首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
After tail and limb amputation in lizard, injection of 5BrdU for 6 days produces immunolabelled cells in most tissues of tail and limb stumps. After further 8 and 16 days, and 14 and 22 days of regeneration, numerous 5BrdU-labelled cells are detected in regenerating tail and limb, derived from most stump tissues. In tail blastema cone at 14 days, sparse-labelled cells remain in proximal dermis, muscles, cartilaginous tube and external layers of wound epidermis but are numerous in the blastema. In apical regions at 22 days of regeneration, labelled mesenchymal cells are sparse, while the apical wound epidermis contains numerous labelled cells in suprabasal and external layers, indicating cell accumulation from more proximal epidermis. Cell proliferation dilutes the label, and keratinocytes take 8 days to migrate into corneous layers. In healing limbs, labelled cells remain sparse from 14 to 22 days of regeneration in wound epidermis and repairing tissues and little labelling dilution occurs indicating low cell proliferation for local tissue repair but not distal growth. Labelled cells are present in epidermis, intermuscle and peri-nerve connectives, bone periosteum, cartilaginous callus and sparse fibroblasts, leading to the formation of a scarring outgrowth. Resident stem cells and dedifferentiation occur when stump tissues are damaged.  相似文献   

2.
The presence of EGF and its receptor during tail regeneration in lizard has been assessed by immunoblotting and immunofluorescence to test whether this growth factor may be involved in the process. Immunolabelled bands at 8 and 42–46 kDa for EGF are detected in the regenerating tail. A main band at 45–50 kDa and other weaker bands at lower or higher molecular weight for the EGF receptor are also present. The results indicate that degraded forms of the protein are present although the specific nature of the different bands could not be determined. Immunofluorescence indicates that EGF-labelled cells and EGF receptor are especially seen in the wound epidermis and in the cytoplasm of ependymal cells. Numerous basal keratinocytes of the wound epidermis and apical epidermal peg contain labelled nuclei for EGFR, suggesting that activated receptor stimulates intense cell proliferation of the wound epidermis. Blastema and labelled myoblasts are occasionally detected in early differentiating muscles, but almost no labelled chondroblasts are present in the differentiating cartilaginous tube. The study indicates that EGF and its receptor are mainly present in epithelial cells in a form that allows them to regulate proliferation during tail regeneration.  相似文献   

3.
4.
The immunolocalization of the muscle segmental homoeobox protein Msx1‐2 of 27–34 kDa in the regenerating tail blastema of a lizard shows prevalent localization in the apical ependyma of the regenerating spinal cord and less intense labelling in the wound epidermis, in the apical epidermal peg (AEP), and in the regenerating segmental muscles. The AEP is a micro‐region of the regenerating epidermis located at the tail tip of the blastema, likely corresponding to the AEC of the amphibian blastema. No immunolabelling is present in the wound epidermis and scarring blastema of the limb at 18–21 days of regeneration, except for sparse repairing muscles. The presence of a proximal–distal gradient of Msx1‐2 protein, generated from the apical ependyma, is suggested by the intensity of immunolabelling. The AEP and the ependyma are believed to induce and maintain tail regeneration, and this study suggests that Msx1‐2 proteins are components of the signalling system that maintains active growth of the tail blastema. The lack of activation and production of Msx1‐2 protein in the limb are likely due to the intense inflammatory reaction following amputation. This study confirms that, like during regeneration in fishes and amphibians, also the blastema of lizards utilizes common signalling pathways for maintaining regeneration.  相似文献   

5.
Using immunocytochemistry at light- and electron-microscope levels, we studied the distribution of three monoclonal antibodies (AE1, AE2, AE3) specific for mammalian alpha-keratins in regenerating lizard epidermis. We also characterized the keratins expressed during this process by immunoblotting after electrophoretic separation. The AE1 antibody is localized in the basal and suprabasal layers of prescaling and scaling epidermis. During the first stages of scale neogenesis, the AE1 antibody also marks the differentiating oberhautchen and beta-layer, but it disappears from these layers as they mature. This antibody does not stain the prekeratinized and keratinized outermost layers in the hinge region. The AE2 antibody labels the superficial wound epidermis, prekeratinizing and keratinized beta- and alpha-layers, but not basal and suprabasal cells. The AE3 antibody labels all living and keratinized epidermal layers, although AE3 immunoreactivity decreases and disappears as the beta-layer matures. The ultrastructural study shows that the AE2 and AE3, but not the AE1, antibodies specifically label small electron-dense areas within the beta-layer, suggesting retention of alpha-keratins. In the stages of tail regeneration examined, immunoblotting with the three antibodies used for the immunolocalization gives a pattern similar to that of the normal epidermis, except distally, where the process of scale differentiation begins. In this region, in addition to the keratin forms discovered in the normal and in proximal regenerating epidermis, an intense low molecular weight band at 40-41 kDa, positive to all three antibodies, is clearly detectable. Furthermore, in the distal region AE1 and AE3 antibodies, but not the AE2, recognize a weak band at 77-78 kDa not present in the normal and proximal epidermis. The localization and the possible role of the different keratins in the regenerating epidermis is discussed.  相似文献   

6.
Immunolabelling for RhoV and actin in early regenerating tail of the lizard Podarcis muralis suggests involvement in epithelial and mesenchymal cell motility. Acta Zoologica, Stockolm. Immunolabelling for RhoV and α‐smooth muscle actin, genes that are highly expressed in the regenerating tail of lizards, shows that a main protein band immunolabelled for RhoV is seen at 65–70 kDa and only a weak band at 22–24 kDa. This suggests that alteration occurred during extraction or is due to biochemical processing of the protein. RhoV immunolabelled cells are present in apical and proximal regenerating epidermis during scale neogenesis. The apical ependyma is labelled but labelling fades and disappears in medial‐proximal regions, near the original spinal cord. Differentiating muscles and cartilage show low labelling. Ultrastructural immunolocalization of RhoV in wound keratinocytes shows labelling in regions containing actin filaments that associate with tonofilaments and desmosomes while a low labelling is present in mesenchymal cells. Filamentous regions of the nucleus, nuclear membrane and the nucleolus are immune‐labelled for RhoV. Similar localization is seen for actin that is present along the perimeters of keratinocytes associated with tonofilaments, in elongations of mesenchymal cells, in muscle satellite cells, endothelial and pericytes of blood vessels. It is suggested that RhoV and actin are associated in the dynamic cytoskeleton needed for the movements of epidermal and mesenchymal cells and in endothelial cells forming new blood vessels.  相似文献   

7.
In the stratum granulosum of mammalian epidermis, histidin-rich proteins (filaggrins) determine keratin clumping and matrix formation into terminal keratinocytes of the stratum corneum. The nature of matrix, interkeratin proteins in the epidermis of nonmammalian vertebrates, and in particular in that of reptilian, mammalian progenitors are unknown. The present biochemical study is the first to address this problem. During a specific period of the renewal phase of the epidermis of lizards and during epidermal regeneration, keratohyalin-like granules are formed, at which time they take up tritiated histidine. The latter also accumulate in cells of the alpha-keratin layer (soft keratin). This pattern of histidine incorporation resembles that seen in keratohyalin granules of the stratum granulosum of mammalian epidermis. After injection of tritiated histidine, we have analysed the distribution of the radioactivity by histoautoradiography and electrophoretic gel autoradiography of epidermal proteins. Extraction and electrophoretic separation of interfilamentous matrix proteins from regenerating epidermis 3-48 hours post-injection reveals the appearance of protein bands at 65-70, 55-58, 40-43, 30-33, 25-27, and 20-22 kDa. Much weaker bands were seen at 100, 140-160, and 200 kDa. A weak band at 20-22 kDa or no bands at all are seen in the normal epidermis in resting phase and in the dermis. In regenerating epidermis at 22 and 48 hours post-injection, little variation in bands is detectable, but low molecular weight bands tend to increase slightly, suggesting metabolic turnover. Using anti-filaggrin antibodies against rat, human, or mouse filaggrins, some cross-reactivity was seen with more reactive bands at 40-42 and 33 kDa, but it was reduced or absent at 140, 95-100, 65-70, 50-55, and 25 kDa. This suggests that different intermediate degradative proteins of lizard epidermis may share some epitopes with mammalian filaggrins and are different from keratins with molecular weight ranging from 40 to 65-68 kDa. The immunocytochemical observation confirms that a weak filaggrin-like immunoreactivity characterizes differentiating alpha-keratogenic layers in normal and regenerating tail. A weak filaggrin labeling is discernable in small keratohyalin-like granules but is absent from the larger granules and from mature keratinocytes. The present results indicate, for the first time, that histidine-rich proteins are involved in the process of alpha-keratinization in reptilian epidermis. The cationic, interkeratin matrix proteins implicated may be fundamentally similar in both theropsid-derived and sauropsid amniotes.  相似文献   

8.
Injury to stratified epithelia causes a strong induction of keratins 6 (K6) and 16 (K16) in post-mitotic keratinocytes located at the wound edge. We show that induction of K6 and K16 occurs within 6 h after injury to human epidermis. Their subsequent accumulation in keratinocytes correlates with the profound reorganization of keratin filaments from a pan-cytoplasmic distribution to one in which filaments are aggregated in a juxtanuclear location, opposite to the direction of cell migration. This filament reorganization coincides with additional cytoarchitectural changes and the onset of re-epithelialization after 18 h post-injury. By following the assembly of K6 and K16 in vitro and in cultured cells, we find that relative to K5 and K14, a well- characterized keratin pair that is constitutively expressed in epidermis, K6 and K16 polymerize into short 10-nm filaments that accumulate near the nucleus, a property arising from K16. Forced expression of human K16 in skin keratinocytes of transgenic mice causes a retraction of keratin filaments from the cell periphery, often in a polarized fashion. These results imply that K16 may not have a primary structural function akin to epidermal keratins. Rather, they suggest that in the context of epidermal wound healing, the function of K16 could be to promote a reorganization of the cytoplasmic array of keratin filaments, an event that precedes the onset of keratinocyte migration into the wound site.  相似文献   

9.
Reptilian scales are mainly composed of alpha-and beta-keratins. Epidermis and molts from adult individuals of an ancient reptilian species, the tuatara (Sphenodon punctatus), were analysed by immunocytochemistry, mono- and bi-dimensional electrophoresis, and western blotting for alpha- and beta-keratins. The epidermis of this reptilian species with primitive anatomical traits should represent one of the more ancient amniotic epidermises available. Soft keratins (AE1- and AE3-positive) of 40-63 kDa and with isoelectric points (pI) at 4.0-6.8 were found in molts. The AE3 antibody was diffusely localised over the tonofilaments of keratinocytes. The lack of basic cytokeratins may be due to keratin alteration in molts, following corneification or enzymatic degradation of keratins. Hard (beta-) keratins of 16-18 kDa and pI at 6.8, 8.0, and 9.2 were identified using a beta-1 antibody produced against chick scale beta-keratin. The antibody also labeled filaments of beta-cells and of the mature, compact beta-layer. We have shown that beta-keratins in the tuatara resemble those of lizards and snakes, and that they are mainly basic proteins. These proteins replace cytokeratins in the pre-corneoum beta-layers, from which a hard, mechanically resistant corneoum layer is formed over scales. Beta-keratins may have both a fibrous and a matrix role in forming the hard texture of corneoum scales in this ancient species, as well as in more recently evolved reptiles.  相似文献   

10.
《Journal of morphology》2017,278(1):119-130
During tail regeneration in lizards, the stratified regenerating epidermis progressively gives rise to neogenic scales that form a new epidermal generation. Initially, a soft, un‐scaled, pliable, and extensible epidermis is formed that is progressively replaced by a resistant but non‐extensible scaled epidermis. This suggests that the initial corneous proteins are later replaced with harder corneous proteins. Using PCR and immunocytochemistry, the present study shows an upregulation in the synthesis of low‐cysteine type I and II alpha‐keratins and of corneous beta‐proteins with a medium cysteine content and a low content in glycine (formerly termed beta‐keratins) produced at the beginning of epidermal regeneration. Quantitative PCR indicates upregulation in the production of alpha‐keratin mRNAs, particularly of type I, between normal and the thicker regenerating epidermis. PCR‐data also indicate a higher upregulation for cysteine‐rich corneous beta‐proteins and a high but less intense upregulation of low glycine corneous protein mRNAs at the beginning of scale regeneration. Immunolabeling confirms the localization of these proteins, and in particular of beta‐proteins with a medium content in cysteine initially formed in the wound epidermis and later in the differentiating corneous layers of regenerating scales. It is concluded that the wound epidermis initially contains alpha‐keratins and corneous beta‐proteins with a lower cysteine content than more specialized beta‐proteins later formed in the mature scales. These initial corneous proteins are likely related to the pliability of the wound epidermis while more specialized alpha‐keratins and beta‐proteins richer in glycine and cysteine are synthesized later in the mature and inflexible scales. J. Morphol. 278:119–130, 2017. ©© 2016 Wiley Periodicals,Inc.  相似文献   

11.
Alibardi L  Toni M 《Tissue & cell》2007,39(5):311-323
Crocodilian keratinocytes accumulate keratin and form a corneous cell envelope of which the composition is poorly known. The present immunological study characterizes the molecular weight, isoelectric point (pI) and the protein pattern of alpha- and beta-keratins in the epidermis of crocodilians. Some acidic alpha-keratins of 47-68 kDa are present. Cross-reactive bands for loricrin (70, 66, 55 kDa), sciellin (66, 55-57 kDa), and filaggrin-AE2-positive keratins (67, 55 kDa) are detected while caveolin is absent. These proteins may participate in the formation of the cornified cell membranes, especially in hinge regions among scales. Beta-keratins of 17-20 kDa and of prevalent basic pI (7.0-8.4) are also present. Acidic beta-keratins of 10-16 kDa are scarce and may represent altered forms of the original basic proteins. Crocodilian beta-keratins are not recognized by a lizard beta-keratin antibody (A68B), and by a turtle beta-keratin antibody (A685). This result indicates that these antibodies recognize specific epitopes in different reptiles. Conversely, crocodilian beta-keratins cross-react with the Beta-universal antibody indicating they share a specific 20 amino acid epitope with avian beta-keratins. Although crocodilian beta-keratins are larger proteins than those present in birds our results indicate presence of shared epitopes between avian and crocodilian beta-keratins which give good indication for the future determination of the sequence of these proteins.  相似文献   

12.
Caffeic acid phenethyl ester (CAPE), a natural compound of bee propolis, selectively inhibits proliferation of transformed cells in several cancer models in vitro. To examine in vivo CAPE function, we used the newt regeneration blastema as a model system wherein the processes of de-differentiation and subsequent proliferation of undifferentiated cells mimic changes associated with oncogenic transformation and tumorigenesis. We have shown that a single dose of CAPE significantly increased cell proliferation at the stages of blastema growth and re-differentiation. At the de-differentiation stage, CAPE significantly stimulated proliferation of wound epidermis keratinocytes, but decreased proliferation in the blastema mesenchyme. Immunohistochemistry with a mesenchymal cell marker, vimentin, revealed a highly significant reduction of vimentin staining in the mesenchyme of CAPE-treated regenerates (p<0.001). These results, together with morphological observations indicate that, at the de-differentiation stage, CAPE stimulated wound re-epithelization, increased keratinocyte proliferation and increased thickness of the wound epidermis. However, CAPE inhibited mesenchyme formation and proliferation. The functional consequence of the CAPE inhibitory action was a delay in limb regeneration.  相似文献   

13.
Injury to epidermis and other stratified epithelia triggers profound but transient changes in the pattern of keratin expression. In postmitotic cells located at the wound edge, a strong induction of K6, K16, and K17 synthesis occurs at the expense of the keratins produced under the normal situation. The functional significance of these alterations in keratin expression is not known. Here, we report that overexpression of a wild-type human K16 gene in a tissue-specific fashion in transgenic mice causes aberrant keratinization of the hair follicle outer root sheath and proximal epidermis, and it leads to hyperproliferation and increased thickness of the living layers (acanthosis), as well as cornified layers (hyperkeratosis). The pathogenesis of lesions in transgenic mouse skin begins with a reorganization of keratin filaments in postmitotic keratinocytes, and it progresses in a transgene level-dependent fashion to include disruption of keratinocyte cytoarchitecture and structural alterations in desmosomes at the cell surface. No evidence of cell lysis could be found at the ultrastructural level. These results demonstrate that the disruption of the normal keratin profile caused by increased K16 expression interferes with the program of terminal differentiation in outer root sheath and epidermis. They further suggest that when present at sufficiently high intracellular levels, K16, along with K6 and K17, appear capable of inducing a reorganization of keratin filaments in the cytoplasm of skin epithelial cells.  相似文献   

14.
The distribution of three anti-cytokeratin (alpha-keratin) antibodies (AE1, AE2, AE3) in the epidermis of a lizard has been studied by immunocytochemistry at light and electron microscope and by immunoblot analysis. This study shows the expression of different keratins in the resting stage epidermis of the lizard Podarcis sicula. In this stage the epidermis has an external beta-layer, an underlying alpha-layer, some layers of living suprabasal cells and a basal stratum germinativum. The AE1 antibody is localized in the basal and suprabasal cells only in the outer scale surface, but is absent from the inner surface, the hinge region and from the keratinized beta- and alpha-layers. The AE2 antibody is mainly localized at the level of the hinge region and of the alpha-layer and gives a lower reaction in the beta-layer. The AE3 antibody is mainly localized in basal and suprabasal cells, lower in the alpha-layer, and absent from the beta-layer. The electron microscope shows that all the three antibodies immunolabel cytoplasmic fibrillar structures in the deep alpha-layers and that AE2 and AE3 antibodies label small electron-dense areas in the external dense beta-layer within the electron-lucid matrix. Immunoblot analysis of the keratins extracted and separated by gel electrophoresis demonstrates the presence of a band of high molecular weight (67-68 kDa) positive to all three antibodies. In addition AE1 antibody recognizes a 44-45 kDa band and a 57-58 kDa band, AE2 recognizes a 60-61 kDa band, and AE3 recognizes a 47 kDa and a 56-57 kDa band. The localization of the keratins identified by immunoblot analysis in the epithelial layers is discussed taking in account the immunolabeling at light and electron microscope. The present study suggests that also in the normal epidermis of this reptiles, in both the alpha- and the beta-layer, the molecular masses of keratins increase from the basal to the keratinized layers, a phenomenon which is generalized to adult and embryonic amniotes epidermis.  相似文献   

15.
Lizard scales are composed of alpha-(cyto-) keratins and beta-keratins. The characterization of the molecular weight and isoelectric point (pI) of alpha- and beta-keratins of lizard epidermis (Podarcis sicula) has been done by using two-dimensional electrophoresis, immunoblotting, and immunocytochemistry. Antibodies against cytokeratins, against a chicken scale beta-keratin or against lizard beta-keratin bands of 15-16 kDa, have been used to recognize alpha- and beta-keratins. Acid and basic cytokeratins of 42-67 kDa show a pI from 5.0 to 8.9. This indicates the presence of specific keratins for the formation of the stratum corneum. Main protein spots of beta-keratin at 15-17 kDa, and pI at 8.5, 8.2, and 6.7, and one spot at 10 kDa and pI at 7.3 were recognized. Therefore, beta-keratins are mainly basic proteins, and are used for the formation of the hard corneous layer of the epidermis. Ultrastructural immunocytochemistry confirms that beta-keratin is packed into large and dense bundles of beta-keratin cells of lizard epidermis. The use of a probe against a lizard beta-keratin in situ-hybridization studies confirms that the mRNA for beta-keratins is present in beta-cells and is localized around or even associated with beta-keratin filaments.  相似文献   

16.
The necessity of injury, nerves, and wound epidermis for urodele limb regeneration is well accepted. Whether one or more of these three factors is limiting in amputated nonregenerating limbs of other vertebrates is a problem area in need of resolution. One view, that higher vertebrates possess inadequate innervation for limb regeneration to occur, is not strongly supported by experimental results. Superinnervation of lizard and mammalian limbs fails to elicit limb regeneration. Furthermore, in the well-known cases of mammalian regeneration, deer antlers and rabbit ears, a nerve requirement has not been demonstrated.
In urodeles, the wound epidermis has recently been shown to have the role of maintaining dedifferentiated cells of the amputated limb stump in the cell cycle. The result of this wound epidermal stimulus is a sufficient number of cell divisions such that blastema formation occurs.
We postulate that in amputated limbs of higher vertebrates, the wound epidermis is nonfunctional. Dedifferentiated or undifferentiated cells are not maintained in the cell cycle and blastema formation therefore does not occur. Instead, tissue regeneration occurs precociously due to lack of a cycling stimulus. The scar tissue which forms at the limb tips of nonregenerating vertebrates is the result of a nonfunctional wound epidermis.  相似文献   

17.
Hormone action in newt limb regeneration: insulin and endorphins   总被引:1,自引:0,他引:1  
Although several hormones have been linked to newt limb regeneration, a cohesive hypothesis as to how these hormones control the process is yet to emerge. A critical review of the traditional approaches and a reevaluation of currently operative assumptions and interpretations of results precede the data on insulin and beta-endorphin. Results from in vivo and in vitro experiments on insulin are summarized, showing that insulin not only promotes various cellular events but also is essential for the expression of the mitogenic effect of nerves on cultured newt limb blastemata. Furthermore, the strong likelihood that insulin may be the common link in promoting limb regeneration in hypophysectomized newts that received pituitary hormone replacement therapy or a nutritional supplement is discussed. The status of beta-endorphin in regeneration is also explored. Data are presented to show that vertebrates with regenerating capacity (newts, tadpoles) have higher levels of plasma beta-endorphin than that found in species where the capacity to regenerate is either restricted (frogs) or totally lost (mammals). beta-Endorphin-like immunoreactivity has been localized in the epidermis of a regenerating newt blastema, as well as in the intermediate lobe of the pituitary gland of axolotl, newt, and Xenopus. A possible opiate connection in vertebrate limb regeneration, in particular, wound healing, is discussed.  相似文献   

18.
Alibardi L 《Tissue & cell》2000,32(2):153-162
In the epidermis of lizards, alpha- and beta-keratins are sequentially produced during a shedding cycle. Using pre- and post-embedding immunocytochemistry this study shows the ultrastructural distribution of 3 alpha-keratin antibodies (AE1, AE2, AE3) in the renewing epidermis and in the shedding complex of the regenerating tail of the lizard Podarcis muralis. The AE1 antibody that recognizes acidic low MW keratins is confined to tonofilament bundles in basal and suprabasal cells but is not present in keratinizing beta- and alpha-cells. The AE2 antibody that recognises higher MW keratins weakly stains pre-keratinized cells and intensely keratinized alpha-layers. A weak labeling is present in small electrondense areas within the beta-layer. The AE3 antibody, that recognizes low and high MW basic keratins, immunolabels tonofilament bundles in all epidermal layers but intensely the alpha-keratinizing and keratinized layers (mesos, alpha-, lacunar and clear). Keratohyalin-like granules, present in the clear cells of the shedding layer, are negative to these antibodies so that the cornified clear layer contains keratins mixed with non-keratin material. The AE3 antibody shows that the mature beta-layer and the spinulated folds of the oberhautchen are labeled only in small dense areas among the prevalent electron-pale beta-keratin material. Therefore, some alpha-keratin is still present in the beta-layer, and supports the idea that alpha-keratins (basic) function as scaffold for beta-keratin deposition.  相似文献   

19.
A highly upregulated gene during tail regeneration in lizards is Wnt2b, a gene broadly expressed during development. The present study examines the distribution of Wnt proteins, most likely wnt2b, by western blotting and immunofluorescence in the blastema-cone of lizards using a specific antibody produced against a lizard Wnt2b protein. Immunopositive bands at 48–50 and 18 kDa are present in the regenerative blastema, the latter likely as a degradation product. Immunofluorescence is mainly observed in the wound epidermis, including in the Apical Epidermal Peg where the protein appears localized in intermediate and differentiating keratinocytes. Labeling is more intense along the perimeter of keratinocytes, possibly as a secretory product, and indicates that the high epidermal proliferation of the regenerating epidermis is sustained by Wnt proteins. The regenerating spinal cord forms an ependymal tube within the blastema and shows immunolabeling especially in the cytoplasm of ependymal cells contacting the central canal where some secretion might occur. Also, regenerating nerves and proximal spinal ganglia innervating the regenerating blastema contain this signaling protein. In contrast, the blastema mesenchyme, muscles and cartilage show weak immunolabeling that tends to disappear in tissues located in more proximal regions, close to the original tail. However, a distal to proximal gradient of Wnt proteins was not detected. The present study supports the hypothesis that Wnt proteins, in particular Wnt2b, are secreted by the apical epidermis covering the blastema and released into the mesenchyme where they stimulate cell multiplication.  相似文献   

20.
In amphibian epidermis mucus is thought to constitute the matrix material that links keratin filaments present in cells of the corneous layer. As contrast in mammals, and perhaps in all amniotes, histidine-rich proteins form the matrix material. In order to address the study of matrix molecules in the epidermis of the first tetrapods, the amphibians, an autoradiographic and electrophoretic study has been done after administration of tritiated histidine. Histological analysis of amphibian epidermis shows that histidine is taken up in the upper intermediate and replacement layers beneath the corneous layer. Ultrastructural autoradiographic analysis reveals that electron-dense interkeratin material is labeled after administration of tritiated histidine. Electrophoretic analysis of the epidermis shows labeled proteic bands at 58-61, 50-55, 40-45, and some only weakly labeled at 30 and 24-25 kDa at 4-48 hours after injection of tritiated histidine. Keratin markers show that bands at 40-61 kDa contain keratins. Most histidine is probably converted into other amino acids such as glutamate and glutamine that are incorporated into newly synthetized keratins. However, non-keratin histidine-incorporating proteins within the keratin range could also be formed. The bands at 30 and 24-25 kDa suggest that these putative histidine-rich proteins are not keratins. In fact, their molecular weigh is below the range of that for keratins. In contrast with the mammalian condition, but resembling reports for lizard epidermis, putative histidine-rich proteins in amphibians have no high molecular weight precursor. Although filaggrin is not detectable by immunofluorescence in sections of amphibian epidermis, protein extraction, electrophoresis and immunoblotting are more sensitive. In the epidermis of toad and frog, but only occasionally in that of newt, filaggrin cross-reactive proteic bands are seen at 50-55, 40-45, and sometimes at 25 kDa. This suggests that after extraction and unmasking of reactive sites in the epidermis of more terrestrial amphians (anurans), some HRPs with filaggrin-like cross-reactivity are present. The overlap that exists at 50-55 kDa between filaggrin-positive and AE2-positive keratins, but not that at 40-45 kDa further indicate that non-keratin, filaggrin-like proteins may be present in anuran epidermis. The present study suggests for the first time that very small amounts of histidine-rich proteins are produced among keratin filaments in upper intermediate, replacement and corneous layers of amphibian epidermis. Although the molecular composition of these proteins is unknown, precluding understanding of their relationship to those of mammals and reptiles, these cationic proteins might have originated in conjunction with the formation of a horny layer during the adaptation to land during the Carboniferous and were possibly refined later in the epidermis of amniotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号