首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The potential of drift tube ion mobility (IM) spectrometry in combination with high performance liquid chromatography (LC) and mass spectrometry (MS) for the metabonomic analysis of rat urine is reported. The combined LC-IM-MS approach using quadrupole/time-of-flight mass spectrometry with electrospray ionisation, uses gas-phase analyte characterisation based on both mass-to-charge (m/z) ratio and relative gas-phase mobility (drift time) following LC separation. The technique allowed the acquisition of nested data sets, with mass spectra acquired at regular intervals (65 micros) during each IMS separation (approximately 13 ms) and several IMS spectra acquired during the elution of a single LC peak, without increasing the overall analysis time compared to LC-MS. Preliminary results indicate that spectral quality is improved when using LC-IM-MS, compared to direct injection IM-MS, for which significant ion suppression effects were observed in the electrospray ion source. The use of reversed-phase LC employing fast gradient elution reduced sample preparation to a minimum, whilst maintaining the potential for high throughput analysis. Data mining allowed information on specific analytes to be extracted from the complex metabonomic data set. LC-IM-MS based approaches may have a useful role in metabonomic analyses by introducing an additional discriminatory dimension of ion mobility (drift time).  相似文献   

2.
Releasable electrophore mass tags (electrophore tags) are compounds for use as labels in ligand assays such as hybridization assays and immunoassays. In such assays, the electrophore-tagged reagent (e.g., DNA probe or antibody) is quantified at the conclusion of the assay by cleaving a bond in the attached tag so that the electrophore part can be brought into the gas phase (usually thermally) for detection by electron capture mass spectrometry (EC-MS) or a related technique. Interest in these tags is promoted mainly by their potential to provide highly sensitive and multiplexed assays. The high multiplexing arises from the opportunity to measure many such tags simultaneously in the mass spectrometer, where each tag has an electrophore part with a unique mass. In this study five precursors of electrophore mass tags are presented. Each precursor can lead to a large library of electrophore tags in a practical way, since each precursor can be converted to many different electrophore tags by reaction with commonly available phenols that provide a variation in mass. The phenol-reactive part of the tag is either a polyfluorobiphenyl or a benzyl chloride moiety. Representative library compounds are prepared and detected in an inert ester form by gas chromatography electron capture mass spectrometry (GC-EC-MS). Further, one tag is conjugated to DNA, and the resulting product is detected by laser-induced electron capture time-of-flight mass spectrometry on a silver surface. A calculation by the semiempirical method AM1 for an ion formed by one of the electrophores suggests that ring rotation promotes dissociative electron capture. The features of practical synthesis, simple composition, physicochemical stability, high multiplicity, high sensitivity, and potential for high throughput detection make releasable electrophore mass tags attractive for highly multiplexed assays. This includes their use in SNP assays or dideoxy DNA sequencing for detection of mutations in individuals, where the combination of high accuracy and speed is essential.  相似文献   

3.
High-throughput protein analysis by tandem mass spectrometry produces anywhere from thousands to millions of spectra that are being used for peptide and protein identifications. Though each spectrum corresponds only to one charged peptide (ion) state, repetitive database searches of multiple charge states are typically conducted since the resolution of many common mass spectrometers is not sufficient to determine the charge state. The resulting database searches are both error-prone and time-consuming. We describe a straightforward, accurate approach on charge state estimation (CHASTE). CHASTE relies on fragment ion peak distributions, and by using reliable logistic regression models, combines different measurements to improve its accuracy. CHASTE's performance has been validated on data sets, comprised of known peptide dissociation spectra, obtained by replicate analyses of our earlier developed protein standard mixture using ion trap mass spectrometers at different laboratories. CHASTE was able to reduce number of needed database searches by at least 60% and the number of redundant searches by at least 90% virtually without any informational loss. This greatly alleviates one of the major bottlenecks in high throughput peptide and protein identifications. Thresholds and parameter estimates can be tailored to specific analysis situations, pipelines, and instrumentations. CHASTE was implemented in Java GUI-based and command-line-based interfaces.  相似文献   

4.
Reversed phase high performance liquid chromatography (HPLC) interfaced to electrospray tandem mass spectrometry (MS/MS) is commonly used for the identification of peptides from proteolytically cleaved proteins embedded in a polyacrylamide gel matrix as well as for metabolomics screening. HPLC separations are time consuming (30-60 min average), costly (columns and mobile phase reagents), and carry the risk of column carry over between samples. The use of a chip-based nano-ESI platform (Advion NanoMate) based on replaceable nano-tips for sample introduction eliminates sample cross-contamination, provides unchanging sample matrix, and enhances spray stability with attendant increases in reproducibility. Recent papers have established direct infusion nano-ESI-MS/MS utilizing the NanoMate for protein identification of gel spots based on full range MS scans with data dependent MS/MS. In a full range scan, discontinuous ion suppression due to sample matrix can impair identification of putative mass features of interest in both the proteomic and metabolomic workflows. In the current study, an extension of an established direct inject nano-ESI-MS/MS method is described that utilizes the mass filtering capability of an ion-trap for ion packet separation into four narrow mass ranges (50 amu overlap) with segment specific dynamic data dependent peak inclusion for MS/MS fragmentation (total acquisition time of 3 minutes). Comparison of this method with a more traditional nanoLC-MS/MS based protocol utilizing solvent/sample stream splitting to achieve nanoflow demonstrated comparable results for protein identification from polyacrylamide gel matrices. The advantages of this method include full automation, lack of cross-contamination, low cost, and high throughput.  相似文献   

5.
Biotransformation of chemically stable compounds to reactive metabolites which can bind covalently to macromolecules, such as proteins and DNA, is considered as an undesirable feature of drug candidates. As part of an overall assessment of absorption, distribution, metabolism and excretion (ADME) properties, many pharmaceutical companies have put methods in place to screen drug candidates for their tendency to generate reactive metabolites and as well characterize the nature of the reactive metabolites through in vitro and in vivo studies. After identification of the problematic compounds, steps can be taken to minimize the potential of bioactivation through appropriate structural modifications. For these reasons, detection, structural characterization and quantification of reactive metabolites by mass spectrometry have become an important task in the drug discovery process. Triple quadrupole mass spectrometry is traditionally employed for the analysis of reactive metabolites. In the past 3 years, a number of new mass spectrometry methodologies have been developed to improve the sensitivity, selectivity and throughput of the analysis. This review focuses on the recent advances in the detection and characterization of reactive metabolites by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in drug discovery and development, especially through the use of linear ion trap (LTQ), hybrid triple quadrupole-linear ion trap (Q-trap) and the high resolution LTQ-Orbitrap instruments.  相似文献   

6.
Biomedical research requires protein detection technology that is not only sensitive and quantitative, but that can reproducibly measure any set of proteins in a biological system in a high throughput manner. Here we report the development and application of a targeted proteomics platform termed index-ion triggered MS2 ion quantification (iMSTIQ) that allows reproducible and accurate peptide quantification in complex mixtures. The key feature of iMSTIQ is an approach called index-ion triggered analysis (ITA) that permits the reproducible acquisition of full MS2 spectra of targeted peptides independent of their ion intensities. Accurate quantification is achieved by comparing the relative intensities of multiple pairs of fragment ions derived from isobaric targeted peptides during MS2 analysis. Importantly, the method takes advantage of the favorable performance characteristics of the LTQ-Orbitrap, which include high mass accuracy, resolution, and throughput. As such it provides an attractive targeted proteomics tool to meet the demands of systems biology research and biomarker studies.  相似文献   

7.
A new algorithm (QN) for the (15)N /(14)N quantitation of relative protein abundances in complex proteomic samples is described. QN takes advantage of the high resolution, mass accuracy and throughput of the hybrid mass spectrometer LTQ-FT MS. Peptide quantitation is based on MS peak intensity (measured in the FT MS), while peptide identification is performed in the MS/MS mode (measured in the LTQ linear ion trap). Accuracy of the protein abundance is enhanced by a novel scoring procedure, allowing filtering of less reliable measurements of peptide abundances. The performance of QN is illustrated in the relative quantitative analysis of M. acetivorans C2A cultures grown with carbon monoxide vs methanol as substrate. Roughly 1,000 proteins were quantitated with an average CV of 9% for the protein abundance ratios. QN performs quantitation without manual intervention, does not require high processing power, and generates files compatible with the Guidelines for Proteomic Data Publication.  相似文献   

8.
Mass spectrometry based proteomics generally seeks to identify and fully characterize protein species with high accuracy and throughput. Recent improvements in protein separation have greatly expanded the capacity of top-down proteomics (TDP) to identify a large number of intact proteins. To date, TDP has been most tightly associated with Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Here, we couple the improved separations to a Fourier-transform instrument based not on ICR but using the Orbitrap Elite mass analyzer. Application of this platform to H1299 human lung cancer cells resulted in the unambiguous identification of 690 unique proteins and over 2000 proteoforms identified from proteins with intact masses <50 kDa. This is an early demonstration of high throughput TDP (>500 identifications) in an Orbitrap mass spectrometer and exemplifies an accessible platform for whole protein mass spectrometry.  相似文献   

9.
Progress is reviewed towards the development of a global strategy that aims to extend the sensitivity, dynamic range, comprehensiveness and throughput of proteomic measurements based upon the use of high performance separations and mass spectrometry. The approach uses high accuracy mass measurements from Fourier transform ion cyclotron resonance mass spectrometry (FTICR) to validate peptide 'accurate mass tags' (AMTs) produced by global protein enzymatic digestions for a specific organism, tissue or cell type from 'potential mass tags' tentatively identified using conventional tandem mass spectrometry (MS/MS). This provides the basis for subsequent measurements without the need for MS/ MS. High resolution capillary liquid chromatography separations combined with high sensitivity, and high resolution accurate FTICR measurements are shown to be capable of characterizing peptide mixtures of more than 10(5) components. The strategy has been initially demonstrated using the microorganisms Saccharomyces cerevisiae and Deinococcus radiodurans. Advantages of the approach include the high confidence of protein identification, its broad proteome coverage, high sensitivity, and the capability for stableisotope labeling methods for precise relative protein abundance measurements.Abbreviations: LC, liquid chromatography; FTICR, Fourier transform ion cyclotron resonance; AMT, accurate mass tag; PMT, potential mass tag; MMA, mass measurement accuracy; MS, mass spectrometry; MS/MS, tandem mass spectrometry; ppm, parts per million.  相似文献   

10.
Ceramide (CER) is an important signaling molecule involved in a variety of cellular processes, including differentiation, cell growth, and apoptosis. Currently, different techniques are applied for CER quantitation, some of which are relatively insensitive and/or time consuming. Tandem mass spectrometry with its high selectivity and sensitivity is a very useful technique for detection of low abundant metabolites without prior purification or derivatization. In contrast to existing mass spectrometry methods, the developed electrospray tandem mass spectrometry (ESI-MS/MS) technique is capable of quantifying different CER species from crude cellular lipid extracts. The ESI-MS/MS is performed with a continuous flow injection and the use of an autosampler, resulting in a high throughput capability. The collision-induced fragmentation of CER produced, in addition to others, a characteristic fragment of m/z 264, making a precursor ion scan of 264 well suited for CER quantitation. Quantitation is achieved by use of a constant concentration of a non-naturally occurring internal standard C8-CER, together with a calibration curve established by spiking different concentrations of naturally occurring CER. The calibration curves showed linearity over a wide concentration range and sample volumes equivalent to 10 microg of cell protein corresponding to about 20, 000 fibroblasts were sufficient for CER analysis. Moreover this assay showed a detection limit at the subpicomole level. In summary, this methodology enables accurate and rapid analysis of CER from small samples without prior separation steps, thus providing a useful tool for signal transduction research.  相似文献   

11.
The investigation of post-translational modifications (PTMs) plays an important role for the study of type 2 diabetes. The importance of PTMs has been realized with the advancement of analytical techniques. The challenging detection and analysis of post-translational modifications is eased by different enrichment methods and by high throughput mass spectrometry based proteomics studies. This technology along with different quantitation methods provide accurate knowledge about the changes happening in disease conditions as well as in normal conditions. In this review, we have discussed PTMs such as phosphorylation, N-glycosylation, O-GlcNAcylation, acetylation and advanced glycation end products in type 2 diabetes which have been characterized by high throughput mass spectrometry based proteomics analysis.  相似文献   

12.

Background  

The field of proteomics involves the characterization of the peptides and proteins expressed in a cell under specific conditions. Proteomics has made rapid advances in recent years following the sequencing of the genomes of an increasing number of organisms. A prominent technology for high throughput proteomics analysis is the use of liquid chromatography coupled to Fourier transform ion cyclotron resonance mass spectrometry (LC-FTICR-MS). Meaningful biological conclusions can best be made when the peptide identities returned by this technique are accompanied by measures of accuracy and confidence.  相似文献   

13.
We describe and review progress towards a global strategy that aims to extend the sensitivity, dynamic range, comprehensiveness, and throughput of proteomic measurements for microbial systems based upon the use of polypeptide accurate mass tags (AMTs) produced by global protein enzymatic digestions. The two-stage strategy exploits high accuracy mass measurements using Fourier transform ion cyclotron resonance mass spectrometry (FTICR) to validate polypeptide AMTs for a specific organism, from potential mass tags tentatively identified using tandem mass spectrometry (MS/MS), providing the basis for subsequent measurements without the need for routine MS/MS. A high-resolution capillary liquid chromatography separation combined with high sensitivity, and high-resolution accurate FTICR measurements is shown to be capable of characterizing polypeptide mixtures of more than 10(5) components, sufficient for broad protein identification using AMTs. Advantages of the approach include the high confidence of protein identification, its broad proteome coverage, and the capability for stable-isotope labeling methods for precise relative protein abundance measurements. The strategy has been initially evaluated using the microorganisms Saccharomyces cerevisiae and Deinococcus radiodurans. Additional developments, including the use of multiplexed-MS/MS capabilities and methods for dynamic range expansion of proteome measurements that promise to further extend the quality of proteomics measurements, are also described.  相似文献   

14.
The development of new high throughput methods based on different materials with chemical modifications for protein profiling of complex mixtures leads towards biomarkers; used particularly for early diagnosis of a disease. In this work, diamond-like carbon (DLC) is developed and optimized for serum protein profiling by matrix-assisted laser/desorption ionization mass spectrometry (MALDI-MS). This study is carried out in connection with a material-based approach, termed as material-enhanced laser desorption ionization mass spectrometry. DLC is selected as carrier surface which provides large surface to volume ratio and offers high sensitivity. DLC has a dual role of working as MALDI target while acting as an interface for protein profiling by specifically binding peptides and proteins out of serum samples. Serum constituents are bound through immobilized metal ion affinity chromatography (IMAC) functionality, created through glycidyl methacrylate polymerization under ultraviolet light followed by further derivatization with iminodiacetic acid and copper ion loading. Scanning electron microscopy highlights the morphological characteristics of DLC surface. It could be demonstrated that IMAC functionalized DLC coatings represent a powerful material in trapping biomolecules for their further analysis by MALDI-MS resulting in improved sensitivity, specificity and capacity in comparison to other protein-profiling methods.  相似文献   

15.
Peptide mass fingerprinting (PMF) is among the principle methods of contemporary proteomic analysis. While PMF is routinely practiced in many laboratories, the complexity of protein tryptic digests is such that PMF based on unrefined mass spectrometric peak lists is often inconclusive. A number of data processing strategies have thus been designed to improve the quality of PMF peak lists, and the development of increasingly elaborate tools for PMF data reduction remains an active area of research. In this report, a novel and direct means of PMF peak list enhancement is suggested. Since the monoisotopic mass of a peptide must fall within a predictable range of residual values, PMF peak lists can in principle be relieved of many non-peptide signals solely on the basis of accurately determined monoisotopic mass. The calculations involved are relatively simple, making implementation of this scheme computationally facile. When this procedure for peak list processing was used, the large number of unassigned masses typical of PMF peak lists was considerably attenuated. As a result, protein identifications could be made with greater confidence and improved discrimination as compared to PMF queries submitted with raw peak lists. Importantly, this scheme for removal of non-peptide masses was found to conserve peptides bearing various post-translational and artificial modifications. All PMF experiments discussed here were performed using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS), which provided the high mass resolution and high mass accuracy essential for this application. Previously reported equations relating the nominal peptide mass to the permissible range of fractional peptide masses were slightly modified for this application, and these adjustments have been illustrated in detail. The role of mass accuracy in application of this scheme has also been explored.  相似文献   

16.
The discovery of novel biomaterials that are optimized for a specific biological application is readily achieved using polymer microarrays, which allows a combinatorial library of materials to be screened in a parallel, high throughput format (1). Herein is described the formation and characterization of a polymer microarray using an on-chip photopolymerization technique (2). This involves mixing monomers at varied ratios to produce a library of monomer solutions, transferring the solution to a glass slide format using a robotic printing device and curing with UV irradiation. This format is readily amenable to many biological assays, including stem cell attachment and proliferation, cell sorting and low bacterial adhesion, allowing the ready identification of 'hit' materials that fulfill a specific biological criterion (3-5). Furthermore, the use of high throughput surface characterization (HTSC) allows the biological performance to be correlated with physio-chemical properties, hence elucidating the biological-material interaction (6). HTSC makes use of water contact angle (WCA) measurements, atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). In particular, ToF-SIMS provides a chemically rich analysis of the sample that can be used to correlate the cell response with a molecular moiety. In some cases, the biological performance can be predicted from the ToF-SIMS spectra, demonstrating the chemical dependence of a biological-material interaction, and informing the development of hit materials (5,3).  相似文献   

17.
We describe a method for assessing the quality of mass spectra and improving reliability of relative ratio estimations from (18)O-water labeling experiments acquired from low resolution mass spectrometers. The mass profiles of heavy and light peptide pairs are often affected by artifacts, including coeluting contaminant species, noise signal, instrumental fluctuations in measuring ion position and abundance levels. Such artifacts distort the profiles, leading to erroneous ratio estimations, thus reducing the reliability of ratio estimations in high throughput quantification experiments. We used support vector machines (SVMs) to filter out mass spectra that deviated significantly from expected theoretical isotope distributions. We built an SVM classifier with a decision function that assigns a score to every mass profile based on such spectral features as mass accuracy, signal-to-noise ratio, and differences between experimental and theoretical isotopic distributions. The classifier was trained using a data set obtained from samples of mouse renal cortex. We then tested it on protein samples (bovine serum albumin) mixed in five different ratios of labeled and unlabeled species. We demonstrated that filtering the data using our SVM classifier results in as much as a 9-fold reduction in the coefficient of variance of peptide ratios, thus significantly improving the reliability of ratio estimations.  相似文献   

18.
A high-throughput approach for biomolecule analysis is demonstrated for a mixture of peptides from tryptic digest of four proteins as well as a tryptic digests of human plasma. In this method a chip based electrospray autosampler coupled to a hybrid ion mobility (IMS) mass spectrometer (MS) is utilized to achieve rapid sample analysis. This high-throughput measurement is realized by exploiting the direct infusion capability of the chip based electrospray with its rapid sample manipulating capability as well as a high sensitive IMS-MS with a recently developed IMS-IMS separation technique that can be multiplexed to provide greater throughput. From replicate IMS-MS runs of known mixtures, the average uncertainty of peak intensities is determined to be +/-7% (relative standard deviation), and a detection limit in the low attomole range is established. The method is illustrated by analyzing 124 human plasma protein samples in duplicate, a measurement that required 16.5 h. Current limitations as well as implications of the high-throughput approach for complex biological sample analysis are discussed.  相似文献   

19.
Quantitative high-throughput mass spectrometry has become an established tool to measure relative gene expression proteome-wide. The output of such an experiment usually consists of a list of expression ratios (fold changes) for several thousand proteins between two conditions. However, we observed that individual peptide fold changes may show a significantly different behavior than other peptides from the same protein and that these differences cannot be explained by imprecise measurements. Such outlier peptides can be the consequence of several technical (misidentifications, misquantifications) or biological (post-translational modifications, differential regulation of isoforms) reasons. We developed a method to detect outlier peptides in mass spectrometry data which is able to delineate imprecise measurements from real outlier peptides with high accuracy when the true difference is as small as 1.4 fold. We applied our method to experimental data and investigated the different technical and biological effects that result in outlier peptides. Our method will assist future research to reduce technical bias and can help to identify genes with differentially regulated protein isoforms in high throughput mass spectrometry data.  相似文献   

20.
Quantitation of relative or absolute amounts of proteins by mass spectrometry can be prone to large errors. The use of MS/MS ion intensities and stable isotope labeling, which we term stable isotope labeling tandem mass spectrometry (SILT), decreases the effects of contamination from unrelated compounds. We present a software package (SILTmass) that automates protein identification and quantification by the SILT method. SILTmass has the ability to analyze the kinetics of protein turnover, in addition to relative and absolute protein quantitation. Instead of extracting chromatograms to find elution peaks, SILTmass uses only scans in which a peptide is identified and that meet an ion intensity threshold. Using only scans with identified peptides, the accuracy and precision of SILT is shown to be superior to precursor ion intensities, particularly at high or low dilutions of the isotope labeled compounds or with low amounts of protein. Using example scans, we demonstrate likely reasons for the improvements in quantitation by SILT. The appropriate use of variable modifications in peptide identification is described for measurement of protein turnover kinetics. The combination of identification with SILT facilitates quantitation without peak detection and helps to ensure the appropriate use of variable modifications for kinetics experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号