of pigments on pigment-binding proteins as reflected in pathogen-induced loss in the efficiency of energy transfer from carotenoids to chlorophylls. The fast Chl a fluorescence induction kinetics of healthy and PMV-infected plants by F(O)-F(J)-F(I)-F(P) transients revealed pathogen-induced perturbation on PS II acceptor side electron transfer equilibrium between Q(A) and Q(B) and in the pool size of electron transport acceptors. Pathogen-induced loss in photosynthetic pigments, changes in thylakoid structure and decrease in the ratio of F(V)/F(M) (photochemical potential of PS II) further correlate with the loss in photoelectron transport of PS II as probed by 2,6-dichlorophenol indophenol (DCPIP)-Hill reaction. Restoration of the loss by 1,5-diphenyl carbazide (DPC), an exogenous electron donor, that donates electron directly to reaction centre II bypassing the oxygen evolving system (OES), leads towards the conclusion that OES is one of the major targets of biotic stress. Further, the data suggest that chlorophyll fluorescence could be used as a non-invasive handy tool to assess the loss in photosynthetic efficiency and symptom severity in infected green tissues vis-a-vis the healthy ones.  相似文献   

12.
Senescence-induced changes in the xanthophyll cycle activity and chlorophyll (Chl) fluorescence parameters were compared in detached barley (Hordeum vulgare L.) leaf segments kept for 6 d in darkness or under continuous white light (90 mol m–2 s–1). Before detachment of the leaf segments, the plants were grown at periodic regime [12 h light (90 mol m–2 s–1)/12 h dark]. The de-epoxidation state of the xanthophyll cycle pigments (DEPS) in the leaf samples was determined immediately (the actual DEPS), after 1 h of dark-adaptation (the residual DEPS), and during 14 min of a high-irradiance (HI) exposure (500 mol m–2 s–1) (HI-induced DEPS). In the light-senescing segments, senescence was delayed pronouncedly compared to dark-senescing ones as the Chl content, the photosystem 2 photochemistry, and electron transport processes were highly maintained. Further, the actual DEPS increased, probably due to the increased mean photon dose. The HI-induced increase in the DEPS was stimulated in the light-senescing segments, whereas it was slowed down in the dark-senescing ones. However, after the 14 min HI-exposure of the dark-senescing segments the HI-induced DEPS was not markedly lower than in the mature leaves, which indicated the maintenance of the xanthophyll cycle operation.  相似文献   

13.
The role of light in the effect of salt stress on PSII photochemistry in the cyanobacterium Spirulina platensis grown at 50 micromol m(-2) s(-1) was investigated. The time-course of changes in PSII photochemistry in response to high salinity (0.8 M NaCl) incubated in the dark and at 30, 50 and 100 micromol m(-2) s(-1) was composed of two phases. The first phase, which was independent of light, was characterized by a rapid decrease (20-50%) in the maximal efficiency of PSII photochemistry (F:(v)/F:(m)), the efficiency of excitation energy capture by open PSII reaction centres (F(1)(v)/F(1)(m)), photochemical quenching (q(P)), and the quantum yield of PSII electron transport (Phi(PSII)) in the first 15 min, followed by a recovery of up to about 86-92% of their initial levels after 4 h of incubation. The second phase took place after 4 h, in which a further decline in the above parameters occurred only in the light but not in the dark, reaching levels as low as 32-56% of their initial levels after 12 h. Moreover, the higher incubation light intensity, the greater the decrease in the above parameters. At the same time, Q(B)-non-reducing PSII reaction centres increased significantly in the first 15 min and then recovered to the initial level during the first phase, but increased again in the light in the second phase. Photosynthetic oxygen evolution activity decreased sharply by 70% in the first 5 min, and then kept largely constant until 12 h. The changes in oxygen evolution activity were independent of light intensity during both phases.  相似文献   

14.
The effect of temperature on the photosynthetic machinery is crucial for the fundamental understanding of plant physiology and the bioengineering of heat-tolerant varieties. In our study, Arabidopsis thaliana was exposed to mild (40°C), short-term heat stress in the dark to evaluate the heat-triggered phosphorylation and migration of light harvesting complex (LHC) II in both wild-type (wt) and mutant lacking STN7 kinase. The 77K emission spectra revealed an increase in PSI relative to PSII emission similar to increases observed in light-induced state I to state II transitions in wt but not in stn7 mutant. Immunoblotting results indicated that the major LHCII was phosphorylated at threonine sites under heat stress in wt plants but not in the mutant. These results support the proposition that mild heat stress triggers state transitions in the dark similar to light-induced state transitions, which involve phosphorylation of LHCII by STN7 kinase. Pre-treatment of Arabidopsis leaves with inhibitor DBMIB, altered the extent of LHCII phosphorylation and PSI fluorescence emission suggests that activation of STN7 kinase may be dependent on Cyt b(6)/f under elevated temperatures in dark. Furthermore, fast Chl a transient of temperature-exposed leaves of wt showed a decrease in the F(v)/F(m) ratio due to both an increase in F(o) and a decrease in F(m). In summary, our findings indicate that a mild heat treatment (40°C) induces state transitions in the dark resulting in the migration of phosphorylated LHCII from the grana to the stroma region.  相似文献   

15.
Three light intensity-dependent Chl b-deficient mutants, two in wheat and one in barley, were analyzed for their xanthophyll cycle carotenoids and Chl fluorescence characteristics under two different growth PFDs (30 versus 600 mol photons·m–2 s–1 incident light). Mutants grown under low light possessed lower levels of total Chls and carotenoids per unit leaf area compared to wild type plants, but the relative proportions of the two did not vary markedly between strains. In contrast, mutants grown under high light had much lower levels of Chl, leading to markedly greater carotenoid to Chl ratios in the mutants when compared to wild type. Under low light conditions the carotenoids of the xanthophyll cycle comprised approximately 15% of the total carotenoids in all strains; under high light the xanthophyll cycle pool increased to over 30% of the total carotenoids in wild type plants and to over 50% of the total carotenoids in the three mutant strains. Whereas the xanthophyll cycle remained fairly epoxidized in all plants grown under low light, plants grown under high light exhibited a considerable degree of conversion of the xanthophyll cycle into antheraxanthin and zeaxanthin during the diurnal cycle, with almost complete conversion (over 90%) occurring only in the mutants. 50 to 95% of the xanthophyll cycle was retained as antheraxanthin and zeaxanthin overnight in these mutants which also exhibited sustained depressions in PS II photochemical efficiency (Fv/Fm), which may have resulted from a sustained high level of photoprotective energy dissipation activity. The relatively larger xanthophyll cycle pool in the Chl b-deficient mutant could result in part from the reported concentration of the xanthophyll cycle in the inner antenna complexes, given that the Chl b-deficient mutants are deficient in the peripheral LHC-II complexes.Abbreviations A antheraxanthin - Chl chlorophyll - Fo and Fm minimal yield (at open PS II reaction centers) and maximal yield (at closed centers) of chlorophyll fluorescence in darkness - F level of fluorescence during illumination with photosynthetically active radiation - Fm maximal yield (at closed centers) of chlorophyll fluorescence during illumination with photosynthetically active radiation - (Fm–F)/Fm actual efficiency of PS II during illumination with photosynthetically active radiation - Fv/Fm+(Fm–Fo)/Fm intrinsic efficiency of PS II in darkness - LHC_II light-harvesting chlorophyll-protein complex of Photosystem II - PFD photon flux density (between 400 and 700 nm) - PS I Photosystem I - PS II Photosystem II - V violaxanthin - Z zeaxanthin  相似文献   

16.
A relative decrease of the high temperature part (above 60°C) of the chlorophyll fluorescence temperature curve during 3 h to 10 h greening period of barley (Hordeum vulgare L.) leaves was found to be concomitant to a decrease of Chl alb ratio and to a gradual increase of LHCP/core ratio found by electrophoresis and the ratio of granal to total length of thylakoid membranes. It is suggested that the high temperature part of the fluorescence temperature curve depends inversely on the relative amount of LHC II in thylakoid membranes.Abbreviations Chl a(b) chlorophyll a(b) - CPa chlorophyll a protein complex of PS II - CP1 P700 chlorophyll a protein complex of PS I - FP free pigments - FTC fluorescence temperature curve - F(T30) fluorescence intensity at 30°C - LHC II light harvesting complex II - LHCP light harvesting chlorophyll protein - LHCP3 (LHCPm) monomeric form of LHC II - LHCPo oligomeric form of LHC II complex - M1 first maximum of FTC - M2 second maximum (region) of FTC - PAA polyacrylamide - PAR photosynthetically active radiation - PS I(II) Photosystem I(II) - SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis  相似文献   

17.
Monostroma angicava and Protomonostroma undulatum are monostromatic green benthic algae (Ulvophyceae), which grow together in the same intertidal habitat of Muroran, Hokkaido, Japan, during the spring season. Commonly, both species have a single chloroplast with one pyrenoid per cell. The parietal chloroplast is located on the periphery of the thallus in both species, although the location of the chloroplast differs in the two. In M. angicava , the chloroplast was observed to be arranged on one‐side of the thallus surface, whereas, in P. undulatum , it was dispersed and randomly located on either side of the thallus or on the lateral face. The density of chlorophylls (Chls) assessed from the absorption spectra of the thallus and its solvent extract was higher in M. angicava , which appeared dark‐green in color, than in the light‐green colored P. undulatum . The maximum photosynthetic rate per thallus area (μmol O2 m?2 s?1) was higher in M. angicava , whereas, per total chlorophyll content (μmol O2 g Chl a + Chl b ?1 s?1) was higher in P. undulatum . Both species showed similar efficiency of photosynthesis at light‐limiting conditions. The efficiency of light absorption by photosystem II (PSII ) in P. undulatum was higher than M. angicava , whereas the photoprotective response was higher in M. angicava . This indicates that more energy is utilized in M. angicava to protect its PSII due to the chloroplast position, which has more direct exposure to light and, therefore, lowers the efficiency of light absorption by PSII . The higher density of chlorophylls in M. angicava could explain higher photosynthesis per thallus area, whereas, higher efficiency of light absorption by PSII in P. undulatum could explain higher photosynthesis per total chlorophyll content. The differences in light absorption efficiency and quantum efficiency of PSII might be an important ecological strategy in these two species for their coexistence in the intertidal area.  相似文献   

18.
甘蔗抗旱性生理生化鉴定指标   总被引:16,自引:1,他引:15  
利用因子分析和灰色关联度分析方法研究了甘蔗叶片相对含水量、膜脂过氧化代谢、活性氧代谢、光合参数及蔗茎产量性状等指标与抗旱性的关系.结果表明,干旱胁迫下甘蔗叶片的MDA含量和PMP明显提高,而RWC、SOD活性、Chl含量、Fv/Fm、Fv/Fo、△Fv/Ft、△Fv/Fo和蔗茎单茎重(SSW)8个抗旱性指标均显著降低.SSW与其它9个生理生化指标的相关性大小依次为PMP>SOD活性>MDA含量>RWC>Fv/Fo>Fv/Fm>Chl含量>Fv/Fo>Fv/Ft,其中,SSW与Fv/Fo和ΔFv/Ft相关性不显著.通过因子分析将10个甘蔗抗旱性指标用4个公共因子表示,累加方差贡献率达到92.08%.因子l主要是反映光合作用特性指标对甘蔗品种抗旱性起支配作用,因子2主要是反映叶片相对含水量及活性氧代谢指标对甘蔗品种抗旱性起支配作用,因子3和因子4分别只有SSW和Chl含量有较大载荷.灰色关联度分析表明,各抗旱性生理生化指标与SSW关联密切程度依次为Fv/Fm>PMP>Fv/Fo>RWC>MDA含量>SOD活性>ΔFv/Ft>Chl含量>Fv/Fo.  相似文献   

19.
The response of Norway spruce saplings (Picea abies [L.] Karst.) was monitored continuously during short-term exposure (10 days) to high irradiance (HI; 1000mumolm(-2)s(-1)). Compared with plants acclimated to low irradiance (100mumolm(-2)s(-1)), plants after HI exposure were characterized by a significantly reduced CO(2) assimilation rate throughout the light response curve. Pigment contents varied only slightly during HI exposure, but a rapid and strong response was observed in xanthophyll cycle activity, particularly within the first 3 days of the HI treatment. Both violaxanthin convertibility under HI and the amount of zeaxanthin pool sustained in darkness increased markedly under HI conditions. These changes were accompanied by an enhanced non-radiative dissipation of absorbed light energy (NRD) and the acceleration of induction of both NRD and de-epoxidation of the xanthophyll cycle pigments. We found a strong negative linear correlation between the amount of sustained de-epoxidized xanthophylls and the photosystem II (PSII) photochemical efficiency (F(V)/F(M)), indicating photoprotective down-regulation of the PSII function. Recovery of F(V)/F(M) at the end of the HI treatment revealed that Norway spruce was able to cope with a 10-fold elevated irradiance due particularly to an efficient NRD within the PSII antenna that was associated with enhanced violaxanthin convertibility and a light-induced accumulation of zeaxanthin that persisted in darkness.  相似文献   

20.
The mechanisms of photosynthetic adaptation to different combinations of temperature and irradiance during growth, and especially the consequences of exposure to high light (2000 micro mol m(-2) s(-1) PPFD) for 5 min, simulating natural sunflecks, was studied in bean plants (Phaseolus vulgaris L.). A protocol using only short (3 min) dark pre-treatment was introduced to maximize the amount of replication possible in studies of chlorophyll fluorescence. High light at low temperature (10 degrees C) significantly down-regulated photosynthetic electron transport capacity [as measured by the efficiency of photosystem II (PSII)], with the protective acclimation allowing the simulated sunflecks to be used more effectively for photosynthesis by plants grown in low light. The greater energy dissipation by thermal processes (lower F(v)'/F(m)' ratio) at low temperature was related to increased xanthophyll de-epoxidation and to the fact that photosynthetic carbon fixation was more limiting at low than at high temperatures. A key objective was to investigate the role of photorespiration in acclimation to irradiance and temperature by comparing the effect of normal (21 kPa) and low (1.5 kPa) O(2) concentrations. Low [O(2)] decreased F(v)/F(m) and the efficiency of PSII (Phi(PSII)), related to greater PSII down-regulation in cold pre-treated plants, but minimized further inhibition by the mild 'sunfleck' treatment used. Results support the hypothesis that photorespiration provides a 'safety-valve' for excess energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号