首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Huber SC  Pharr DM 《Plant physiology》1981,68(6):1294-1298
High activities (100-200 micromoles UDP hydrolyzed per milligram chlorophyll per hour) of uridine-5′ diphosphatase (UDPase) have been identified in extracts of fully expanded soybean (Glycine max Merr.) leaves. In desalted crude extracts, UDPase activity was strongly inhibited by low concentrations of Mg:ATP (I50 = 0.3 millimolar). Two forms of the enzyme were resolved by gel filtration on Sephadex G-150. The higher molecular weight form (UDPase I, about 199 kilodaltons by gel filtration) retained ATP sensitivity (I50 = 0.3 millimolar), whereas the major, lower molecular weight form (UDPase II, about 58 kilodaltons) was markedly less sensitive to ATP inhibition (I50 = 2.7-3.0 millimolar). Subsequent purification of UDPase I by ion-exchange chromatography on DEAE cellulose produced a lower molecular weight enzyme (about 74 kilodaltons by gel filtration) that had reduced ATP sensitivity similar to UDPase II. Ion-exchange chromatography of UDPase II did not alter molecular weight or ATP sensitivity. UDPase II, after the DEAE-cellulose step, was specific for nucleoside diphosphates. Maximum reaction velocity decreased in the following sequence; UDP > GDP > CDP. ADP was not a substrate for the enzyme. The reaction catalyzed was hydrolysis of the terminal-P of UDP to form UMP. The enzyme was stimulated by Mg2+ and the pH optimum was centered between pH 6.5 and 7.0. In a survey of various species, soybean cultivars had highest activities of apparent UDPase and other species ranged in apparent activity from 0 to 30 micromoles hydrolyzed per milligram chlorophyll per hour.  相似文献   

2.
Cytosolic NADP-specific isocitrate dehydrogenase was isolated from leaves of Pisum sativum. The purified enzyme was obtained by ammonium sulfate fractionation, ion exchange, affinity, and gel filtration chromatography. The purification procedure yields greater than 50% of the total enzyme activity originally present in the crude extract. The enzyme has a native molecular weight of 90 kilodaltons and is resolved into two catalytically active bands by isoelectric focusing. Purified NADP-isocitrate dehydrogenase exhibited Km values of 23 micromolar for dl-isocitrate and 10 micromolar for NADP, and displayed optimum activity at pH 8.5 with both Mg2+ and Mn2+.  相似文献   

3.
NAD malic enzyme (EC 1.1.1.39), which is involved in C4 photosynthesis, was purified to electrophoretic homogeneity from leaves of Eleusine coracana and to near homogeneity from leaves of Panicum dichotomiflorum. The enzyme from each C4 species was found to have only one type of subunit by SDS polyacrylamide gel electrophoresis. The Mr of subunits of the enzme from E. coracana and P. dichotommiflorum was 63 and 61 kilodaltons, respectively. The native Mr of the enzyme from each species was determined by gel filtration to be about 500 kilodaltons, indicating that the NAD malic enzyme from C4 species is an octamer of identical subunits. The purified NAD malic enzyme from each C4 species showed similar kinetic properties with respect to concentrations of malate and NAD; each had a requirement for Mn2+ and activation by fructose- 1,6-bisphosphate (FBP) or CoA. A cooperativity with respect to Mn2+ was apparent with both enzymes. The activator (FBP) did not change the Hill value but greatly decreased K0.5 (the concentration giving half-maximal activity) for Mn2+. The enzyme from E. coracana showed a very low level of activity when NADP was used as substrate, but this activity was also stimulated by FBP. Significant differences between the enzymes from E. coracana and P. dichotomiflorum were observed in their responses to the activators and their immunochemical properties. The enzyme from E. coracana was largely dependent on the activators FBP or CoA, regardless of concentration of Mn2+. In contrast, the enzyme from P. dichotomiflorum showed significant activity in the absence of the activator, especially at high concentrations of Mn2+. Both immunodiffusion and immunoprecipitation, using antiserum raised against the purified NAD malic enzyme from E. coracana, revealed partial antigenic differences between the enzymes from E. coracana and P. dichotomiflorum. The activity of the NAD malic enzyme from Amaranthus edulis, a typical NAD malic enzyme type C4 dicot, was not inhibited by the antiserum raised against the NAD malic enzyme from E. coracana.  相似文献   

4.
Purification and Properties of Arginase from Soybean, Glycine max, Axes   总被引:3,自引:2,他引:1  
Kang JH  Cho YD 《Plant physiology》1990,93(3):1230-1234
Arginase (EC 3.5.3.1) was purified to homogeneity from cytosol of soybean, Glycine max, axes by chromatographic separations on Sephadex G-200, DEAE-sephacel, hydroxyapatite, and arginine-affinity columns. The molecular weight of the enzyme estimated by pore gradient gel electrophoresis was 240,000, while sodium dodecyl sulfate polyacrylamide gel electrophoresis gave a single band at the molecular weight of 60,000. The optimal pH for activity was 9.5 and the Km value was 83 millimolar. The enzyme was stimulated by polyamines such as putrescine.  相似文献   

5.
Szoke A  Miao GH  Hong Z  Verma DP 《Plant physiology》1992,99(4):1642-1649
The expression of Δ1-pyrroline-5-carboxylate reductase (P5CR) gene was found to be higher in soybean root nodules than in leaves and roots, and its expression in roots appeared to be osmoregulated (AJ Delauney, DPS Verma [1990] Mol Gen Genet 221: 299-305). P5CR was purified to homogeneity as a monomeric protein of 29 kilodaltons by overexpression of a soybean P5CR cDNA clone in Escherichia coli. The pH optimum of the purified P5CR was altered by increasing the salt concentration, and maximum enzyme activity was attainable at a lower pH under high salt (0.2-1 molar NaCl). Kinetic studies of the purified enzyme suggested that nicotinamide adenine dinucleotide phosphate+ inhibited P5CR activity, whereas nicotinamide adenine dinucleotide+ did not. Subcellular fractionation and antibodies raised against purified soybean P5CR were used to investigate location of the enzyme in different parts of soybean as well as in leaves of transgenic tobacco plants synthesizing soybean P5CR. P5CR activity was present in cytoplasm of soybean roots and nodules as well as in leaves, but in leaves, about 15% of the activity was detected in the plastid fraction. The location of P5CR was further confirmed by western blot assay of the proteins from cytosol and plastid fractions of different parts of the plant. Expression of soybean nodule cytosolic P5CR in transgenic tobacco under the control of cauliflower mosaic virus 35S promoter led to the accumulation of this protein exclusively in the cytoplasm, suggesting that the chloroplastic activity may be due to the presence of a plastid form of the enzyme. The different locations of P5CR in root and leaf suggested that proline may be synthesized in different subcellular compartments in root and leaf. Proline concentration was not significantly increased in transgenic plants exhibiting high level P5CR activity, indicating that reduction of P5C is not a rate-limiting step in proline production.  相似文献   

6.
The stroma of chloroplasts is probably the sole site of the shikimate pathway enzymes shikimate oxidoreductase/dehydroquinate hydrolyase (SORase/DHQase) in spinach leaves. (a) The chromatographic behavior of the bifunctional protein SORase/DHQase on several separation materials with extracts from stroma compared with leaf extracts showed only one peak of enzymic activity originating from the stroma. (b) Polyacrylamide gel electrophoresis (PAGE) of these extracts followed by specific staining resulted in the same pattern without a band of extraplastidic enzyme. (c) In protoplast fractionation experiments it was shown that SORase/DHQase was present only in the soluble chloroplast protein fraction.

An improved purification procedure for SORase/DHQase from stroma of chloroplasts, yield 40%, 1600 times as pure, gave essentially one protein band on sodium dodecyl sulfate-PAGE. Our results demonstrate that both enzyme functions are carried out by a single polypeptide. Nondenaturing PAGE exhibited a pattern of four bands with SORase/DHQase showing that they differ in charge but not in their molecular weight. Molecular weight was determined to be 67 kilodaltons (gel filtration) and 59 kilodaltons (PAGE) for all four forms. It was proven they were not due to artifacts. The four forms show similar kinetic properties, their Km and pH optima differing only very slightly. Response to some metabolites is reported.

  相似文献   

7.
A novel zinc endoproteinase has been sequenced and characterized from soybean leaves (Glycine max var Williams 82) and has been designated as Protein Identification Resource accession No. A41820 SMEP1 (soybean metalloendoproteinase 1). Comparison of the primary amino acid sequence with other zinc proteinases revealed the enzyme to be a new member of the matrix metalloproteinase (MMP) family of enzymes. SMEP was found to have MMP cleavage specificity toward peptide substrates and the enzyme is specifically inhibited by naturally occurring tissue inhibitors of MMPs through a high-affinity interaction (inhibitor concentration resulting in an approximate 50% decrease in enzyme activity = 23 x 10(-9) molar). Together, these results suggest that the origin of the MMP family of enzymes and their cognate inhibitors predates the divergence of plants and animals.  相似文献   

8.
The first step in the biosynthesis of allylglucosinolate from methionine in Brassica is thought to be the transamination of methionine to 2-keto-4-methylthiobutyrate. By using Q-Sepharose and Red Agarose, followed by high resolution anion exchange chromatography and chromatofocussing, a methionine:glyoxylate aminotransferase (MGAT) was purified to homogeneity from leaves of Brassica carinata var R-4218, and approximately 5000-fold from leaves of Brassica napus var Topas. The final purification was accomplished using nondenaturing polyacrylamide gel electrophoresis. The enzyme has a pl of 4.3, a native molecular mass of 230 to 290 kilodaltons, and a subunit molecular mass of approximately 50 kilodaltons. Four isozymes of the enzyme were identified in the six species of Brassica commonly cultivated. Nonglucosinolate producing species had only low levels of MGAT or an MGAT isozyme which was distinctly different from that in Brassica.  相似文献   

9.
Purification and Properties of 2-Carboxy-d-Arabinitol 1-Phosphatase   总被引:1,自引:1,他引:0  
Carboxyarabinitol 1-phosphatase (2-carboxy-d-arabinitol 1-phosphate phosphohydrolase), a chloroplast enzyme that metabolizes the naturally occurring inhibitor of ribulose-1,5-bisphosphate carboxylase/oxygenase, was isolated from tobacco (Nicotiana tabacum) leaves. The enzyme was purified more than 3500-fold using a protocol that included ammonium sulfate fractionation and gel filtration, ion-exchange, and hydrophobic interaction chromatography. Analysis of the final preparation by sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed the presence of a single polypeptide with a molecular mass of 53 kilodaltons. The enzyme exhibited an apparent Km (carboxyarabinitol 1-phosphate) of 33 micromolar and a pH optimum of 7.5. Enzyme activity did not require divalent cations and was unaffected by the metal chelators EDTA and cysteine. Carboxyarabinitol 1-phosphatase activity was inhibited by zinc, copper and molybdate and stimulated by sulfate. Chloroplast metabolites that affected activity included inorganic phosphate and ATP, which were inhibitory, and ribulose-1,5-bisphosphate, fructose-1,6-bisphosphate and NADPH which stimulated activity 2.5-fold. Activation of carboxyarabinitol 1-phosphatase activity by these positive effectors, together with the previously reported requirement for dithiothreitol, explain the light/dark modulation of carboxyarabinitol 1-phosphatase activity in vivo.  相似文献   

10.
In Vitro Biosynthesis of Vicia faba Polyphenoloxidase   总被引:4,自引:4,他引:0       下载免费PDF全文
Poly A+ mRNA was isolated from Vicia faba leaves and translated in vitro using a rabbit reticulocyte translation system. From analysis of the total translation products, the major proteins synthesized in vitro were 32 kilodaltons and 20 kilodaltons. When antibodies to Vicia faba polyphenoloxidase were added, a specific immunoprecipitable protein was observed. This protein's molecular weight was shown to be similar to that of the isolated enzyme (45 kilodaltons). The isolated enzyme successfully competed with the in vitro synthesized product for antipolyphenoloxidase. In addition, the in vitro synthesized product was not immunoprecipitated with antitomato peroxidase and comigrated with isolated and/or iodinated enzyme in sodium dodecylsulfate-polyacrylamide gel electrophoresis. Using in vitro translation and specific immunoprecipitation, a primary translation product corresponding to Vicia faba polyphenoloxidase was identified as a 45 kilodaltons protein.  相似文献   

11.
A method is described for the purification of glutamine synthetase (GS; EC. 6.3.1.2) from the leaves and roots of Pinus banksiana Lamb., a conifer which utilizes ammonium as its primary nitrogen source. The enzyme was purified to apparent homogeneity by a procedure involving salt fractionation as well as ion-exchange, size exclusion, and affinity chromatography. Since the final preparation produced two bands on SDS polyacryamide gels but only one band on a nondenaturating gel, it is concluded that the two subunits (44 and 40 kilodaltons, respectively) are part of a single enzymatic protein which shows GS activity. The pH optimum for leaf GS ranged between 6.2 and 6.5, one pH unit lower than the values reported for higher plants which utilize primarily nitrate nitrogen. Magnesium requirements for GS in P. banksiana were different for leaves and roots, showing Vmax/2 values of 2.5 and 8 millimolar, respectively at 5 millimolar ATP. Furthermore, Km values for ammonium were higher for the enzyme in leaves (33.1 micromolar) than in roots (19.2 micromolar). Km values for ATP and for glutamate, on the other hand, were similar for the two tissues. A polyclonal antibody was produced against the purified leaf GS. Western blots of leaf homogenates produced two bands, the lighter one being more abundant. The same pattern was found when immunodetection was performed using an anti GS IgG produced against purified GS from Phaseolus nodules thus indicating common antigenic determinants. At least 30% of total GS was recovered in a plastid-fraction of dark-grown calli produced from the basal part of P. banksiana hypocotyls.  相似文献   

12.
Acetyl-CoA carboxylase from the diatom Cyclotella cryptica has been purified to near homogeneity by the use of ammonium sulfate fractionation, gel filtration chromatography, and affinity chromatography with monomeric avidin-agarose. The specific activity of the final preparation was as high as 14.6 micromoles malonyl-CoA formed per milligram protein per minute, indicating a 600-fold purification. Native acetyl-CoA carboxylase has a molecular weight of approximately 740 kilodaltons and appears to be composed of four identical biotin-containing subunits. The enzyme has maximal activity at pH 8.2, but enzyme stability is greater at pH 6.5. Km values for MgATP, acetyl-CoA, and HCO3- were determined to be 65, 233, and 750 micromolar, respectively. The purified enzyme is strongly inhibited by palmitoyl-CoA, and is inhibited to a lesser extent by malonyl-CoA, ADP, and phosphate. Pyruvate stimulates enzymatic activity to a slight extent. Acetyl-CoA carboxylase from Cyclotella cryptica is not inhibited by cyclohexanedione or aryloxyphenoxypropionic acid herbicides as strongly as monocot acetyl-CoA carboxylases; 50% and 0% inhibition was observed in the presence of 23 micromolar clethodim and 100 micromolar haloxyfop, respectively.  相似文献   

13.
《Plant science》1986,44(2):119-123
The low activity of ribulose bisphosphate carboxylase from darkened soybean (Glycine max [L.] Merr. cv. Bragg) leaves was not raised to the level of that from leaves in the light by CO2 and Mg2+, even after a 4-h incubation. The extract of darkened leaves, unlike the extract from illuminated leaves, was not fully CO2/Mg2+-activatable after Sephadex gel filtration in the absence of Mg2+. (NH4)2SO4 fractionation eliminated the inhibition effect found in the dark extracts resulting in similar rates for the extracts obtained from leaves in the dark and light. Although the Vmax values of the gel-filtered extracts from dark and light leaves differed by 3-fold, the Km(CO2)-values were the same (12.7 μM), as were the Km(RuBP)-values (250 μM). These data support the hypothesis that for soybean leaves in the dark a tightly-binding inhibitor renders much of the ribulose bisphosphate carboxylase enzyme catalytically non-functional.  相似文献   

14.
15.
Ferredoxin-dependent sulfite reductase (Fd-SiR) (EC 1.8.7.1) was purified about 1136-fold, with a yield of 11%, from fresh thalli of Porphyra yezoensis by a procedure involving ammonium sulfate precipitation, DEAE-cellulose chromatography, Buty 1-Toyopearl chromatography, Sephadex G-100 gel filtration and ferredoxin-Sepharose affinity chromatography. The purified enzyme was apparently homogeneous, as judged on polyacrylamide disc gel electrophoresis, with a specific activity of 100 units/mg of protein. The molecular weight of the enzyme was estimated to be 70 kilodaltons by gel filtration. On subunit analysis by SDS-PAGE, a single band corresponding to molecular weight of 65 kilodaltons appeared. The purified enzyme (Fd-SiR) showed 5-times higher ferredoxin-dependent activity than methyl viologen-linked activity. In the oxidized form, the enzyme exhibited absorption maxima at 278, 390 (Soret band), 586 (a band) and 714 (CT band) nm, indicating that siroheme is involved in the catalysis of sulfite reduction. The absorbance ratios, A390: A218 and A586 :A390, were 0.32 and 0.31, respectively. A plot of the substrate (sulfite) and electron donor (ferredoxin) concentrations versus enzymatic (Fd-SiR) activity yielded sigmoidal curves, giving Hill coefficients («) of 2.3 (for sulfite) and 2.7 (for ferredoxin), respectively. Antibody against the isolated enzyme was raised in rabbits. Analysis of the antiserum by immunodiffusion suggested that it was specific against isolated Fd-SiR. Using the antiserum, dot immunoblotting was performed to determine the immunological similarity of Fd-SiRs from Porphyra yezoensis, Spirulina platensis, Brassica chinensis and Spinacia oleracea. The tests revealed that the four forms of assimilatory Fd-SiR have antigenic determinants in common.  相似文献   

16.
17.
A cysteine endopeptidase (EC 3.4.22.-) present in cotyledons of mung bean (Vigna radiata) seedlings was purified to homogeneity, as judged by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). This proteinase has an apparent molecular mass of 33 kilodaltons as estimated by SDS-PAGE and belongs to the class of cysteine proteinases as judged by the effects of various proteinase inhibitors on the activity of the enzyme. When proangiotensin is used as a substrate, the enzyme preferentially hydrolyzes the peptide bonds formed by the amino group of Leu or lle in this oligopeptide chain; for the enzyme to cleave those bonds, peptide sequences consisting of at least three amino acid residues on the amino side of Leu or lle must be present. The proteinase readily digests globulin present in mung bean cotyledons to smaller polypeptides.  相似文献   

18.
A 45-fold purification of uricase (urate:O2 oxidoreductase, EC 1.7.3.3) from soybean root nodules by ammonium sulfate fractionation, gel filtration, and affinity chromatography is described. Electrophoresis on nondenaturing gels using an activity stain or on sodium dodecyl sulfate (SDS) gels demonstrated that the enzyme obtained was nearly homogeneous. The subunit molecular weight of uricase estimated from SDS gels was 32,000 ± 3000. Gel-filtration studies indicated that the native enzyme is a monomer at pH 7.5 which associates to form a dimer at pH 8.8. Enzyme activity was stabilized by the addition of dithiothreitol. The pH dependence of the enzyme showed an optimum of 9.5. Initial rate kinetics showed Km values of 10 and 31 μm for uric acid and oxygen, respectively, with an intersecting pattern of substrate dependence. Uricase activity was inhibited strongly by xanthine, which was competitive with respect to uric acid (Ki = 10 μm). No significant inhibition was observed in the presence of a variety of amino acids, ammonium, adenine, or allopurinol, in contrast with results reported for the cowpea enzyme. Gel-filtration chromatography and SDS-gel electrophoresis of uricase purified by the same method from cowpea nodules indicated that the native enzyme exists as a monomer of Mr 50,000 at pH 7.5.  相似文献   

19.
Blank A  McKeon TA 《Plant physiology》1991,97(4):1402-1408
We have described three RNases in wheat leaves (Triticum aestivum L. cv Chinese Spring) and developed assays for measuring each RNase individually in crude leaf extracts. We initially used activity staining in sodium dodecyl sulfate-polyacrylamide gels to characterize RNases in extracts of primary and flag leaves. We thus identified acid RNase (EC 3.1.27.1, here designated RNase WLA), and two apparently novel enzymes, designated RNases WLB and WLC. RNase WLB activity displays a distinctive isozyme pattern, a molecular mass of 26 kilodaltons (major species), a broad pH range with an optimum near neutrality, insensitivity to EDTA, and stimulation by moderate concentrations of KCl and by MgCl2. RNase WLC activity exhibits a molecular mass of 27 kilodaltons, a neutral pH optimum, insensitivity to EDTA, and inhibition by KCl, MgCl2, and tri-(hydroxymethyl)aminomethane. Based on distinctive catalytic properties established in gels, we designed conventional solution assays for selective quantitation of each RNase activity. We used the assays to monitor the individual RNases after gel filtration chromatography and native gel electrophoresis of extracts. In accompanying work, we used the assays to monitor RNases WLA, WLB, and WLC, which are present in senescent and nonsenescent leaves, during the course of leaf senescence.  相似文献   

20.
Polyamine oxidase from water hyacinth: purification and properties   总被引:6,自引:2,他引:4       下载免费PDF全文
Polyamine oxidase was purified to homogeneity from leaves of water hyacinth by the criterion of sodium dodecyl sulfate gel electrophoresis (SDS disc PAGE). The enzyme showed a high specificity for spermidine and spermine (Km values 28 micromolar and 20 micromolar, respectively). The optimal pH of the enzyme for both spermidine and spermine was 6.5. The molecular weight of the enzyme estimated by Sephadex G-200 gel filtration was 87,000, while SDS disc PAGE gave a single band at the molecular weight of 60,000. Octamethylenediamine and quinacrine were strong inhibitors of the enzyme, but p-chloromercuribenzoate was without effect. A prosthetic group in the enzyme was identified as flavin adenine dinucleotide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号