首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Water stress is one of the main environmental stresses that affect plant growth and development. Salicylic acid (SA) induces water stress tolerance in plants. In this study, the effect of exogenous SA on physiological and biochemical process in Red bayberry (Myric rubra) seedlings, of three different genotypes, that were grown under water stress (soil ranging from 20 to 50 % of field capacity) was evaluated. Results showed that water stress severely affected the relative water content (RWC), photosynthesis, stomatal conductance and enzymes activities. Genotypes differed in RWC, Chlorophyll content, gas exchange parameter, antioxidant enzymes activities and proline, and the genotype Biqi had the RWC, photosynthesis, stomatal conductance and enzymes activities greater than the other two genotypes Wangdao and Shenhong. SA treated plants showed, in general, a higher RWC, chlorophyll content, photosynthetic rate, stomatal conductance, superoxide dismutase activity and proline content, and a lower relative electrolyte conductivity, methane dicarboxylic aldehyde content and catalase activity compared to those of untreated seedlings. These results signified the role of SA in diminishing the negative effects of drought on Red bayberry plants and suggest that SA could be used as a potential growth regulator, for improving plant growth under water stress.  相似文献   

4.
5.
The tepary bean ( Phaseolus acutifolius Gray var. latifolius ), a drought resistant species, was compared under water stress conditions with the more drought susceptible P. vulgaris L. cvs Pinto and White Half Runner (WHR). In order to better understand the basis for the superior drought resistance of tepary, this study was designed to determine the relationships among leaf water potential, osmotic potential, turgor potential, and relative water content (RWC).
Plants were prestressed by withholding irrigation water. These stress pretreatments changed the relation between leaf water potential and relative water content of both species so that prestressed plants had lower water potentials than controls at the same leaf RWC. Tepary had lower water potentials at given RWC levels than Pinto or WHR; this can account for part of the superior resistance of tepary. In all genotypes, prestressed plants maintained osmotic potentials approximately 0.2 MPa lower than controls. Tepary reached osmotic potentials that were significantly lower (0.15 to 0.25 MPa) than Pinto or WHR. Both control and prestressed tepary plants had 0.05 to 0.25 MPa more turgor than Pinto or WHR at RWC values between 65 and 80%. Both prestressed and control tepary plants had greater elasticity (a lower elastic modulus) than Pinto or WHR. This greater turgor of tepary at low RWC values could be caused by several factors including greater tissue elasticity, active accumulation of solutes, or greater solute concentration.
Tepary had significantly lower osmotic potentials than the P. vulgaris cultivars, but there was little difference in osmotic potential between Pinto and WHR. Knowledge of differences in osmotic and turgor potentials among and within species could be useful in breeding for drought resistance in Phaseolus.  相似文献   

6.
Dehydrins expression related to timing of bud burst in Norway spruce   总被引:2,自引:0,他引:2  
  相似文献   

7.
The objective of this study was to examine the role of root carbohydrate levels and metabolism in the waterlogging tolerance of contrasting mung bean genotypes. An experiment was conducted with two cultivated mung bean (Vigna radiata) genotypes viz., T44 (tolerant) and Pusa Baisakhi (PB) (susceptible), and a wild Vigna species Vigna luteola under pot-culture to study the physiological and molecular mechanism of waterlogging tolerance. Waterlogging resulted in decrease in relative water content (RWC), membrane stability index (MSI) in root and leaf tissues, and chlorophyll (Chl) content in leaves, while the Chl a/b ratio increased. Waterlogging-induced decline in RWC, MSI, Chl and increase in Chl a/b ratio was greater in PB than V. luteola and T44. Waterlogging caused decline in total and non-reducing sugars in all the genotypes and reducing sugars in PB, while the content of reducing sugar increased in V. luteola and T44. The pattern of variation in reducing sugar content in the 3 genotypes was parallel to sucrose synthase (SS) activity. V. luteola and T44 also showed fewer declines in total and non-reducing sugars and greater increase in reducing sugar and SS activity than PB. Activity of alcohol dehydrogenase (ADH) increased up to 8d of waterlogging in V. luteola and T44, while in PB a marginal increase was observed only up to 4d of treatment. Gene expression studies done by RT-PCR in 24h waterlogged plants showed enhanced expression of ADH and SS in the roots of V. luteola and T44, while in PB there was no change in expression level in control or treated plants. PCR band products were cloned and sequenced, and partial cDNAs of 531, 626, and 667; 702, 736, and 744bp of SS and ADH, respectively were obtained. The partial cDNA sequences of cloned SS genes showed 93-100 homologies among different genotypes and with D10266, while in case of ADH the similarity was in the range of 97-100% amongst each other and with Z23170. The results suggest that the availability of sufficient sugar reserve in the roots, activity of SS to provide reducing sugars for glycolytic activity and ADH for the recycling of NADH, and for the continuation of glycolysis, could be one of the important mechanisms of waterlogging tolerance of V. radiata genotype T44 and wild species V. luteola. This was reflected in better RWC and Chl content in leaves, and membrane stability of leaf and root tissue in V. luteola and T44.  相似文献   

8.
9.
10.
11.
Mycorrhizal symbiosis is generally considered effective in ameliorating plant tolerance to abiotic stress by altering gene expression, and evaluation of genes involved in ion homeostasis and nutrient uptake. This study aimed to use arbuscular mycorrhizal fungus (AMF) to alleviate salinity stress and analyse relevant gene expression in pistachio plants under No/NaCl stress in greenhouse conditions. Arbuscular mycorrhizal symbiosis was used to study the physiological responses, ion distribution and relevant gene expression in pistachio plants under salinity stress. After four months of symbiosis, mycorrhizal root colonization showed a significant reduction in all tested parameters under salt stress treatment compared to non-saline treatment. Salinity affected the morphological traits, and decreased the nutrient content including N, P, Mg and Fe as well as K/Na and Ca/Na ratios, relative water content (RWC), membrane stability index (MSI), and increased the concentration of K, Ca and Na nutrient, glycine betaine, ROS and MDA. Inoculation of seedlings with AMF mitigated the negative effects of salinity on plant growth as indicated by increasing the root colonization, morphological traits, glycine betaine, RWC and MSI. Specifically, under salinity stress, shoot and root dry weight, P and Fe nutrient content, K/Na and Ca/Na ratio of AMF plants were increased by 53.2, 48.6, 71.6, 60.2, 87.5, and 80.1% respectively, in contrast to those of the NMF plants. The contents of Na, O2•− and MDA in AMF plants were significantly decreased by 66.8, 36.8, and 23.1%, respectively at 250 mM NaCl. Moreover, salinity markedly increased SOS1, CCX2 and SKOR genes expression and the inoculation with AMF modulated these genes expression; however, NRT2.4, PHO1 and PIP2.4 gene expressions were increased by salinity and AMF. It could be concluded that inoculation of AMF with Rhizophagus irregularis conferred a larger endurance towards soil salinity in pistachio plants and stimulate the nutrient uptake and ionic homeostasis maintenance, superior RWC and osmoprotection, toxic ion partitioning, maintaining membrane integrity and the ion-relevant genes expression.  相似文献   

12.
13.
Neotyphodium, a seed-transmissible nonpathogenic fungal endophyte (symbiont) is considered beneficial because endophyte-infected grasses are more drought-tolerant, produce more dry matter, utilize soil nitrogen more efficiently, and deter insects. In this study, the effects of endophytes on physiological mechanisms of drought tolerance in tall fescue (Festuca arundinacea Schreb.) were studied in a greenhouse. Two clonally propagated genotypes of tall fescue (F. arundinacea Schreb.), naturally containing endophyte (EI), and their endophyte-free ramets (EF) were tested at three water stress treatments exerted by PEG 6000 in a hydroponics system. Relative water content (RWC), cell membrane stability (CMS), proline and chlorophyll contents in plant leaves were measured during water stress treatments. After harvest, K+, Ca2+, and Mg2+ contents were measured in plant roots and shoots. After 20 days under stress conditions, plants were transferred to basal hydroponics medium, and their survival after stress relief was evaluated. The results showed that endophyte considerably contributes to host grass water stress tolerance. Both genotypes of EI and EF plants did not differ in RWC, but, regardless of the infection status, genotype 75 had the higher RWC than genotype 83. EI clones of both genotypes maintained slightly higher chlorophyll content and membrane stability than EF clones, although these differences were not significant. The EI plants of genotype 83 concentrated significantly more proline than EF plants, but in the genotype 75, differences between EI and EF clones were not significant. Plant mineral absorption was also influenced by the endophyte presence. EI clones had the higher concentrations of K+ in the shoots of both genotypes. The Mg2+ and Ca2+ contents in EF plants of both genotypes were higher than EI plants in the roots, but in the shoots there were no differences between EI and EF clones. EI clones survived longer after stress removal. These results strongly suggest that Neotyphodium endophytes exert their effects on tall fescue drought tolerance through alteration of various physiological mechanisms involved. Published in Russian in Fiziologiya Rastenii, 2009, Vol. 56, No. 4, pp. 563–570. This test was submitted by the authors in English.  相似文献   

14.
对1年生豆科作物鹰嘴豆Rupali品种和Almaz品种以及多年生植物树锦鸡儿、柠条锦鸡儿和小叶锦鸡儿叶相对含水量和叶水势对逐渐干旱胁迫的响应进行了分析,比较了两类植物的干旱适应能力。结果表明鹰嘴豆叶相对含水量随叶水势的下降线性下降,树锦鸡儿、柠条锦鸡儿和小叶锦鸡儿叶相对含水量在叶水势分别下降到-2.4MPa、-2.5MPa和-1.5 MPa之前没有下降,之后随水势的下降线性下降。树锦鸡儿、柠条锦鸡儿和小叶锦鸡儿这种叶相对含水量下降的滞后性表明该类植物叶具有较硬而弹性较差的细胞壁,使得植物在干旱胁迫下叶具有良好的保水能力。鹰嘴豆叶具有的最低水势为-4.5MPa,对应的土壤相对含水量为14%,锦鸡儿植物叶具有的最低水势可达-6.7MPa,对应的土壤相对含水量为6%,说明锦鸡儿植物比鹰嘴豆具有更好的干旱适应能力,这种能力可能取决于锦鸡儿植物体内大量渗透调节物质的累积。  相似文献   

15.
The 45-days-old seedlings of drought resistant (N-22, CR143-2-2) and susceptible rice (Oryza sativa L.) genotypes (Panidhan, Pusa-169) were subjected to osmotic stress in PEG-6000 solution of -10 and -16 bar and the relative water content (RWC), proline content, and pyrroline-5-carboxylate synthetase (P5CS) activity and its P5CS expression were studied. A gradual decrease in RWC was observed in tolerant genotypes, whereas the decrease was drastic in susceptible ones. Proline content and P5CS activity increased both in susceptible and tolerant genotypes; the increase was higher in tolerant genotypes. Higher proline levels in tolerant genotypes were due to increased P5CS activity. The EcoRI, BamHI and XbaI restricted DNA of N-22 and Panidhan genotypes were hybridized with Arabidopsis P5CS sequence and a single band (approx 2.4 kb) was observed, however, P5CS expression was more in N-22 as compared to Panidhan.  相似文献   

16.
17.
Our experiment was conducted in order to find out effects of paclobutrazol (PBZ; 30 μl l–1) on morphology, photosynthetic process, and stress markers under water surplus and deficit conditions in several wheat genotypes. Study revealed that relative water content (RWC), photosynthetic rate, and maximal quantum yield of PSII (FV/FM) was improved after a PBZ application both under irrigation and water deficit across the genotypes, while the stomatal conductance was reduced. Further, the application of PBZ led to reduced leaf area in wheat genotypes. Moreover, a proline content was higher in the wheat genotypes under water stress as compared to the irrigated plants. The application of PBZ led to downregulation of the proline content under water deficit, while there was no significant change in the content and activity under irrigation with or without the PBZ treatment. These findings indicated that due to the application of PBZ the wheat genotypes might sense a lower stress level (indicated by the proline content) and better drought tolerance (according to RWC and photosynthetic characteristics).  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号