首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The past decade has witnessed a dramatic increase in studies of amphibian and reptile specific dynamic action (SDA). These studies have demonstrated that SDA, the summed energy expended on meal digestion and assimilation, is affected significantly by meal size, meal type, and body size and to some extent by body temperature. While much of this attention has been directed at anuran and reptile SDA, we investigated the effects of meal size, meal type, and body temperature on the postprandial metabolic responses and the SDA of the tiger salamander (Ambystoma tigrinum tigrinum). We also compared the SDA responses among six species of Ambystoma salamanders representing the breadth of Ambystoma phylogeny. Postprandial peaks in VO(2) and VO(2), duration of elevated metabolism, and SDA of tiger salamanders increased with the size of cricket meals (2.5%-12.5% of body mass). For A. tigrinum, as for other ectotherms, a doubling of meal size results in an approximate doubling of SDA, a function of equal increases in peak VO(2) and duration. For nine meal types of equivalent size (5% of body mass), the digestion of hard-bodied prey (crickets, superworms, mealworms, beetles) generated larger SDA responses than the digestion of soft-bodied prey (redworms, beetle larvae). Body temperature affected the profile of postprandial metabolism, increasing the peak and shortening the duration of the profile as body temperature increased. SDA was equivalent among three body temperatures (20 degrees, 25 degrees, and 30 degrees C) but decreased significantly at 15 degrees C. Comparatively, the postprandial metabolic responses and SDA of Ambystoma jeffersonianum, Ambystoma maculatum, Ambystoma opacum, Ambystoma talpoideum, Ambystoma texanum, and the conspecific Ambystoma tigrinum mavortium digesting cricket meals that were 5% of their body mass were similar (independent of body mass) to those of A. t. tigrinum. Among the six species, standard metabolic rate, peak postprandial VO(2), and SDA scaled with body mass with mass exponents of 0.72, 0.78, and 1.05, respectively.  相似文献   

2.
The effect of meal type on specific dynamic action was investigated in the green shore crab, Carcinus maenas. When the crabs were offered a meal of fish, shrimp, or mussel of 3 % of their body mass the duration of the SDA response and thus the resultant SDA was lower for the mussel, compared with the shrimp or fish meals. In feeding behaviour experiments the crabs consumed almost twice as much mussel compared with fish or shrimp. When the animals were allowed to feed on each meal until satiated, the differences in the SDA response were abolished. The mussel was much softer (compression test) than the fish or shrimp meal, and meal texture is known to affect the SDA response in amphibians and reptiles. When the crabs were offered a meal of homogenized fish muscle or whole fish muscle, the SDA for the homogenized meal was approximately 35 % lower. This suggested that a significant portion of the SDA budget in decapod crustaceans may be related to mechanical digestion. This is not unexpected since the foregut is supplied by over forty muscles which control the cutting and grinding movements of the gastric mill apparatus. There were slight, but significant differences in protein, lipid, moisture and total energy content of each meal type. Three prepared meals that were high in either protein, lipid or carbohydrate were offered to the crabs to determine if the nutrient content was also a contributing factor to the observed differences in the SDA. The crabs did not eat the prepared meals as readily as the natural food items and as they are messy feeders there was a large variation in the amount of food eaten. The lack of significant differences in the SDA response as a function of nutrient content was likely due to differences in amount of food eaten, which is a major factor determining the SDA response. The differences in SDA when consuming natural food items were likely due to a combination of the costs of mechanical digestion, variation in nutrient content and food preference: determining how each of these factors contributes to the overall SDA budget remains a pressing question for comparative physiologists.  相似文献   

3.
Measuring standard metabolic rate (SMR) and specific dynamic action (SDA) has yielded insight into patterns of energy expenditure in snakes, but less emphasis has been placed on identifying metabolic variation and associated energy cost of circadian rhythms. To estimate SMR, SDA, and identify metabolic variation associated with circadian cycles in nocturnally active African house snakes (Lamprophis fuliginosus), we measured oxygen consumption rates (VO2) at frequent intervals before and during digestion of meals equaling 10%, 20% and 30% of their body mass. Circadian rhythms in metabolism were perceptible in the VO2 data during fasting and after the initial stages of digestion. We estimated SMR of L. fuliginosus (mean mass=16.7+/-0.3 g) to be 0.68+/-0.02 (+/-SEM) mL O2/h at 25 degrees C. Twenty-four hours after eating, VO2 peaked at 3.2-5.3 times SMR. During digestion of meals equaling 10-30% of their body mass, the volume of oxygen consumed ranged from 109 to 119 mL O2 for SMR, whereas extra oxygen consumed for digestion and assimilation ranged from 68 to 256 mL O2 (equivalent to 14.5-17.0% of ingested energy). The oxygen consumed due to the rise in metabolism during the active phase of the daily cycle ranged from 55 to 66 mL O2 during digestion. Peak VO2, digestive scope, and SDA increased with increasing meal size. Comparisons of our estimates to estimates derived from methods used in previous investigations resulted in wide variance of metabolic variables (up to 39%), likely due to the influence of circadian rhythms and activity on the selection of baseline metabolism. We suggest frequent VO2 measurements over multiple days, coupled with mathematical methods that reduce the influence of undesired sources of VO2 variation (e.g., activity, circadian cycles) are needed to reliably assess SMR and SDA in animals exhibiting strong circadian cycles.  相似文献   

4.
Specific dynamic action (SDA) describes the rise in metabolism following feeding in animals and represents the energetic cost of digesting and assimilating a meal. The overall energetic cost of feeding may depend on whether or not an animal is post-absorptive at the time of feeding. The aim of this study was to compare the energetic cost of SDA due to feeding frequently compared with infrequently in the eastern water skink, Eulamprus quoyii. For similar quantities of food, repeated feeding incurred an energetic cost equal to 8.8% of the metabolizable energy of the meal (25,220 J), while single feeding incurred an energetic cost of 9.4% of the metabolizable energy of the meal (26,072 J). Experimental lizards maintained a rise in (VO2) that was on average 1.8 times greater than the (VO2) of the unfed controls over a 50-h interval as a result of feeding frequently. This prolonged rise in metabolism resulting from frequent feeding does not result in a higher energetic cost of SDA compared with that resulting from infrequent single feeding.  相似文献   

5.
We measured oxygen consumption in juvenile Chinese striped-necked turtles (Ocadia sinensis) after they ingested food, either as a single meal or as double meals, to examine the influence of meal type and feeding frequency on specific dynamic action (SDA). Temporal variation in oxygen consumption after feeding was evident in the ingesting turtles but not in the unfed control turtles. In the single-meal experiment, the peak metabolic rate and the integrated SDA response (the whole energetic cost for the processes of digestion) both did not differ between turtles ingesting mealworms and shrimps when the influence of variation in ingested energy was removed, and the time to reach peak metabolic rate was not affected by meal type and the amount of food ingested. Turtles in the double-meal experiment ingested more energy and hence had a prolonged duration of SDA response than did those in the single-meal experiment, but the integrated SDA response did not differ between both experimental treatments when the influence of variation in ingested energy was removed. Our results show that meal type and feeding frequency have important consequences on the SDA response of juvenile O. sinensis. As the integrated SDA response remained remarkably constant either between turtles ingesting different food or between turtles ingesting the same food but at different frequencies when the influence of variation in ingested energy was removed, we therefore conclude that the energetic cost associated with ingestion is primarily determined by energy content of food ingested in juvenile O. sinensis.  相似文献   

6.
We measured oxygen consumption in juvenile Chinese striped-necked turtles (Ocadia sinensis) after they ingested food, either as a single meal or as double meals, to examine the influence of meal type and feeding frequency on specific dynamic action (SDA). Temporal variation in oxygen consumption after feeding was evident in the ingesting turtles but not in the unfed control turtles. In the single-meal experiment, the peak metabolic rate and the integrated SDA response (the whole energetic cost for the processes of digestion) both did not differ between turtles ingesting mealworms and shrimps when the influence of variation in ingested energy was removed, and the time to reach peak metabolic rate was not affected by meal type and the amount of food ingested. Turtles in the double-meal experiment ingested more energy and hence had a prolonged duration of SDA response than did those in the single-meal experiment, but the integrated SDA response did not differ between both experimental treatments when the influence of variation in ingested energy was removed. Our results show that meal type and feeding frequency have important consequences on the SDA response of juvenile O. sinensis. As the integrated SDA response remained remarkably constant either between turtles ingesting different food or between turtles ingesting the same food but at different frequencies when the influence of variation in ingested energy was removed, we therefore conclude that the energetic cost associated with ingestion is primarily determined by energy content of food ingested in juvenile O. sinensis.  相似文献   

7.
We present the first data on the effect of hypoxia on the specific dynamic action (SDA) in a teleost fish. Juvenile cod (Gadus morhua) were fed meals of 2.5% and 5% of their wet body mass (BM) in normoxia (19.8 kPa Po(2)) and 5% BM in hypoxia (6.3 kPa Po(2)). Reduced O(2) availability depressed the postprandial peaks of oxygen consumption, and to compensate for this, the total SDA duration lasted 212.0+/-20 h in hypoxia, compared with 95.1+/-25 h in normoxia. The percentage of energy associated with the meal digestion and assimilation (SDA coefficient) was equivalent between the different feeding rations but higher for fish exposed to hypoxia. Comparing peak oxygen consumption during the SDA course with maximum metabolic rates showed that food rations of 2.5% and 5% BM reduced the scope for activity by 40% and 55%, while ingestion of 5% BM in hypoxia occupied 69% of the aerobic scope, leaving little energy for other activities.  相似文献   

8.
Effect of relative meal size (0.6-24%) on specific dynamic action (SDA) was assessed in southern catfish juveniles (48.2+/-3.2 g) at 27.5 degrees C. Cutlets of freshly killed loach species were used as test diet. Energy expended during SDA was linearly correlated with relative meal size (r=0.949, p<0.001, N=47). There was no significant difference in SDA coefficient (energy expended on SDA quantified as a percentage of the energy content of the meal) among different relative meal size groups. Factorial metabolic scope increased from 1.47 to 4.08 when the relative meal size increased from 0.6% to 24%. The peak V O2 increased with meal size, but levelled when relative meal size gradually increased to the maximum. SDA duration showed a S-type (slow-fast-slow) increase course with increased meal size. The results of this study suggest that the high postprandial factorial metabolic scope and a trapezoid SDA curve might be the adaptation strategy of warm water sit-and-wait fish under the natural selection of evolution related to long-term food resources.  相似文献   

9.
A closed respirometer was used to measure oxygen consumption of the southern catfish Silurus meridionalis fed with six isonitrogenous (48% crude protein) diets replacing 0%, 13%, 26%, 39%, 52% and 65% fish meal (FM) protein by soybean meal (SBM) protein, in order to investigate the effects of dietary soybean protein level (SPL) (replacing FM) on metabolic rates of the southern catfish. The results showed that there were no significant differences in routine metabolism among dietary treatments. Either the total metabolic rate or specific dynamic action (SDA) was positively correlated with assimilated food energy at each diet, respectively (P<0.05). The SDA coefficient (means the energy spent in metabolism per unit of assimilated dietary energy) significantly increased with increasing dietary SPL (P<0.05). Fish fed the diet with 13% SPL had a significantly lower SDA coefficient (0.1528) than fish fed the diet with 52% or 65% SPL (0.1826 or 0.1932) (P<0.05). However, there were no significant differences in SDA coefficient among fish fed the diets with 13%, 26% and 39% SPL (P>0.05). Results of the present study suggested that an imbalance of essential amino acids at higher dietary SPL resulted in more energy channeled into metabolism, and subsequently increased the SDA coefficient.  相似文献   

10.
Specific dynamic action (SDA), the accumulated energy expended on all physiological processes associated with meal digestion, is strongly influenced by features of both the meal and the organism. We assessed the effects of meal size, meal type, body temperature, and body size on the postprandial metabolic response and calculated SDA of the marine toad, Bufo marinus. Peak postprandial rates of O(2) consumption (.V(O2)) and CO(2) production (.V(CO2)) and SDA increased with meal size (5%-20% of body mass). Postprandial metabolism was impacted by meal type; the digestion of hard-bodied superworms (Zophobas larva) and crickets was more costly than the digestion of soft-bodied earthworms and juvenile rats. An increase in body temperature (from 20 degrees to 35 degrees C) altered the postprandial metabolic profile, decreasing its duration and increasing its magnitude, but did not effect SDA, with the cost of meal digestion remaining constant across body temperatures. Allometric mass exponents were 0.69 for standard metabolic rate, 0.85 for peak postprandial .V(O2), and 1.02 for SDA; therefore, the factorial scope of peak postprandial .V(O2) increased with body mass. The mass of nutritive organs (stomach, liver, intestines, and kidneys) accounted for 38% and 20% of the variation in peak postprandial .V(O2) and SDA, respectively. Toads forced to exercise experienced 25-fold increases in .V(O2) much greater than the 5.5-fold increase experience during digestion. Controlling for meal size, meal type, and body temperature, the specific dynamic responses of B. marinus are similar to those of the congeneric Bufo alvarius, Bufo boreas, Bufo terrestris, and Bufo woodhouseii.  相似文献   

11.
For more than 200 years, the metabolic response that accompanies meal digestion has been characterized, theorized, and experimentally studied. Historically labeled “specific dynamic action” or “SDA”, this physiological phenomenon represents the energy expended on all activities of the body incidental to the ingestion, digestion, absorption, and assimilation of a meal. Specific dynamic action or a component of postprandial metabolism has been quantified for more than 250 invertebrate and vertebrate species. Characteristic among all of these species is a rapid postprandial increase in metabolic rate that upon peaking returns more slowly to prefeeding levels. The average maximum increase in metabolic rate stemming from digestion ranges from a modest 25% for humans to 136% for fishes, and to an impressive 687% for snakes. The type, size, composition, and temperature of the meal, as well as body size, body composition, and several environmental factors (e.g., ambient temperature and gas concentration) can each significantly impact the magnitude and duration of the SDA response. Meals that are large, intact or possess a tough exoskeleton require more digestive effort and thus generate a larger SDA than small, fragmented, or soft-bodied meals. Differences in the individual effort of preabsorptive (e.g., swallowing, gastric breakdown, and intestinal transport) and postabsorptive (e.g., catabolism and synthesis) events underlie much of the variation in SDA. Specific dynamic action is an integral part of an organism’s energy budget, exemplified by accounting for 19–43% of the daily energy expenditure of free-ranging snakes. There are innumerable opportunities for research in SDA including coverage of unexplored taxa, investigating the underlying sources, determinants, and the central control of postprandial metabolism, and examining the integration of SDA across other physiological systems.  相似文献   

12.
Specific dynamic action (SDA), the energy expended on all physiological processes that is associated with meal digestion and assimilation, is strongly affected by temperature. We assessed the effects of temperature on the postprandial metabolic response and calculated SDA of the southern catfish, Silurus meridionalis. The fish was fed with experimental diets at a meal size of 4% body mass, and by using an 8-chamber, continuous-flow respirometer the oxygen consumption rate was determined at a 2 h interval until the postprandial oxygen consumption rate returning to the preprandial level, at four different temperatures. The energy expended on SDA (SDA(E)) were 2.71, 3.07, 3.16, and 3.62 kJ, the SDA(coefficients) (energy expended on SDA quantified as a percentage of the digestible energy content of the meal) were 7.70, 9.44, 10.36, and 11.12%, and the peak metabolic rates (R(peak)) of SDA were 3.48, 4.31, 5.96, and 7.30 mg O2 h(-1), at 17.5, 22.5, 27.5, and 32.5 degrees C respectively. The relationships between those parameters and temperature were: SDA(E)=1.74+0.0559T (n=26, r(2)=0.676), SDA(coefficient)=4.10+0.223T (n=26, r(2)=0.726), and R(peak)=-1.34+0.264T (n=26, r(2)=0.896). The SDA durations showed a slow-fast-slow tendency of decrease with increasing temperature, and were 88.00, 85.71, 67.71, and 66.50 h at 17.5, 22.5, 27.5 and 32.5 degrees C respectively. Two separate peaks appeared during the SDA response at 17.5 degrees C, and it might be due to a rapid startup of the mechanical process with a lag of the biochemical process, which suggested that the peaks of "mechanical component" and "biochemical component" of SDA might be separated when temperature was low enough.  相似文献   

13.
Specific dynamic action (SDA), the energy expended on all physiological processes that is associated with meal digestion and assimilation, is strongly affected by temperature. We assessed the effects of temperature on the postprandial metabolic response and calculated SDA of the southern catfish, Silurus meridionalis. The fish was fed with experimental diets at a meal size of 4% body mass, and by using an 8-chamber, continuous-flow respirometer the oxygen consumption rate was determined at a 2 h interval until the postprandial oxygen consumption rate returning to the preprandial level, at four different temperatures. The energy expended on SDA (SDA(E)) were 2.71, 3.07, 3.16, and 3.62 kJ, the SDA(coefficients) (energy expended on SDA quantified as a percentage of the digestible energy content of the meal) were 7.70, 9.44, 10.36, and 11.12%, and the peak metabolic rates (R(peak)) of SDA were 3.48, 4.31, 5.96, and 7.30 mg O2 h(-1), at 17.5, 22.5, 27.5, and 32.5 degrees C respectively. The relationships between those parameters and temperature were: SDA(E)=1.74+0.0559T (n=26, r(2)=0.676), SDA(coefficient)=4.10+0.223T (n=26, r(2)=0.726), and R(peak)=-1.34+0.264T (n=26, r(2)=0.896). The SDA durations showed a slow-fast-slow tendency of decrease with increasing temperature, and were 88.00, 85.71, 67.71, and 66.50 h at 17.5, 22.5, 27.5 and 32.5 degrees C respectively. Two separate peaks appeared during the SDA response at 17.5 degrees C, and it might be due to a rapid startup of the mechanical process with a lag of the biochemical process, which suggested that the peaks of "mechanical component" and "biochemical component" of SDA might be separated when temperature was low enough.  相似文献   

14.
The metabolic rate of an animal affects the amount of energy available for its growth, activity and reproduction and, ultimately, shapes how energy and nutrients flow through ecosystems. Standard metabolic rate (SMR; when animals are post-absorptive and at rest) and specific dynamic action (SDA; the cost of digesting and processing food) are two major components of animal metabolism. SMR has been studied in hundreds of species of insects, but very little is known about the SMR of praying mantises. We measured the rates of CO2 production as a proxy for metabolic rate and tested the prediction that the SMR of mantises more closely resembles the low SMR of spiders – a characteristic generally believed to be related to their sit-and-wait foraging strategy. Although few studies have examined SDA in insects we also tested the prediction that mantises would exhibit comparatively large SDA responses characteristic of other types of predators (e.g., snakes) known to consume enormous, protein-rich meals. The SMR of the mantises was positively correlated with body mass and did not differ among the four species we examined. Their SMR was best described by the equation μW = 1526 * g0.745 and was not significantly different from that predicted by the standard ‘insect-curve’; but it was significantly higher than that of spiders to which mantises are ecologically more similar than other insects. Mantises consumed meals as large as 138% of their body mass and within 6–12 h of feeding and their metabolic rates doubled before gradually returning to prefeeding rates over the subsequent four days. We found that the SDA responses were isometrically correlated with meal size and the relative cost of digestion was 38% of the energy in each meal. We conclude that mantises provide a promising model to investigate nutritional physiology of insect predators as well as nutrient cycling within their ecological communities.  相似文献   

15.
Individual grass carp, Ctenopharyngodon idellu , were maintained in a respirometer for a month and fed pelleted diets containing various proportions of carbohydrate, fat and protein at different ration levels. Oxygen consumption was measured continuously, allowing the effects of consecutive daily feeding on respiration to be studied. The relationships established between daily food intake and oxygen consumption showed that, on average, 23.3% (high protein diet), 15.3% (high carbohydrate diet), 20.7% (high lipid diet) and 7.0% ( Lemnu diet ) of the absorbed energy was partitioned into specific dynamic action (SDA). (Here the term SDA is used to describe the oxygen consumption of a feeding fish in excess of the routine metabolic rate.) In terms of the overall energy budgets of growing fish, SDA represented between 12 and 58% of the total heat lost over the experimental period and was equivalent to between 14 and 33% of the consumed energy. Ration was positively correlated with heat loss due to total respiration ( r = 0.881) and with heat loss due to SDA ( r = 0.762). As ration increased, the size of SDA relative to total respiration increased. Significant positive correlations were found between oxygen consumption (total or due to SDA) and specific growth rate, and between oxygen consumption and the deposition of protein and energy. However, growth rate had a minimal influence on daily oxygen consumption when compared with food intake.  相似文献   

16.
To be most energetically profitable, predators should ingest prey with the maximal nutritional benefit while minimizing the cost of processing. Therefore, when determining the quality of prey items, both the cost of processing and nutritional content must be considered. Specific dynamic action (SDA), the increase in metabolic rate associated with feeding in animals, is a significant processing cost that represents the total cost of digestion and assimilation of nutrients from prey. We examined the effects of an invertebrate diet (earthworms) and a vertebrate diet (newborn mice) on mass conversion efficiencies, growth, and SDA in the Chacoan horned frog, Ceratophrys cranwelli. We found the earthworm diet to be significantly lower in lipid, protein, and energy content when compared to the diet of newborn mice. Growth and mass conversion efficiencies were significantly higher in frogs fed newborn mice. However, mean SDA did not differ between frogs fed the two diets, a finding that contradicts many studies that indicate SDA increases with the protein content of the meal. Together, our results indicate that future studies evaluating the effect of meal type on bioenergetics of herpetofauna are warranted and may provide significant insight into the underlying factors driving SDA.  相似文献   

17.
An important element in the measurement of energy budgets of free-living animals is the estimation of energy costs during locomotion. Using humans as a particularly tractable model species, we conducted treadmill experiments to test the validity of tri-axial accelerometry loggers, designed for use with animals in the field, to estimate rate of oxygen consumption (VO2: an indirect measure of metabolic rate) and speed during locomotion. The predictive power of overall dynamic body acceleration (ODBA) obtained from loggers attached to different parts of the body was compared to that of heart rate (fH). When subject identity was included in the statistical analysis, ODBA was a good, though slightly poorer, predictor of VO2 and speed during locomotion on the flat (mean of two-part regressions: R2=0.91 and 0.91, from a logger placed on the neck) and VO2 during gradient walking (single regression: R2=0.77 from a logger placed on the upper back) than was fH (R2=0.96, 0.94, 0.86, respectively). For locomotion on the flat, ODBA was still a good predictor when subject identity was replaced by subject mass and height (morphometrics typically obtainable from animals in the field; R2=0.92 and 0.89) and a slightly better overall predictor than fH (R2=0.92 and 0.85). For gradient walking, ODBA predicted VO2 more accurately than before (R2=0.83) and considerably better than did fH (R2=0.77). ODBA and fH combined were the most powerful predictor of VO2 and speed during locomotion. However, ODBA alone appears to be a good predictor and suitable for use in the field in particular, given that accelerometry traces also provide information on the timing, frequency and duration of locomotion events, and also the gait being used.  相似文献   

18.
We quantified the specific dynamic action (SDA) resulting from the ingestion of various meal types in Burmese pythons (Python molurus) at 30 degrees C. Each snake was fed a series of experimental meals consisting of amino acid mixtures, simple proteins, simple or complex carbohydrates, or lipids as well as meals of whole animal tissue (chicken breast, beef suet, and mouse). Rates of oxygen consumption were measured for approximately 4 d after feeding, and the increment above standard metabolic rate was determined and compared to energy content of the meals. While food type (protein, carbohydrate, and lipid) had a general influence, SDA was highly dependent on meal composition (i.e., amino acid composition and carbohydrate structure). For chicken breast and simple carbohydrates, the SDA coefficient was approximately one-third the energetic content of the meal. Lard, suet, cellulose, and starch were not digested and did not produce measurable SDA. We conclude that the cost of de novo protein synthesis is an important component of SDA after ingestion of protein meals because (1) simple proteins, such as gelatin and collagen, did not stimulate levels of SDA attained after consumption of complete protein, (2) incomplete mixtures of amino acids failed to elicit the SDA of a complete mixture, and (3) the inhibition of de novo protein synthesis with the drug cycloheximide caused a more than 70% decrease in SDA. Stomach distension and mechanical digestion of intact prey did not cause measurable SDA.  相似文献   

19.
锦鲫的摄食代谢与运动代谢及其相互影响   总被引:1,自引:0,他引:1  
为了探讨锦鲫(Carassius auratus)幼鱼摄食后特殊动力作用(SDA)的变化特征及运动代谢与摄食代谢之间的相互影响,实验首先灌喂锦鲫4%体重的饲料和等体积的纤维素(湿重),测定灌喂前后的耗氧率;另设灌喂饲料、灌喂纤维素、空腹组(对照组)3个组,测定3组的临界游泳速度(Ucrit)和运动耗氧率(MO2);然后在70%、0%临界游泳速度下,分别测定饱足摄食组和空腹组的耗氧率。结果显示:1灌喂饲料后代谢率快速上升,达到峰值后又迅速下降,代谢时间较短,没有一个相对稳定的平台期,灌喂纤维素后代谢率没有显著性变化(P0.05)。提示锦鲫幼鱼的特殊动力作用功率曲线为一个典型的"三角型"模型,且在特殊动力作用总耗能中,生化特殊动力作用占特殊动力作用总耗能的绝大部分,而机械特殊动力作用只占特殊动力作用的极少部分。2锦鲫幼鱼在摄食后临界游泳速度显著下降(P0.05),代谢率显著升高(P0.05)。摄食后的运动过程中,代谢率从摄食开始到代谢率回落至空腹组代谢的标准误范围内的首个数据所对应的时间长度均为6.5 h,且摄食代谢无显著性差异。提示,对锦鲫幼鱼来说,摄食代谢降低了其运动能力,而运动代谢并没有影响摄食代谢。  相似文献   

20.
Detailed analysis of animal energy budgets requires information on the cost of digestion (specific dynamic action [SDA]), which can represent a significant proportion of ingested energy (up to 30% in infrequent feeders). We studied the effects of snake mass, temperature (25 degrees and 30 degrees C), fasting time (1 and 5 mo), and prey size (10%-50% of snake mass) on SDA in 26 timber rattlesnakes (Crotalus horridus). We used flow-through respirometry to measure hourly CO(2) production rates (VCO2) for 1 d before and up to 17 d after feeding. Crotalus horridus, like previously studied viperids and boids, show large and ecologically relevant increases in metabolism due to feeding. Depending on treatment and individual, VCO2 increased to 2.8-11.8 times the resting metabolic rate within 12-45 h postfeeding and decreased to baseline within 4.3-15.4 d. Significant effects of snake mass, meal mass, and fast length were detected. Increased temperature decreased the time required to complete the process but had little effect on total energy expended on SDA. Energy expended on SDA increased with increasing fast length, snake mass, and prey mass. Considering all of our data, we found that a simple allometric relationship explained 96.7% of the variation in total CO(2) production during SDA. Calculations suggest that energy devoted to SDA may approach 20% of the total annual energy budget of snakes in nature. Discrepancies between our data and some previous studies draw attention to the fact that the measurement, expression, and analysis of SDA may be sensitive to several methodological and statistical assumptions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号