首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein recognition is one of the most challenging and intriguing problems in structural biology. Despite all the available structural, sequence and biophysical information about protein-protein complexes, the physico-chemical patterns, if any, that make a protein surface likely to be involved in protein-protein interactions, remain elusive. Here, we apply protein docking simulations and analysis of the interaction energy landscapes to identify protein-protein interaction sites. The new protocol for global docking based on multi-start global energy optimization of an all-atom model of the ligand, with detailed receptor potentials and atomic solvation parameters optimized in a training set of 24 complexes, explores the conformational space around the whole receptor without restrictions. The ensembles of the rigid-body docking solutions generated by the simulations were subsequently used to project the docking energy landscapes onto the protein surfaces. We found that highly populated low-energy regions consistently corresponded to actual binding sites. The procedure was validated on a test set of 21 known protein-protein complexes not used in the training set. As much as 81% of the predicted high-propensity patch residues were located correctly in the native interfaces. This approach can guide the design of mutations on the surfaces of proteins, provide geometrical details of a possible interaction, and help to annotate protein surfaces in structural proteomics.  相似文献   

2.
The third dimension for protein interactions and complexes   总被引:7,自引:0,他引:7  
Interaction discovery methods, such as the two-hybrid system and affinity purification, suggest thousands of protein–protein interactions. Structural biology provides atomic details for many interactions but, to date, there has been limited discussion of how these two fields complement each other. Here, we apply a structural perspective to interpret interactions discovered by different techniques. This perspective reveals indirect interactions in two-hybrid systems, instances where molecular labels might obstruct interfaces, and possible explanations for why certain promiscuous proteins interact with many others. It also highlights that some methods favour tight complexes whereas others favour interactions of a more transient nature. We conclude by discussing how a combination of interaction discovery and structural biology will enhance our understanding of complex cellular processes.  相似文献   

3.
Although the identification of protein interactions by high-throughput (HTP) methods progresses at a fast pace, 'interactome' data sets still suffer from high rates of false positives and low coverage. To map the human protein interactome, we describe a new framework that uses experimental evidence on structural complexes, the atomic details of binding interfaces and evolutionary conservation. The structurally inferred interaction network is highly modular and more functionally coherent compared with experimental interaction networks derived from multiple literature citations. Moreover, structurally inferred and high-confidence HTP networks complement each other well, allowing us to construct a merged network to generate testable hypotheses and provide valuable experimental leads.  相似文献   

4.
Structure-based computational methods are popular tools for designing proteins and interactions between proteins because they provide the necessary insight and details required for rational engineering. Here, we first argue that large-scale databases of fragments contain a discrete but complete set of building blocks that can be used to design structures. We show that these structural alphabets can be saturated to provide conformational ensembles that sample the native structure space around energetic minima. Second, we show that catalogs of interaction patterns hold the key to overcome the lack of scaffolds when computationally designing protein interactions. Finally, we illustrate the power of database-driven computational protein design methods by recent successful applications and discuss what challenges remain to push this field forward.  相似文献   

5.
6.
7.
The vast majority of the chores in the living cell involve protein-protein interactions. Providing details of protein interactions at the residue level and incorporating them into protein interaction networks are crucial toward the elucidation of a dynamic picture of cells. Despite the rapid increase in the number of structurally known protein complexes, we are still far away from a complete network. Given experimental limitations, computational modeling of protein interactions is a prerequisite to proceed on the way to complete structural networks. In this work, we focus on the question 'how do proteins interact?' rather than 'which proteins interact?' and we review structure-based protein-protein interaction prediction approaches. As a sample approach for modeling protein interactions, PRISM is detailed which combines structural similarity and evolutionary conservation in protein interfaces to infer structures of complexes in the protein interaction network. This will ultimately help us to understand the role of protein interfaces in predicting bound conformations.  相似文献   

8.

Background

The details of the functional interaction between G proteins and the G protein coupled receptors (GPCRs) have long been subjected to extensive investigations with structural and functional assays and a large number of computational studies.

Scope of review

The nature and sites of interaction in the G-protein/GPCR complexes, and the specificities of these interactions selecting coupling partners among the large number of families of GPCRs and G protein forms, are still poorly defined.

Major conclusions

Many of the contact sites between the two proteins in specific complexes have been identified, but the three dimensional molecular architecture of a receptor-Gα interface is only known for one pair. Consequently, many fundamental questions regarding this macromolecular assembly and its mechanism remain unanswered.

General significance

In the context of current structural data we review the structural details of the interfaces and recognition sites in complexes of sub-family A GPCRs with cognate G-proteins, with special emphasis on the consequences of activation on GPCR structure, the prevalence of preassembled GPCR/G-protein complexes, the key structural determinants for selective coupling and the possible involvement of GPCR oligomerization in this process.  相似文献   

9.
We describe a high-throughput in-cell nuclear magnetic resonance (NMR)-based method for mapping the structural changes that accompany protein-protein interactions (STINT-NMR). The method entails sequentially expressing two (or more) proteins within a single bacterial cell in a time-controlled manner and monitoring the protein interactions using in-cell NMR spectroscopy. The resulting spectra provide a complete titration of the interaction and define structural details of the interacting surfaces at atomic resolution.  相似文献   

10.
11.
Apoptosis is a matter of life and death for cells and both inhibited and enhanced apoptosis may be involved in the pathogenesis of human diseases. The structures of protein-protein complexes in the apoptosis signaling pathway are important as the structural pathway helps in understanding the mechanism of the regulation and information transfer, and in identifying targets for drug design. Here, we aim to predict the structures toward a more informative pathway than currently available. Based on the 3D structures of complexes in the target pathway and a protein-protein interaction modeling tool which allows accurate and proteome-scale applications, we modeled the structures of 29 interactions, 21 of which were previously unknown. Next, 27 interactions which were not listed in the KEGG apoptosis pathway were predicted and subsequently validated by the experimental data in the literature. Additional interactions are also predicted. The multi-partner hub proteins are analyzed and interactions that can and cannot co-exist are identified. Overall, our results enrich the understanding of the pathway with interactions and provide structural details for the human apoptosis pathway. They also illustrate that computational modeling of protein-protein interactions on a large scale can help validate experimental data and provide accurate, structural atom-level detail of signaling pathways in the human cell.  相似文献   

12.
SuperStar is an empirical method for identifying interaction sites in proteins, based entirely on the experimental information about non-bonded interactions, present in the IsoStar database. The interaction information in IsoStar is contained in scatterplots, which show the distribution of a chosen probe around structure fragments. SuperStar breaks a template molecule (e.g. a protein binding site) into structural fragments which correspond to those in the scatterplots. The scatterplots are then superimposed on the corresponding parts of the template and converted into a composite propensity map.The original version of SuperStar was based entirely on scatterplots from the CSD. Here, scatterplots based on protein-ligand interactions are implemented in SuperStar, and validated on a test set of 122 X-ray structures of protein-ligand complexes. In this validation, propensity maps are compared with the experimentally observed positions of ligand atoms of comparable types. Although non-bonded interaction geometries in small molecule structures are similar to those found in protein-ligand complexes, their relative frequencies of occurrence are different. Polar interactions are more common in the first class of structures, while interactions between hydrophobic groups are more common in protein crystals. In general, PDB and CSD-based SuperStar maps appear equally successful in the prediction of protein-ligand interactions. PDB-based maps are more suitable to identify hydrophobic pockets, and inherently take into account the experimental uncertainties of protein atomic positions. If the protonation state of a histidine, aspartate or glutamate protein side-chain is known, specific CSD-based maps for that protonation state are preferred over PDB-based maps which represent an ensemble of protonation states.  相似文献   

13.
Empirical or knowledge‐based potentials have many applications in structural biology such as the prediction of protein structure, protein–protein, and protein–ligand interactions and in the evaluation of stability for mutant proteins, the assessment of errors in experimentally solved structures, and the design of new proteins. Here, we describe a simple procedure to derive and use pairwise distance‐dependent potentials that rely on the definition of effective atomic interactions, which attempt to capture interactions that are more likely to be physically relevant. Based on a difficult benchmark test composed of proteins with different secondary structure composition and representing many different folds, we show that the use of effective atomic interactions significantly improves the performance of potentials at discriminating between native and near‐native conformations. We also found that, in agreement with previous reports, the potentials derived from the observed effective atomic interactions in native protein structures contain a larger amount of mutual information. A detailed analysis of the effective energy functions shows that atom connectivity effects, which mostly arise when deriving the potential by the incorporation of those indirect atomic interactions occurring beyond the first atomic shell, are clearly filtered out. The shape of the energy functions for direct atomic interactions representing hydrogen bonding and disulfide and salt bridges formation is almost unaffected when effective interactions are taken into account. On the contrary, the shape of the energy functions for indirect atom interactions (i.e., those describing the interaction between two atoms bound to a direct interacting pair) is clearly different when effective interactions are considered. Effective energy functions for indirect interacting atom pairs are not influenced by the shape or the energy minimum observed for the corresponding direct interacting atom pair. Our results suggest that the dependency between the signals in different energy functions is a key aspect that need to be addressed when empirical energy functions are derived and used, and also highlight the importance of additivity assumptions in the use of potential energy functions.  相似文献   

14.
RNase A has been extensively used as a model protein in several biophysical and biochemical studies. Using the available structural and biochemical results, RNase A-UpA interaction has been computationally modeled at an atomic level. In this study, the molecular dynamics (MD) simulations of native and UpA bound RNase A have been carried out. The gross dynamical behavior and atomic fluctuations of the free and UpA bound RNase A have been characterized. Principal component analysis is carried out to identify the important modes of collective motion and to analyze the changes brought out in these modes of RNase A upon UpA binding. The hydrogen bonds are monitored to study the atomic details of RNase A-UpA interactions and RNase A-water interactions. Based on these analysis, the stability of the free and UpA bound RNase A are discussed. © 1997 John Wiley & Sons, Inc. Biopoly 42: 505–520, 1997  相似文献   

15.
The aldo-keto reductases (AKR) comprise a large family of oxidoreductases with importance to both health and industrial applications. The redox chemistry of the AKRs is dependent on NAD(P)H as a cofactor. Despite a wealth of structural and biochemical data relating to the interaction of AKRs with specific inhibitors, much less is known regarding the interactions with cofactor or substrate. In particular, while many X-ray structures are available for AKR/inhibitor complexes, they are only a few examples where apo- and holo- forms can be directly compared. Thus, while the role of the cofactor in the redox chemistry is generally understood, the details of the structural dynamics associated with cofactor binding are less clear. Likewise, the structural details of both cofactor and substrate specificity are limited. In this review, we focus on details of the structural biology and molecular dynamics associated with catalysis, cofactor, and substrate binding as elucidated for those AKRs for which apo- and holo- structures are available. Understanding such dynamics may identify a new direction in the design of specific inhibitors.  相似文献   

16.
17.
Cai S  Zhu L  Zhang Z  Chen Y 《Biochemistry》2007,46(17):4943-4950
Understanding the mechanism of protein-DNA interactions at the molecular level is one of the main focuses in structural and molecular biological investigations. At present, NMR spectroscopy is the only approach that can provide atomic details of protein-DNA recognition in solution. However, determining the structures of protein-DNA complexes using NMR spectroscopy has been dependent on the observation of intermolecular nuclear Overhauser effects (NOE) and their assignments, which are difficult to obtain in many cases. In this study, we have shown that intermolecular distance constraints derived from a single spin-label in combination with docking calculations have defined many specific contacts of the complex between the AT-rich interaction domain (ARID) of Mrf2 and its target DNA. Mrf2 contacts DNA mainly using the two flexible loops, L1 and L2. While the L1 loop contacts the phosphate backbone, L2 and several residues in the adjacent helices interact with AT base pairs in the major groove of DNA. Despite the structural diversity in the ARID family of DNA-binding proteins, Mrf2 maintains contacts with DNA similar to those observed in the homologous Dri-DNA complex.  相似文献   

18.
Electrostatic interactions often play key roles in the recognition of small molecules by nucleic acids. An example is aminoglycoside antibiotics, which by binding to ribosomal RNA (rRNA) affect bacterial protein synthesis. These antibiotics remain one of the few valid treatments against hospital-acquired infections by Gram-negative bacteria. It is necessary to understand the amplitude of electrostatic interactions between aminoglycosides and their rRNA targets to introduce aminoglycoside modifications that would enhance their binding or to design new scaffolds. Here, we calculated the electrostatic energy of interactions and its per-ring contributions between aminoglycosides and their primary rRNA binding site. We applied either the methodology based on the exact potential multipole moment (EPMM) or classical molecular mechanics force field single-point partial charges with Coulomb formula. For EPMM, we first reconstructed the aspherical electron density of 12 aminoglycoside-RNA complexes from the atomic parameters deposited in the University at Buffalo Databank. The University at Buffalo Databank concept assumes transferability of electron density between atoms in chemically equivalent vicinities and allows reconstruction of the electron densities from experimental structural data. From the electron density, we then calculated the electrostatic energy of interaction using EPMM. Finally, we compared the two approaches. The calculated electrostatic interaction energies between various aminoglycosides and their binding sites correlate with experimentally obtained binding free energies. Based on the calculated energetic contributions of water molecules mediating the interactions between the antibiotic and rRNA, we suggest possible modifications that could enhance aminoglycoside binding affinity.  相似文献   

19.
The fidelity of the folding pathways being encoded in the amino acid sequence is met with challenge in instances where proteins with no sequence homology, performing different functions and no apparent evolutionary linkage, adopt a similar fold. The problem stated otherwise is that a limited fold space is available to a repertoire of diverse sequences. The key question is what factors lead to the formation of a fold from diverse sequences. Here, with the NAD(P)-binding Rossmann fold domains as a case study and using the concepts of network theory, we have unveiled the consensus structural features that drive the formation of this fold. We have proposed a graph theoretic formalism to capture the structural details in terms of the conserved atomic interactions in global milieu, and hence extract the essential topological features from diverse sequences. A unified mathematical representation of the different structures together with a judicious concoction of several network parameters enabled us to probe into the structural features driving the adoption of the NAD(P)-binding Rossmann fold. The atomic interactions at key positions seem to be better conserved in proteins, as compared to the residues participating in these interactions. We propose a “spatial motif” and several “fold specific hot spots” that form the signature structural blueprints of the NAD(P)-binding Rossmann fold domain. Excellent agreement of our data with previous experimental and theoretical studies validates the robustness and validity of the approach. Additionally, comparison of our results with statistical coupling analysis (SCA) provides further support. The methodology proposed here is general and can be applied to similar problems of interest.  相似文献   

20.
The fundamental role of the Hsp90 chaperone in supporting functional activity of diverse protein clients is anchored by specific cochaperones. A family of immune sensing client proteins is delivered to the Hsp90 system with the aid of cochaperones Sgt1 and Rar1 that act cooperatively with Hsp90 to form allosterically regulated dynamic complexes. In this work, functional dynamics and protein structure network modeling are combined to dissect molecular mechanisms of Hsp90 regulation by the client recruiter cochaperones. Dynamic signatures of the Hsp90-cochaperone complexes are manifested in differential modulation of the conformational mobility in the Hsp90 lid motif. Consistent with the experiments, we have determined that targeted reorganization of the lid dynamics is a unifying characteristic of the client recruiter cochaperones. Protein network analysis of the essential conformational space of the Hsp90-cochaperone motions has identified structurally stable interaction communities, interfacial hubs and key mediating residues of allosteric communication pathways that act concertedly with the shifts in conformational equilibrium. The results have shown that client recruiter cochaperones can orchestrate global changes in the dynamics and stability of the interaction networks that could enhance the ATPase activity and assist in the client recruitment. The network analysis has recapitulated a broad range of structural and mutagenesis experiments, particularly clarifying the elusive role of Rar1 as a regulator of the Hsp90 interactions and a stability enhancer of the Hsp90-cochaperone complexes. Small-world organization of the interaction networks in the Hsp90 regulatory complexes gives rise to a strong correspondence between highly connected local interfacial hubs, global mediator residues of allosteric interactions and key functional hot spots of the Hsp90 activity. We have found that cochaperone-induced conformational changes in Hsp90 may be determined by specific interaction networks that can inhibit or promote progression of the ATPase cycle and thus control the recruitment of client proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号