首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Pleistocene glacial cycles resulted in significant changes in species distributions, and it has been discussed whether this caused increased rates of population divergence and speciation. One species that is likely to have evolved during the Pleistocene is the Norwegian lemming (Lemmus lemmus). However, the origin of this species, both in terms of when and from what ancestral taxon it evolved, has been difficult to ascertain. Here, we use ancient DNA recovered from lemming remains from a series of Late Pleistocene and Holocene sites to explore the species' evolutionary history. The results revealed considerable genetic differentiation between glacial and contemporary samples. Moreover, the analyses provided strong support for a divergence time prior to the Last Glacial Maximum (LGM), therefore likely ruling out a postglacial colonization of Scandinavia. Consequently, it appears that the Norwegian lemming evolved from a small population that survived the LGM in an ice‐free Scandinavian refugium.  相似文献   

2.
The biosphere has greatly shaped the past evolution of the Earth system. Here I argue that life evolved to maximize planetary entropy production. The evolution of the Earth system through time has thus evolved as far away from thermodynamic equilibrium as possible. I describe the implications of this hypothesis for the evolution of the global cycles of water and carbon and the implied consequences for biospheric evolution. This thermodynamic perspective of Earth’s biospheric evolution extends the views of Vernadski and Lovelock and puts it on a quantitative foundation.  相似文献   

3.
Multivariate analyses of 393 butterfly species over 85 geographical areas (R- and Q-data matrices) in Europe and North Africa have produced a consistent pattern of faunal structures (units and regions). Prominent features to emerge are the latitudinal zonation of geographical units and the division of the Mediterranean into western and eastern components; southwards in Europe, endemicity increases whereas faunal structures decrease in spatial dimensions. Central Europe–from the Urals to the British Isles–forms a single large faunal structure (extent unit and region). A model has been constructed to account for Pleistocene evolutionary changes and endemism in European butterflies and for the east-west taxonomic divisions in the extent faunal structure which dominates central Europe. Periodic Pleistocene climatic changes have resulted in cycles of population extinction, isolation, evolution and migration, but the nature and timing of events has depended on the environmental tolerances of species belonging to different faunal units. During Pleistocene glaciations, southern species have been relatively static and more isolated and have evolved independently. By comparison, northern species have been more mobile and have migrated over large distances. Contact and hybrid zones among cosmopolitan species in northern Europe are probably of some antiquity. They result from persistent survival and isolation of refuge populations in the west and east Mediterranean during glacial phases; dispersal from these refuges leads to their regeneration during each interglacial.  相似文献   

4.
Switching from one host to the next is a critical life-history transition in parasites with complex life cycles. Growth and mortality rates are thought to influence the optimal time and size at transmission, but these rates are difficult to measure in parasites. The parasite life cycle, in particular the trophic link along which transmission occurs, may be a reasonable proxy for these rates, leading to the hypothesis that life cycle should shape life-history strategy. We compiled data on the size and age at infectivity for trophically transmitted helminths (i.e., acanthocephalans, cestodes, and nematodes), and then categorized species into trophic links (e.g., planktonic crustaceans to fish, insects to terrestrial vertebrates, etc.). Comparative analyses that explicitly included stabilizing selection within trophic links fit the data significantly better than random walk models, indicating that parasites with different life cycles have different optimal times/sizes for host switching. The major helminth groups have often independently evolved similar life cycles, and we show that this has frequently led to convergent and/or parallel evolution of size and age at infectivity. This suggests that for particular life cycles there are universal optimal transmission strategies, applicable to widely divergent taxa, although the cases of parallelism might indicate that lineage-specific constraints sometimes prevent evolution to a single adaptive peak.  相似文献   

5.
Complex life cycles are a hallmark of parasitic trematodes. In several trematode taxa, however, the life cycle is truncated: fewer hosts are used than in a typical three-host cycle, with fewer transmission events. Eliminating one host from the life cycle can be achieved in at least three different ways. Some trematodes show even more extreme forms of life cycle abbreviations, using only a mollusc to complete their cycle, with or without sexual reproduction. The occurrence of these phenomena among trematode families are reviewed here and show that life cycle truncation has evolved independently many times in the phylogeny of trematodes. The hypotheses proposed to account for life-cycle truncation, in addition to the factors preventing the adoption of shorter cycles by all trematodes are also discussed. The study of shorter life cycles offers an opportunity to understand the forces shaping the evolution of life cycles in general.  相似文献   

6.
Giovanni Strona 《Oikos》2015,124(6):685-690
Most parasites with complex life cycles exploit trophic webs to pass from host to host in order to develop and, eventually, reproduce. Thus predation constitutes the necessary route for transmission. Conversely, the transmission of parasites that use a single host to develop and reproduce should be, in principle, not particularly affected by host trophic ecology. Here I challenge this view, showing that predation may be relevant also for direct lifecycle parasites. I used a large dataset of fish trophic interactions to investigate if the degree of monogenean species overlap in predators and prey deviated from randomness. I demonstrated that predators and prey often share more monogenean parasite genera than explained by host habitat ecology, geographical distribution and phylogeny. This suggests that predation may play an important role in promoting monogenean host range expansion. In addition, a non‐negligible proportion of considered prey–predator pairs showed a significantly high overlap in their monogenean parasites at the species level. This may indicate a tendency of some monogenean parasites to evolve transmission strategies targeted towards host interactions. If this hypothesis is true, these monogenean parasites would be much more vulnerable to co‐extinction than previously thought. Synthesis Predation is not expected to play an important role in the ecology and evolution of simple life cycle parasites. Yet, several predator fish tend to share with their prey more monogenean parasites than one would expect predicted from their geographical distribution, habitat preference, and or phylogenetic relationships. This suggests that some monogenean parasites have evolved transmission strategies more targeted towards host interactions than towards species‐specific traits. If this hypothesis is supported, it would have strong implications on host–parasite evolutionary ecology, primarily, suggesting the existence of peculiar situations where some parasites have evolved high specialized host finding behaviors to expand their host range.  相似文献   

7.
The silver saxifrages (Saxifraga sect. Ligulatae Haworth; Saxifragaceae) exhibit remarkable variation of substrate specialization, with strictly calcicole to calcifuge species, as well as life histories which range from semelparity to iteroparity. They occur almost exclusively in the European mountain ranges and display high levels of endemism. Sequences from chloroplast and nuclear ribosomal DNA were obtained to resolve phylogenetic relationships among the silver saxifrages and related taxa and to gain insight into the evolution of substrate specificity, life history, and biogeography. The resulting phylogenies suggested that (1) Saxifraga sect. Ligulatae, as traditionally defined, does not constitute a monophyletic group; (2) lime-secreting hydathodes in calcifuge species apparently represent a secondary nonaptation; (3) semelparity evolved independently two or three times in the silver saxifrages and allied sections, possibly in response to climatic changes that occured during the Pleistocene; and (4) narrow endemics, for example S. cochlearis, likely evolved from the fragmentation of the widespread S. paniculata into refugial populations that became isolated during the glacial maxima of the Pleistocene.  相似文献   

8.
猿人洞的溶洞演化和堆积旋回与北京猿人生活环境   总被引:4,自引:1,他引:3  
猿人洞的溶洞演化过程按岩溶洞穴发生发展规律可划分为6个阶段.在洞穴发育的填充过程中,依据堆积物的成因类型,猿人洞中的中更新世洞穴堆积层可分为7个堆积旋回.每个堆积旋回可与年代相当的黄土堆积旋回和深海气候旋回—一对应.堆积旋回所显示的气候和洞穴环境变化均与北京猿人生活环境及其旧石器文化的发展有着密切的关系.  相似文献   

9.
Evolution after the flood: phylogeography of the desert fish Utah Chub   总被引:1,自引:0,他引:1  
The Bonneville Basin and upper Snake River drainage of western North America underwent extensive hydrological changes during the late Pleistocene, potentially influencing the geographic distribution and evolutionary trajectories of aquatic species that occupied this region. To test this hypothesis, I reconstructed the phylogeographic history of the desert fish Utah chub (Gila atraria) by examining 16 populations that span the natural distribution of this species across the Bonneville Basin and upper Snake River. I compared mitochondrial control region sequences (934 bp) among 77 individuals revealing 24 unique haplotypes. Geographic and phylogenetic relationships among haplotypes were explored using parsimony, maximum likelihood, nested clade analysis, and analysis of molecular variance. I found that G. atraria is composed of two distinct clades that represent an early Pleistocene split between the upper Snake River and Bonneville Basin. Within each of these clades, geographic structuring was highly concordant with the hydrological history of late Pleistocene Lake Bonneville and the upper Snake River, suggesting that glacial-induced shifts in climate and unpredictable geological events have played a major role in shaping genetic subdivision among populations. To examine the effects of vicariant events on phenotypic divergence among Utah chub populations, I mapped chub life histories to the control region haplotype network. I found a nonrandom association between haplotypes and life-history phenotypes. These results suggest that historical events responsible for population fragmentation may have also contributed to phenotypic shifts in life histories, both indirectly by limiting gene flow among populations and directly by altering the selective environments where populations persisted.  相似文献   

10.
Neanderthals inhabited Western Eurasia from approximately 300 to 30 thousand years ago (ka). They are distinguished by a unique combination of anatomical traits, and are commonly associated with Middle Paleolithic lithic industries. Current consensus among paleoanthropologists is that they represented a separate Eurasian human lineage, which evolved in isolation from the rest of the Old World and which shared a common ancestor with modern humans in the Middle Pleistocene. It is thought that some aspects of the distinctive Neanderthal anatomy evolved in response to selection related to the extreme cold of the European glacial cycles. Nevertheless, genetic drift seems to be partially responsible for the evolution of these traits. The last appearance of Neanderthals in the fossil record ca. 30 ka BP dates a few millennia after the first appearance of modern humans in Europe. The retrieval of ancient mitochondrial and, more recently, nuclear DNA from Neanderthal fossil puts us in the unique position to combine fossil with genetic evidence to address questions about their evolution, paleobiology and eventual fate.  相似文献   

11.
Many species of marine algae have life cycles that involve multipleseparate, free-living phases that frequently differ in ploidylevels. These complex life cycles have received increasing scientificattention over the past few decades, due to their usefulnessfor both ecological and evolutionary studies. I present a synthesisof our current knowledge of the ecological functioning and evolutionaryimplications of the isomorphic, biphasic life cycles commonlyfound in many species of marine algae. There are both costsand benefits to life cycles with 2 morphologically similar butseparate, free-living phases that differ in ploidy levels (haploidsand diploids). Evolutionary theory predicts that the existenceof subtle yet important differences between the phases may bewhat allows these life cycles to be maintained. Different phasesof the same species can vary in abundance, in demographic parameterssuch as mortality and fecundity, in their physiology, and intheir resistance to herbivory. Some taxonomic groups withinthe red algae have received significant attention toward theseissues, while our knowledge of these properties for brown andgreen algae remains limited.  相似文献   

12.
There has a been a resurgence of debate on whether the Pleistocene glaciations inhibited speciation. This study tests a model of Pleistocene speciation, estimating the phylogenetic relationships and divergence times of 10 species of montane grasshoppers, genus Melanoplus, using 1300 bp of the mitochondrial gene cytochrome oxidase I (COI). Based on average pairwise distances (corrected for multiple substitutions using Kimura's two-parameter model), all species appear to have originated within the Pleistocene. Sequence divergences between species are less than 4%, corresponding to divergence times less than 1.7 million years ago. Branching patterns among the species suggest that speciation was associated with more than one glacial-interglacial cycle. A likelihood-ratio test rejected a model of simultaneous species origins, the predicted branching pattern if species arose from the fragmentation of a widespread ancestor. These grasshoppers live in an area that was previously glaciated and, as inhabitants of the northern Rocky Mountain sky islands, underwent latitudinal and probably altitudinal shifts in distribution in response to climatic fluctuations. Given the repeated distributional shifts and range overlap of the taxa, there most likely has been ample opportunity for population mixing. However, despite periodic glacial cycles, with more than 10 major glaciations over the past million years and climatic fluctuations over as short a time scale as 10(3) to 10(4) years, the dynamic history of the Pleistocene did not preclude speciation. Although relationships among some taxa remain unresolved, these grasshopper species, even with their recent origins, exhibit genetic coherence and monophyletic or paraphyletic gene trees. The frequency of glacial cycles suggests that the speciation process must have been extremely rapid. These species of grasshoppers are morphologically very similar, differing primarily in the shape of the male genitalia. These characters are posited to be under sexual selection, may play an important role in reproductive isolation, and are known to diverge rapidly. This suggests the rapidity of evolution of reproductive isolation may determine whether species divergences occurred during the Pleistocene glaciations.  相似文献   

13.
E Orias 《Bio Systems》1991,25(1-2):67-73
Karyorelict ciliates have near diploid somatic nuclei (macronuclei) incapable of division. If selective pressure favors nuclear division, how could such macronuclei have evolved? I propose that they initially evolved in the context of a diplophase stage that consisted entirely of a non-dividing trophont that was terminated by the induction of meiosis. The diploid macronucleus then differentiated, functioned and was destroyed in the absence of cell division. Such a life cycle would necessarily be heterophasic, i.e. with alternating haploid and diploid generations. I call these ancestors heterophasic ciliates. I further propose that the ability of this diploid trophont to undergo binary fission arose de novo. Ciliate binary fission would then be a derived characteristic, which possibly evolved indepedently in more than one heterophasic ciliate lineage. A progression of steps, leading to the reduction of the haplophase and the generation of the karyorelict life cycle, is proposed. The shared possession of nuclear dimorphism with non-dividing macronuclei, conjugation, and a putative heterophasic ancestry invites further investigation of the phylogenetic relationship between heterokaryotic foraminifera and karyorelict ciliates.  相似文献   

14.
Population genetics and phylogeography of the African buffalo (Syncerus caffer) are inferred from genetic diversity at mitochondrial D-loop hypervariable region I sequences and a Y-chromosomal microsatellite. Three buffalo subspecies from different parts of Africa are included. Nucleotide diversity of the subspecies Cape buffalo at hypervariable region I is high, with little differentiation between populations. A mutation rate of 13-18% substitutions/million years is estimated for hypervariable region I. The nucleotide diversity indicates an estimated female effective population size of 17 000-32 000 individuals. Both mitochondrial and Y-chromosomal diversity are considerably higher in buffalo from central and southwestern Africa than in Cape buffalo, for which several explanations are hypothesized. There are several indications that there was a late middle to late Pleistocene population expansion in Cape buffalo. This also seems to be the period in which Cape buffalo evolved as a separate subspecies, according to the net sequence divergence with the other subspecies. These two observations are in agreement with the hypothesis of a rapid evolution of Cape buffalo based on fossil data. Additionally, there appears to have been a population expansion from eastern to southern Africa, which may be related to vegetation changes. However, as alternative explanations are also possible, further analyses with autosomal loci are needed.  相似文献   

15.
Marin  Victor 《Hydrobiologia》1988,167(1):161-168
Previous analyses of the life cycles and distributions of large antarctic copepods have concluded that competitive exclusion is the most important causal factor. It has been suggested that these species have asynchronous life cycles, their reproduction differing in time as a result of their interspecific interaction. I have analyzed these ideas by studying zooplankton samples collected by six expeditions in the Atlantic sector of the Antarctic ocean between 1963 and 1985. The results show no evidence of asynchronism among the species analyzed. An alternative hypothesis (independent life cycles), in which no competitive interactions are considered, is presented.Contribution No. 94 of the Alfred Wegener Institute for Polar and Marine Research, Bremerhaven.  相似文献   

16.
The hawkmoth genus Hyles is one of 15 genera in the subtribe Choerocampina of the subfamily Macroglossinae. Due to a remarkable uniformity, morphological characters usually used to identify and classify Lepidoptera at the species level cannot be used in this genus. Instead, we used DNA sequences comprising about 2300 bp derived from the mitochondrial genes COX I, COX II, and tRNA-leucine to elucidate the phylogeny of Hyles. The results corroborate the monophyly of Hyles but conflict with previous internal classifications of the genus based on morphology. Hyles seems to have evolved in the Neotropics during the Oligocene/Eocene epochs and the molecular data (which evolved clock-like) confirm the hypothesis that it is a very young genus that radiated on a global scale rather quickly. We hypothesize its sister group to be one of the genera Deilephila, Theretra or Xylophanes. The Nearctic may have been colonized rapidly by Hyles once the land bridge formed during the Pliocene, since within this same Epoch, the invasion of the Palaearctic appears to have proceeded from the East, via the Bering route. The colonization of Australia appears to have occurred rather early in Hyles radiation, although the route is not clear. We propose that the radiation of the Hyles euphorbiae-complex s. str. (HEC) occurred as recently as the Pliocene/Pleistocene boundary and that its roots can still be reconstructed in Asia. Hyles dahlii is closely related to the HEC, but a sister group relationship to the HEC s. str. cannot be corroborated unequivocally. HEC population ranges appear to have tracked climate oscillations during the Pleistocene Ice Ages, resulting in hybridization around the Mediterranean Sea as they repeatedly intermingled. Comparison of the phylogeny with food plant affiliations leads us to hypothesize that Euphorbia monophagy evolved at least two times independently within Hyles.  相似文献   

17.
Parthenogenetic organisms are all female and reproduce clonally. The transition from sex to parthenogenesis is frequently associated with a major change in geographical distribution, often biasing parthenogenetic lineages towards environments that were severely affected by the glacial cycles of the Late Pleistocene. It is difficult to interpret these patterns as arising simply as a result of selection for the demographic effects of parthenogenesis because many parthenogenetic organisms are also hybrids. Here, I argue that many cases of geographical parthenogenesis might be best seen as part of a broader pattern of hybrid advantage in new and open environments. Parthenogenesis in these cases could have a more secondary role of stabilizing strongly selected hybrid genotypes. In this context, geographical parthenogenesis might tell us more about the role of hybridization in evolution than about the role of sex.  相似文献   

18.
In the last few years, improved analytical tools and the integration of genetic data with multiple sources of information have shown that temperate species exhibited more complex responses to ice ages than previously thought. In this study, we investigated how Pleistocene climatic changes affected the current distribution and genetic diversity of European populations of the tick Ixodes ricinus, an ectoparasite with high ecological plasticity. We first used mitochondrial and nuclear genetic markers to investigate the phylogeographic structure of the species and its Pleistocene history using coalescent‐based methods; then we used species distribution modelling to infer the climatic niche of the species at last glacial maximum; finally, we reviewed the literature on the I. ricinus hosts to identify the locations of their glacial refugia. Our results support the scenario that during the last glacial phase, I. ricinus never experienced a prolonged allopatric divergence in separate glacial refugia, but persisted with interconnected populations across Southern and Central Europe. The generalist behaviour in host choice of I. ricinus would have played a major role in maintaining connections between its populations. Although most of the hosts persisted in separate refugia, from the point of view of I. ricinus, they represented a continuity of ‘bridges’ among populations. Our study highlights the importance of species‐specific ecology in affecting responses to Pleistocene glacial–interglacial cycles. Together with other cases in Europe and elsewhere, it contributes to setting new hypotheses on how species with wide ecological plasticity coped with Pleistocene climatic changes.  相似文献   

19.
The complex life cycles of parasites are thought to have evolved from simple one-host cycles by incorporating new hosts. Nevertheless, complex developmental routes present parasites with a sequence of highly unlikely transmission events in order to complete their life cycles. Some trematodes like Coitocaecum parvum use facultative life cycle abbreviation to counter the odds of trophic transmission to the definitive host. Parasites adopting life cycle truncation possess the ability to reproduce within their intermediate host, using progenesis, without the need to reach the definitive host. Usually, both abbreviated and normal life cycles are observed in the same population of parasites. Here, we demonstrate experimentally that C. parvum can modulate its development in its amphipod intermediate host and adopt either the abbreviated or the normal life cycle depending on current transmission opportunities or the degree of intra-host competition among individual parasites. In the presence of cues from its predatory definitive host, the parasite is significantly less likely to adopt progenesis than in the absence of such cues. An intermediate response is obtained when the parasites are exposed to cues from non-host predators. The adoption of progenesis is less likely, however, when two parasites share the resource-limited intermediate host. These results show that parasites with complex developmental routes have transmission strategies and perception abilities that are more sophisticated than previously thought.  相似文献   

20.
Periodical cicadas (Magicicada spp.) in the USA are divided into three species groups (-decim, -cassini, -decula) of similar but distinct morphology and behavior. Each group contains at least one species with a 17-year life cycle and one with a 13-year cycle; each species is most closely related to one with the other cycle. One explanation for the apparent polyphyly of 13- and 17-year life cycles is that populations switch between the two cycles. Using a numerical model, we test the general feasibility of life cycle switching by the introduction of alleles for one cycle into populations of the other cycle. Our results suggest that fitness reductions at low population densities of mating individuals (the Allee effect) could play a role in life cycle switching. In our model, if the 13-year cycle is genetically dominant, a 17-year cycle population will switch to a 13-year cycle given the introduction of a few 13-year cycle alleles under a moderate Allee effect. We also show that under a weak Allee effect, different year-classes ("broods") with 17-year life cycles can be generated. Remarkably, the outcomes of our models depend only on the dominance relationships of the cycle alleles, irrespective of any fitness advantages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号