首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fidelity of chromosomal duplication is monitored by cell cycle checkpoints operational during mitosis. One such cell cycle delay is invoked by microtubule-targeting agents such as nocodazole or paclitaxel (Taxol) and is mediated by mitotic checkpoint proteins that include BubR1. Relatively little is known about the regulation of expression and stability of BubR1 (or other checkpoint proteins) and how these factors dictate the durability of the cell cycle delay. We report here that treatment of HeLa cells with spindle-disrupting agents resulted in caspase activation and precipitated the cleavage of BubR1. This mechanism ultimately leads to reduced levels of full-length protein, which are accompanied by abrogation of the mitotic block; the checkpoint abrogation is substantially accelerated by inhibition of de novo protein synthesis. In contrast, inhibition of caspase activity blocked BubR1 degradation and prolonged mitosis. To confirm a direct link between caspase activity and BubR1 protein expression, we identified by site-directed mutagenesis the specific caspase cleavage sites cleaved after exposure to paclitaxel. Surprisingly, BubR1 has two sites of cleavage: primarily at Asp607/Asp610 and secondarily at Asp576/Asp579. BubR1 mutated at both locations (BubR1Delta579Delta610) was resistant to paclitaxel-induced degradation. Expression of BubR1Delta579Delta610 augmented the mitotic delay induced by spindle disruption in transfected cells as well as in clones engineered to inducibly express the mutant protein upon exposure to doxycycline and ultimately led to increased aneuploidy. Underscoring the importance of these caspase cleavage sites, both tetrapeptide motifs are identified in the amino acid sequences of human, mouse, chicken, and Xenopus BubR1. These results are potentially the first to link the control of the stability of a key mitotic checkpoint protein to caspase activation, a regulatory pathway that may be involved in killing defective cells and that has been evolutionarily conserved.  相似文献   

2.
The kinesin spindle protein (KSP), a microtubule motor protein, is essential for the formation of bipolar spindles during mitosis. Inhibition of KSP activates the spindle checkpoint and causes apoptosis. It was shown that prolonged inhibition of KSP activates Bax and caspase-3, which requires a competent spindle checkpoint and couples with mitotic slippage. Here we investigated how Bax is activated by KSP inhibition and the roles of Bax and p53 in KSP inhibitor-induced apoptosis. We demonstrate that small interfering RNA-mediated knockdown of Bax greatly attenuates KSP inhibitor-induced apoptosis and that Bax activation is upstream of caspase activation. This indicates that Bax mediates the lethality of KSP inhibitors and that KSP inhibition provokes apoptosis via the intrinsic apoptotic pathway where Bax activation is prior to caspase activation. Although the BH3-only protein Puma is induced after mitotic slippage, suppression of de novo protein synthesis that abrogates Puma induction does not block activation of Bax or caspase-3, indicating that Bax activation is triggered by a posttranslational event. Comparison of KSP inhibitor-induced apoptosis between matched cell lines containing either functional or deficient p53 reveals that inhibition of KSP induces apoptosis independently of p53 and that p53 is dispensable for spindle checkpoint function. Thus, KSP inhibitors should be active in p53-deficient tumors.  相似文献   

3.
The spindle assembly checkpoint functions during mitosis to ensure that chromosomes are properly aligned in mitotic cells prior to the onset of anaphase, thereby ensuring an equal segregation of genetic material to each daughter cell. Defects in the function of this checkpoint lead to aneuploidy, and eventually to cell death or senescence. The Aurora-related kinases, and in particular Aurora B, have been shown to play a role in regulating the spindle assembly checkpoint. In this study, we demonstrate that Aurora A activity is required for maintainance of the spindle assembly checkpoint mediated-mitotic delay induced by microtubule perturbing agents. Inhibition of Aurora A using MLN8054, a selective small-molecule inhibitor of Aurora A, in paclitaxel- or nocodazole-treated cells induces cells to become multinucleated. Using time-lapse microscopy, we demonstrate that the multinucleation phenotype arises via mitotic slippage, which is significantly accelerated upon Aurora A inhibition. Under these conditions, the spindle assembly checkpoint protein BubR1 remains localized to kinetochores prior to mitotic slippage. Moreover, we demonstrate that Aurora B remains active in these mitotic cells, indicating that the mitotic slippage induced by MLN8054 is most likely due to the inhibition of Aurora A. This finding was corroborated by demonstrating that Aurora A depletion using RNA interference in paclitaxel-treated cells also induces multinucleation. Taken together, these results suggest that Aurora A is necessary for the maintenance of the mitotic delay induced in response to microtubule-perturbing agents.  相似文献   

4.
The spindle checkpoint that monitors kinetochore-microtubule attachment has been implicated in tumorigenesis; however, the relation between the spindle checkpoint and cell death remains obscure. In BUB1-deficient (but not MAD2-deficient) cells, conditions that activate the spindle checkpoint (i.e., cold shock or treatment with nocodazole, paclitaxel, or 17-AAG) induced DNA fragmentation during early mitosis. This mitotic cell death was independent of caspase activation; therefore, we named it caspase-independent mitotic death (CIMD). CIMD depends on p73, a homologue of p53, but not on p53. CIMD also depends on apoptosis-inducing factor and endonuclease G, which are effectors of caspase-independent cell death. Treatment with nocodazole, paclitaxel, or 17-AAG induced CIMD in cell lines derived from colon tumors with chromosome instability, but not in cells from colon tumors with microsatellite instability. This result was due to low BUB1 expression in the former cell lines. When BUB1 is completely depleted, aneuploidy rather than CIMD occurs. These results suggest that cells prone to substantial chromosome missegregation might be eliminated via CIMD.  相似文献   

5.
Caspases have been suggested to contribute to not only apoptosis regulation but also non-apoptotic cellular phenomena. Recently, we have reported the involvement of caspase-7 to the cell cycle progression at mitotic phase by knockdown of caspase-7 using small interfering RNAs and short hairpin RNA. Here we showed that chemically synthesized broad-spectrum caspase inhibitors, which have been used to suppress apoptosis, prevented the cell proliferation in a dose-dependent manner, and that the subtype-specific peptide-based caspase inhibitor for caspase-3 and -7, but not for caspase-9, inhibited cell proliferation. It was also indicated that the BIR2 domain of X-linked inhibitor of apoptosis protein, functioning as an inhibitor for caspase-3 and -7, but not the BIR3 domain which plays as a caspase-9 inhibitor, induced cell cycle arrest. Furthermore, flow cytometry revealed that the cells treated with caspase inhibitors arrested at G(2)/M phase. By using HeLa.S-Fucci (fluorescent ubiquitination-based cell cycle indicator) cells, the prevention of the cell proliferation by caspase inhibitors induced cell cycle arrest at mitotic phase accompanying the accumulation of the substrates for APC/C, suggesting the impairment of the APC/C activity at the transition from M to G(1) phases. These results indicate that caspase(s) contribute to the cell cycle regulation at mitotic phase.  相似文献   

6.
Yan H  Zhu S  Song C  Liu N  Kang J 《Cellular signalling》2012,24(4):961-968
Aberrant expression of mitotic checkpoint genes compromises mitotic checkpoint, leads to chromosome instability and tumorigenesis. However, the cell signals that control mitotic checkpoint gene expression have not been reported so far. In the present study we show that, in human breast cancer cells, chemical inhibition of Bone morphogenetic proteins (BMPs), but not Transforming Growth Factor-β (TGF-β), abrogates the mitotic arrest induced by nocodazole. Protein expression analysis reveals that inhibition of BMP signaling dramatically down regulates protein levels of mitotic checkpoint components BUB3, Hec1, TTK and MAD2, but inhibition of TGF-β has relatively minor effect on the expression of these proteins. Activation of BMP signaling specifically up regulates BUB3, and activation of Activin A signaling globally down regulates these proteins level. Furthermore, overexpressing MAD2, TTK, BUB3 or Hec1 significantly rescues the mitotic arrest defect caused by BMP inhibition. Our results demonstrated for the first time that TGF-β family cytokines are cellular signals regulating mitotic checkpoint and perturbations in intrinsic BMP signaling could lead to suppression of mitotic checkpoint signaling by downregulating key checkpoint proteins. The results suggest a possible mechanism by which dysregulation of TGF-β signaling causes mitotic checkpoint defects and drives tumorigenesis. The finding also provides a potential and more specific strategy for cancer prevention by targeting BMP and mitotic checkpoint connection.  相似文献   

7.
The spindle assembly checkpoint prevents cells from initiating anaphase until the spindle has been fully assembled. We previously isolated mitotic arrest deficient (mad) mutants that inactivate this checkpoint and thus increase the sensitivity of cells to benomyl, a drug that interferes with mitotic spindle assembly by depolymerizing microtubules. We have cloned the MAD1 gene and show that when it is disrupted yeast cells have the same phenotype as the previously isolated mad1 mutants: they fail to delay the metaphase to anaphase transition in response to microtubule depolymerization. MAD1 is predicted to encode a 90-kD coiled-coil protein. Anti-Mad1p antibodies give a novel punctate nuclear staining pattern and cell fractionation reveals that the bulk of Mad1p is soluble. Mad1p becomes hyperphosphorylated when wild-type cells are arrested in mitosis by benomyl treatment, or by placing a cold sensitive tubulin mutant at the restrictive temperature. This modification does not occur in G1- arrested cells treated with benomyl or in cells arrested in mitosis by defects in the mitotic cyclin proteolysis machinery, suggesting that Mad1p hyperphosphorylation is a step in the activation of the spindle assembly checkpoint. Analysis of Mad1p phosphorylation in other spindle assembly checkpoint mutants reveals that this response to microtubule- disrupting agents is defective in some (mad2, bub1, and bub3) but not all (mad3, bub2) mutant strains. We discuss the possible functions of Mad1p at this cell cycle checkpoint.  相似文献   

8.
Eukaryotic cells have evolved a mechanism that delays the progression of mitosis until condensed chromosomes are properly positioned on the mitotic spindle. To understand the molecular basis of such monitoring mechanism in human cells, we have been studying genes that regulate the mitotic checkpoint. Our early studies have led to the cloning of a full-length cDNA encoding MAD3-like protein (also termed BUBR1/MAD3/SSK1). Dot blot analyses show that BUBR1 mRNA is expressed in tissues with a high mitotic index but not in differentiated tissues. Western blot analyses show that in asynchronous cells, BUBR1 protein primarily exhibits a molecular mass of 120 kDa, and its expression is detected in most cell lines examined. In addition, BUBR1 is present during various stages of the cell cycle. As cells enter later S and G2, BUBR1 levels are increased significantly. Nocodazole-arrested mitotic cells obtained by mechanical shake-off contain BUBR1 antigen with a slower mobility on denaturing SDS gels. Phosphatase treatment restores the slowly migrating band to the interphase state, indicating that the slow mobility of the BUBR1 antigen is attributable to phosphorylation. Furthermore, purified recombinant His6-BUBR1 is capable of autophosphorylation. Our studies indicate that BUBR1 phosphorylation status is regulated during spindle disruption. Considering its strong homology to BUB1 protein kinase, BUBR1 may also play an important role in mitotic checkpoint control by phosphorylation of a critical cellular component(s) of the mitotic checkpoint pathway.  相似文献   

9.
Stathmin/Oncoprotein 18, a microtubule destabilizing protein, is required for survival of p53-deficient cells. Stathmin-depleted cells are slower to enter mitosis, but whether delayed mitotic entry triggers cell death or whether stathmin has a separate pro-survival function was unknown. To test these possibilities, we abrogated the cell cycle delay by inhibiting Wee1 in synchronized, stathmin-depleted cells and found that apoptosis was reduced to control levels. Synchronized cells treated with a 4 hour pulse of inhibitors to CDK1 or both Aurora A and PLK1 delayed mitotic entry and apoptosis was triggered only in p53-deficient cells. We did not detect mitotic defects downstream of the delayed mitotic entry, indicating that cell death is activated by a mechanism distinct from those activated by prolonged mitotic arrest. Cell death is triggered by initiator caspase 8, based on its cleavage to the active form and by rescue of viability after caspase 8 depletion or treatment with a caspase 8 inhibitor. In contrast, initiator caspase 9, activated by prolonged mitotic arrest, is not activated and is not required for apoptosis under our experimental conditions. P53 upregulates expression of cFLIPL, a protein that blocks caspase 8 activation. cFLIPL levels are lower in cells lacking p53 and these levels are reduced to a greater extent after stathmin depletion. Expression of FLAG-tagged cFLIPL in p53-deficient cells rescues them from apoptosis triggered by stathmin depletion or CDK1 inhibition during G2. These data indicate that a cell cycle delay in G2 activates caspase 8 to initiate apoptosis specifically in p53-deficient cells.  相似文献   

10.
Anaphase, mitotic exit, and cytokinesis proceed in rapid succession, and while mitotic exit is a requirement for cytokinesis in yeast, it may not be a direct requirement for furrow initiation in animal cells. In this report, we physically manipulated the proximity of the mitotic apparatus (MA) to the cell cortex in combination with microinjection of effectors of the spindle checkpoint and CDK1 activity to determine how the initiation of cytokinesis is coupled to the onset of anaphase and mitotic exit. Whereas precocious contact between the MA and the cell surface advanced the onset of cytokinesis into early anaphase A, furrowing could not be advanced prior to the metaphase-anaphase transition. Additionally, while cells arrested in anaphase could be induced to initiate cleavage furrows, cells arrested in metaphase could not. Finally, activation of the mitotic checkpoint in one spindle of a binucleate cell failed to arrest cytokinesis induced by the control spindle but did inhibit the formation of furrows between the arrested MA and the control, nonarrested MA. Our experiments suggest that the competence of the mitotic apparatus to initiate cytokinesis is not dependent on cyclin degradation but does require anaphase-promoting complex (APC) activity and, thus, inactivation of the mitotic checkpoint.  相似文献   

11.
Cleavage and Inactivation of ATM during Apoptosis   总被引:10,自引:0,他引:10       下载免费PDF全文
The activation of the cysteine proteases with aspartate specificity, termed caspases, is of fundamental importance for the execution of programmed cell death. These proteases are highly specific in their action and activate or inhibit a variety of key protein molecules in the cell. Here, we study the effect of apoptosis on the integrity of two proteins that have critical roles in DNA damage signalling, cell cycle checkpoint controls, and genome maintenance-the product of the gene defective in ataxia telangiectasia, ATM, and the related protein ATR. We find that ATM but not ATR is specifically cleaved in cells induced to undergo apoptosis by a variety of stimuli. We establish that ATM cleavage in vivo is dependent on caspases, reveal that ATM is an efficient substrate for caspase 3 but not caspase 6 in vitro, and show that the in vitro caspase 3 cleavage pattern mirrors that in cells undergoing apoptosis. Strikingly, apoptotic cleavage of ATM in vivo abrogates its protein kinase activity against p53 but has no apparent effect on the DNA binding properties of ATM. These data suggest that the cleavage of ATM during apoptosis generates a kinase-inactive protein that acts, through its DNA binding ability, in a trans-dominant-negative fashion to prevent DNA repair and DNA damage signalling.  相似文献   

12.
Mitotic catastrophe is a poorly defined type of cell death linked to the abnormal activation of cyclin B/Cdk1. Here we propose that a conflict in cell cycle progression or DNA damage can lead to mitotic catastrophe, provided that cell cycle checkpoints are inhibited, in particular the DNA structure checkpoints and the spindle assembly checkpoint. Two subtypes of mitotic catastrophe can be distinguished. First, mitotic catastrophe can kill the cell during or close to the metaphase, in a p53-independent fashion, as this occurs in Chk2-inhibited heterokarya generated by fusion. Second, mitotic catastrophe can occur after failed mitosis, during the activation of the polyploidy checkpoint, in a partially p53-dependent fashion. In these conditions, cells die as a result of caspase activation and mitochondrial membrane permeabilization that constitute hallmarks of apoptosis. Prevention of caspase activation and/or mitochondrial damage avoids mitotic catastrophe, indicating that this form of cell death indeed constitutes a special case of apoptosis. Importantly, the suppression of mitotic catastrophe can favor asymmetric division and the generation of aneuploid cells. This delineates a molecular pathway through which failure to arrest the cell cycle and inhibition of apoptosis can favor the occurrence of cytogenetic abnormalities which are likely to participate in oncogenesis.  相似文献   

13.
The mitotic checkpoint gene CHFR (checkpoint with forkhead-associated (FHA) and RING finger domains) is silenced by promoter hypermethylation or mutated in various human cancers, suggesting that CHFR is an important tumor suppressor. Recent studies have reported that CHFR functions as an E3 ubiquitin ligase, resulting in the degradation of target proteins. To better understand how CHFR suppresses cell cycle progression and tumorigenesis, we sought to identify CHFR-interacting proteins using affinity purification combined with mass spectrometry. Here we show poly(ADP-ribose) polymerase 1 (PARP-1) to be a novel CHFR-interacting protein. In CHFR-expressing cells, mitotic stress induced the autoPARylation of PARP-1, resulting in an enhanced interaction between CHFR and PARP-1 and an increase in the polyubiquitination/degradation of PARP-1. The decrease in PARP-1 protein levels promoted cell cycle arrest at prophase, supporting that the cells expressing CHFR were resistant to microtubule inhibitors. In contrast, in CHFR-silenced cells, polyubiquitination was not induced in response to mitotic stress. Thus, PARP-1 protein levels did not decrease, and cells progressed into mitosis under mitotic stress, suggesting that CHFR-silenced cancer cells were sensitized to microtubule inhibitors. Furthermore, we found that cells from Chfr knockout mice and CHFR-silenced primary gastric cancer tissues expressed higher levels of PARP-1 protein, strongly supporting our data that the interaction between CHFR and PARP-1 plays an important role in cell cycle regulation and cancer therapeutic strategies. On the basis of our studies, we demonstrate a significant advantage for use of combinational chemotherapy with PARP inhibitors for cancer cells resistant to microtubule inhibitors.  相似文献   

14.
The spindle assembly checkpoint arrests cells in mitosis when defects in mitotic spindle assembly or partitioning of the replicated genome are detected. This checkpoint blocks exit from mitosis until the defect is rectified or the cell initiates apoptosis. In this study we have used caffeine to identify components of the mechanism that signals apoptosis in mitotic checkpoint-arrested cells. Addition of caffeine to spindle checkpoint-arrested cells induced >40% apoptosis within 5 h. It also caused proteasome-mediated destruction of cyclin B1, a corresponding reduction in cyclin B1/cdk1 activity, and reduction in MPM-2 reactivity. However, cells retained MAD2 staining at the kinetochores, an indication of continued spindle checkpoint function. Blocking proteasome activity did not block apoptosis, but continued spindle checkpoint function was essential for apoptosis. After systematically eliminating all known targets, we have identified p21-activated kinase PAK1, which has an anti-apoptotic function in spindle checkpoint-arrested cells, as a target for caffeine inhibition. Knockdown of PAK1 also increased apoptosis in spindle checkpoint-arrested cells. This study demonstrates that the spindle checkpoint not only regulates mitotic exit but apoptosis in mitosis through the activity of PAK1.  相似文献   

15.
Biochemical studies suggest that caspase activity is required for a functional mitotic checkpoint (MC) and mitotic slippage. To test this directly, we followed nontransformed human telomerase immortalized human retinal pigment epithelia (RPE-1) cells through mitosis after inhibiting or depleting selected caspases. We found that inhibiting caspases individually, in combination, or in toto did not affect the duration or fidelity of mitosis in otherwise untreated cells. When satisfaction of the MC was prevented with 500 nM nocodazole or 2.5 μM dimethylenastron (an Eg5 inhibitor), 92-100% of RPE-1 cells slipped from mitosis in the presence of pan-caspase inhibitors or after simultaneously depleting caspase-3 and -9, and they did so with the same kinetics (~21-22 h) as after treatment with nocodazole or Eg5 inhibitors alone. Surprisingly, inhibiting or depleting caspase-9 alone doubled the number of nocodazole-treated, but not Eg5-inhibited, cells that died in mitosis. In addition, inhibiting or depleting caspase-9 and -3 together accelerated the rate of slippage ~40% (to ~13-15 h). Finally, nocodazole-treated cells that recently slipped through mitosis in the presence or absence of pan-caspase inhibitors contained numerous BubR1 foci in their nuclei. From these data, we conclude that caspase activity is not required for a functional MC or for mitotic slippage.  相似文献   

16.
We report the isolation and characterization of pds1 mutants in Saccharomyces cerevisiae. The initial pds1-1 allele was identified by its inviability after transient exposure to microtubule inhibitors and its precocious dissociation of sister chromatids in the presence of these microtubule inhibitors. These findings suggest that pds1 mutants might be defective in anaphase arrest that normally is imposed by a spindle-damage checkpoint. To further examine a role for Pds1p in anaphase arrest, we compared the cell cycle arrest of pds1 mutants and PDS1 cells after: (a) the inactivation of Cdc16p or Cdc23p, two proteins that are required for the degradation of mitotic cyclins and are putative components of the yeast anaphase promoting complex (APC); (b) the inactivation of Cdc20p, another protein implicated in the degradation of mitotic cyclins; and (c) the inactivation of Cdc13 protein or gamma irradiation, two circumstances that induce a DNA- damage checkpoint. Under all these conditions, anaphase is inhibited in PDS1 cells but not in pds1 mutants. From these results we suggest that Pds1 protein is an anaphase inhibitor in PDS1 cells but not in pds1 mutants. From these results we suggest that Pds1 protein is an anaphase inhibitor that plays a critical role in the control of anaphase by both APC and checkpoints. We also show that pds1 mutants exit mitosis and initiate new rounds of cell division after gamma irradiation and Cdc13p inactivation but no after nocodazole-treatment or inactivation of Cdc16p, Cdc20p or Cdc23p function. Therefore, in the DNA-damage checkpoint, Pds1p is required for the inhibition of cytokinesis and DNA replication as well as anaphase. The role of Pds1 protein in anaphase inhibition and general cell cycle regulation is discussed.  相似文献   

17.
We have shown previously that diallyl trisulfide (DATS), a constituent of processed garlic, inhibits proliferation of PC-3 and DU145 human prostate cancer cells by causing G(2)-M phase cell cycle arrest in association with inhibition of cyclin-dependent kinase 1 activity and hyperphosphorylation of Cdc25C at Ser(216). Here, we report that DATS-treated PC-3 and DU145 cells are also arrested in mitosis as judged by microscopy following staining with anti-alpha-tubulin antibody and 4',6-diamidino-2-phenylindole and flow cytometric analysis of Ser(10) phosphorylation of histone H3. The DATS treatment caused activation of checkpoint kinase 1 and checkpoint kinase 2, which are intermediaries of DNA damage checkpoints and implicated in Ser(216) phosphorylation of Cdc25C. The diallyl trisulfide-induced Ser(216) phosphorylation of Cdc25C as well as mitotic arrest were significantly attenuated by knockdown of check-point kinase 1 protein in both PC-3 and DU145 cells. On the other hand, depletion of checkpoint kinase 2 protein did not have any appreciable effect on G(2) or M phase arrest or Cdc25C phosphorylation caused by diallyl trisulfide. The lack of a role of checkpoint kinase 2 in diallyl trisulfide-induced phosphorylation of Cdc25C or G(2)-M phase cell cycle arrest was confirmed using HCT-15 cells stably transfected with phosphorylation-deficient mutant (T68A mutant) of checkpoint kinase 2. In conclusion, the results of the present study suggest existence of a checkpoint kinase 1-dependent mechanism for diallyl trisulfide-induced mitotic arrest in human prostate cancer cells.  相似文献   

18.
Monastrol, a cell-permeable small molecule inhibitor of the mitotic kinesin, Eg5, arrests cells in mitosis with monoastral spindles. Here, we use monastrol to probe mitotic mechanisms. We find that monastrol does not inhibit progression through S and G2 phases of the cell cycle or centrosome duplication. The mitotic arrest due to monastrol is also rapidly reversible. Chromosomes in monastrol-treated cells frequently have both sister kinetochores attached to microtubules extending to the center of the monoaster (syntelic orientation). Mitotic arrest-deficient protein 2 (Mad2) localizes to a subset of kinetochores, suggesting the activation of the spindle assembly checkpoint in these cells. Mad2 localizes to some kinetochores that have attached microtubules in monastrol-treated cells, indicating that kinetochore microtubule attachment alone may not satisfy the spindle assembly checkpoint. Monastrol also inhibits bipolar spindle formation in Xenopus egg extracts. However, it does not prevent the targeting of Eg5 to the monoastral spindles that form. Imaging bipolar spindles disassembling in the presence of monastrol allowed direct observations of outward directed forces in the spindle, orthogonal to the pole-to-pole axis. Monastrol is thus a useful tool to study mitotic processes, detection and correction of chromosome malorientation, and contributions of Eg5 to spindle assembly and maintenance.  相似文献   

19.
Cell cycle checkpoints that monitor DNA damage and spindle assembly are essential for the maintenance of genetic integrity, and drugs that target these checkpoints are important chemotherapeutic agents. We have examined how cells respond to DNA damage while the spindle-assembly checkpoint is activated. Single cell electrophoresis and phosphorylation of histone H2AX indicated that several chemotherapeutic agents could induce DNA damage during mitotic block. DNA damage during mitotic block triggered CDC2 inactivation, histone H3 dephosphorylation, and chromosome decondensation. Cells did not progress into G1 but seemed to retract to a G2-like state containing 4N DNA content, with stabilized cyclin A and cyclin B1 binding to Thr14/Tyr15-phosphorylated CDC2. The loss of mitotic cells was not due to cell death because there was no discernible effect on caspase-3 activation, DNA fragmentation, or viability. Extensive DNA damage during mitotic block inactivated cyclin B1-CDC2 and prevented G1 entry when the block was removed. The mitotic DNA damage responses were independent of p53 and pRb, but they were dependent on ATM. CDC25A that accumulated during mitosis was rapidly destroyed after DNA damage in an ATM-dependent manner. Ectopic expression of CDC25A or nonphosphorylatable CDC2 effectively inhibited the dephosphorylation of histone H3 after DNA damage. Hence, although spindle disruption and DNA damage provide conflicting signals to regulate CDC2, the negative regulation by the DNA damage checkpoint could overcome the positive regulation by the spindle-assembly checkpoint.  相似文献   

20.
The evolutionarily conserved spindle checkpoint is a key mechanism ensuring high-fidelity chromosome transmission. The checkpoint monitors attachment between kinetochores and mitotic spindles and the tension between sister kinetochores. In the absence of proper attachment or tension, the spindle checkpoint mediates cell cycle arrest prior to anaphase. Saccharomyces cerevisiae Mad1p is required for the spindle checkpoint and for chromosome transmission fidelity. Moreover, Mad1p associates with the nuclear pore complex (NPC) and is enriched at kinetochores upon checkpoint activation. Using partial mad1 deletion alleles we determined that the C-terminal half of Mad1p is necessary and sufficient for checkpoint activation in response to microtubule depolymerizing agents, high-fidelity transmission of a reporter chromosome fragment, and in vivo association with centromeres, but not for robust NPC association. Thus, spindle checkpoint activation and chromosome transmission fidelity correlate and these Mad1p functions likely involve kinetochore association but not robust NPC association. These studies are the basis for elucidating the role of protein complexes containing Mad1p in the spindle checkpoint pathway and in maintaining genome stability in S. cerevisiae and other systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号