首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Deadenylation is often the rate-limiting event in regulating the turnover of cellular mRNAs in eukaryotes. Removal of the poly(A) tail initiates mRNA degradation by one of several decay pathways, including deadenylation-dependent decapping, followed by 5' to 3' exonuclease decay or 3' to 5' exosome-mediated decay. In trypanosomatids, mRNA degradation is important in controlling the expression of differentially expressed genes. Genomic annotation studies have revealed several potential deadenylases. Poly(A)-specific RNase (PARN) is a key deadenylase involved in regulating gene expression in mammals, Xenopus oocytes, and higher plants. Trypanosomatids possess three different PARN genes, PARN-1, -2, and -3, each of which is expressed at the mRNA level in two life-cycle stages of the human parasite Trypanosoma brucei. Here we show that T. brucei PARN-1 is an active deadenylase. To determine the role of PARN-1 on mRNA stability in vivo, we overexpressed this protein and analyzed perturbations in mRNA steady-state levels as well as mRNA half-life. Interestingly, a subset of mRNAs was affected, including a family of mRNAs that encode stage-specific coat proteins. These data suggest that PARN-1 functions in stage-specific protein production.  相似文献   

4.
5.
6.
7.
Mitochondria consist of four compartments, outer membrane, intermembrane space, inner membrane, and matrix; each harboring specific functions and structures. In this study, we used LC‐MS/MS to characterize the protein composition of Trypanosoma brucei mitochondrial (mt) membranes, which were enriched by different biochemical fractionation techniques. The analyses identified 202 proteins that contain one or more transmembrane domain(s) and/or positive GRAVY scores. Of these, various criteria were used to assign 72 proteins to mt membranes with high confidence, and 106 with moderate‐to‐low confidence. The sub‐cellular localization of a selected subset of 13 membrane assigned proteins was confirmed by tagging and immunofluorescence analysis. While most proteins assigned to mt membrane have putative roles in metabolic, energy generating, and transport processes, ~50% have no known function. These studies result in a comprehensive profile of the composition and sub‐organellar location of proteins in the T. brucei mitochondrion thus, providing useful information on mt functions.  相似文献   

8.
RNA editing produces mature trypanosome mitochondrial mRNAs by uridylate (U) insertion and deletion. In insertion editing, Us are added to the pre-mRNA by a 3' terminal uridylyl transferase (TUTase) activity. We report the identification of a TUTase activity that copurifies with in vitro editing and is catalyzed by the integral editosome protein TbMP57. TbMP57 catalyzes the addition of primarily a single U to single-stranded (ss) RNA and adds the number of Us specified by a guide RNA to insertion editing-like substrates. TbMP57 is distinct from a previously identified TUTase that adds many Us to ssRNA and which we find is neither a stable editosome component nor does it add Us to editing-like substrates. Recombinant TbMP57 specifically interacts with the editosome protein TbMP81, and this interaction enhances the TUTase activity. These results suggest that TbMP57 catalyzes U addition to pre-mRNA during editing.  相似文献   

9.
ABSTRACT. The presence of nonvariant antigens (NVAs) limited to bloodstream forms of Trypanosoma brucei brucei and Trypanosoma brucei rhodesiense was demonstrated for the first time by immunodiffusion and Immunoelectrophoresis. Noncloned and cloned populations were employed in preparation of polyclonal antisera in rabbits and of antigens to be used in the immunologic reactions. The NVAs could be shown best in systems in which hyperimmune rabbit sera (adsorbed with procyclic forms to eliminate antibodies against antigens common to bloodstream form and procyclic stages) were reacted with trypanosomes characterized by heterologous variant-specific antigens (VSAs). The NVAs demonstrated in this study are very likely different from the common parts of VSAs. As has been suggested by experiments with living trypanosomes, at least a part of the NVAs appears to be located on the surface of the bloodstream forms. In these experiments involving the quantitative indirect fluorescent antibody test, the amount of fluorescence recorded for the heterologous system, i.e. ETat 5 trypanosomes incubated with anti-AmTat 1.1 serum, equalled ~3.0% of the fluorescence emitted by the AmTat 1.1 bloodstream forms treated with their homologous antiserum. Evidently, only small amounts of NVAs are present on the surfaces of T. brucei bloodstream forms. In addition to the NVAs, the electrophoresis results suggested the presence of antigenic differences between procyclic stages belonging to different T. brucei stocks.  相似文献   

10.
Polyadenylation of RNAs plays a critical role in modulating rates of RNA turnover and ultimately in controlling gene expression in all systems examined to date. In mitochondria, the precise mechanisms by which RNAs are degraded, including the role of polyadenylation, are not well understood. Our previous in organello pulse-chase experiments suggest that poly(A) tails stimulate degradation of mRNAs in the mitochondria of the protozoan parasite Trypanosoma brucei (Militello, K. T., and Read, L. K. (2000) Mol. Cell. Biol. 21, 731-742). In this report, we developed an in vitro assay to directly examine the effects of specific 3'-sequences on RNA degradation. We found that a salt-extracted mitochondrial membrane fraction preferentially degraded polyadenylated mitochondrially and non-mitochondrially encoded RNAs over their non-adenylated counterparts. A poly(A) tail as short as 5 nucleotides was sufficient to stimulate rapid degradation, although an in vivo tail length of 20 adenosines supported the most rapid decay. A poly(U) extension did not promote rapid RNA degradation, and RNA turnover was slowed by the addition of uridine residues to the poly(A) tail. To stimulate degradation, the poly(A) element must be located at the 3' terminus of the RNA. Finally, we demonstrate that degradation of polyadenylated RNAs occurs in the 3' to 5' direction through the action of a hydrolytic exonuclease. These experiments demonstrate that the poly(A) tail can act as a cis-acting element to facilitate degradation of T. brucei mitochondrial mRNAs.  相似文献   

11.
12.
The composition of the large, single, mitochondrion (mt) of Trypanosoma brucei was characterized by MS (2‐D LC‐MS/MS and gel‐LC‐MS/MS) analyses. A total of 2897 proteins representing a substantial proportion of procyclic form cellular proteome were identified, which confirmed the validity of the vast majority of gene predictions. The data also showed that the genes annotated as hypothetical (species specific) were overpredicted and that virtually all genes annotated as hypothetical, unlikely are not expressed. By comparing the MS data with genome sequence, 40 genes were identified that were not previously predicted. The data are placed in a publicly available web‐based database (www.TrypsProteome.org). The total mitochondrial proteome is estimated at 1008 proteins, with 401, 196, and 283 assigned to the mt with high, moderate, and lower confidence, respectively. The remaining mitochondrial proteins were estimated by statistical methods although individual assignments could not be made. The identified proteins have predicted roles in macromolecular, metabolic, energy generating, and transport processes providing a comprehensive profile of the protein content and function of the T. brucei mt.  相似文献   

13.
Trypanosoma brucei causes human African trypanosomiasis and regularly switches its major surface antigen variant surface glycoprotein (VSG) to evade mammalian host immune responses at the bloodstream form (BF) stage. Monoallelic expression of BF Expression Site (BES)-linked VSGs and silencing of metacyclic VSGs (mVSGs) in BF cells are essential for antigenic variation, whereas silencing of both BES-linked and mVSGs in the procyclic form (PF) cells is important for cell survival in the midgut of its insect vector. We have previously shown that silencing BES-linked VSGs in BF cells depends on TbRAP1. We now show that TbRAP1 silences both BES-linked and mVSGs at both BF and PF stages. The strength of TbRAP1-mediated BES-linked VSG silencing is stronger in the PF cells than that in BF cells. In addition, Formaldehyde-Assisted Isolation of Regulatory Elements analysis and MNase digestion demonstrated that depletion of TbRAP1 in PF cells led to a chromatin structure change, which is significantly stronger at the subtelomeric VSG loci than at chromosome internal loci. On the contrary, no significant chromatin structure changes were detected on depletion of TbRAP1 in BF cells. Our observations indicate that TbRAP1 helps to determine the chromatin structure at the insect stage, which likely contributes to its strong silencing effect on VSGs.  相似文献   

14.
15.
African trypanosomes encode three monothiol glutaredoxins (1-C-Grx1 to 3). 1-C-Grx1 has a putative CAYS active site and Cys181 as single additional cysteine. The recombinant protein forms non-covalent homodimers. As observed for other monothiol glutaredoxins, Trypanosoma brucei 1-C-Grx1 was not active in the glutaredoxin assay with hydroxyethyl disulfide and glutathione nor catalyzed the reduction of insulin disulfide. In addition, it lacked peroxidase activity and did not catalyze protein (de)glutathionylation. Upon oxidation, 1-C-Grx1 forms an intramolecular disulfide bridge and, to a minor degree, covalent dimers. Both disulfide forms are reduced by the parasite trypanothione/tryparedoxin system. 1-C-Grx1 shows mitochondrial localization. The total cellular concentration is at least 5 microm. Thus, 1-C-Grx1 is an abundant protein especially in the rudimentary organelle of the mammalian form of the parasite. Expression of 1-C-Grx1 in Grx5-deficient yeast cells with its authentic presequence targeted the protein to the mitochondria and partially restored the growth phenotype and aconitase activity of the mutant, and conferred resistance against hydroperoxides and diamide. The parasite Grx2 and 3 failed to substitute for Grx5. This is surprising because even bacterial and plant 1-Cys-glutaredoxins efficiently revert the defects, and may be due to the lack of two basic residues conserved in all but the trypanosomatid proteins.  相似文献   

16.
The mitochondrial tRNAs of Trypanosoma brucei are nuclear encoded   总被引:17,自引:0,他引:17  
The mitochondrial DNA of Trypanosoma brucei is organized as a catenated network of maxicircles and minicircles. The maxicircles are equivalent to the typical mitochondrial genome except that the genes for the mitochondrial tRNAs have not been identified by sequence analysis of the maxicircle DNA. The apparent absence of tRNA genes in the maxicircle DNA suggests that the mitochondrial tRNAs are encoded by either the minicircle or the nuclear DNA. In order to determine their genomic origin, we isolated and identified the mitochondrial tRNAs of T. brucei. We show that these mitochondrial tRNAs are truly mitochondrially located in vivo and that they are free from detectable contamination by cytosolic RNAs. By hybridization analysis, using mitochondrial tRNAs as the probe, we determined that the mitochondrial tRNAs are encoded by nuclear DNA. This implies that RNAs, like proteins, are imported into the mitochondria. We investigated the relationship between the cytosolic and the mitochondrial tRNA genes and show that there are unique cytosolic tRNA genes, unique mitochondrial tRNA genes, and tRNA genes which appear to be shared and whose products are therefore targeted to both the cytosol and the mitochondrion.  相似文献   

17.
Translocases of mitochondrial inner membrane (TIMs) are multiprotein complexes. The only Tim component so far characterized in kinetoplastid parasites such as Trypanosoma brucei is Tim17 (TbTim17), which is essential for cell survival and mitochondrial protein import. Here, we report that TbTim17 is present in a protein complex of about 1,100 kDa, which is much larger than the TIM complexes found in fungi and mammals. Depletion of TbTim17 in T. brucei impairs the mitochondrial import of cytochrome oxidase subunit IV, an N-terminal signal-containing protein. Pretreatment of isolated mitoplasts with the anti-TbTim17 antibody inhibited import of cytochrome oxidase subunit IV, indicating a direct involvement of the TbTim17 in the import process. Purification of the TbTim17-containing protein complex from the mitochondrial membrane of T. brucei by tandem affinity chromatography revealed that TbTim17 associates with seven unique as well as a few known T. brucei mitochondrial proteins. Depletion of three of these novel proteins, i.e. TbTim47, TbTim54, and TbTim62, significantly decreased mitochondrial protein import in vitro. In vivo targeting of a newly synthesized mitochondrial matrix protein, MRP2, was also inhibited due to depletion of TbTim17, TbTim54, and TbTim62. Co-precipitation analysis confirmed the interaction of TbTim54 and TbTim62 with TbTim17 in vivo. Overall, our data reveal that TbTim17, the single homolog of Tim17/22/23 family proteins, is present in a unique TIM complex consisting of novel proteins in T. brucei and is critical for mitochondrial protein import.  相似文献   

18.
Trypanosomes contain a unique form of mitochondrial DNA called kinetoplast DNA (kDNA) that is a catenated network composed of minicircles and maxicircles. Several proteins are essential for network replication, and most of these localize to the antipodal sites or the kinetoflagellar zone. Essential components for kDNA synthesis include three mitochondrial DNA polymerases TbPOLIB, TbPOLIC, and TbPOLID). In contrast to other kDNA replication proteins, TbPOLID was previously reported to localize throughout the mitochondrial matrix. This spatial distribution suggests that TbPOLID requires redistribution to engage in kDNA replication. Here, we characterize the subcellular distribution of TbPOLID with respect to the Trypanosoma brucei cell cycle using immunofluorescence microscopy. Our analyses demonstrate that in addition to the previously reported matrix localization, TbPOLID was detected as discrete foci near the kDNA. TbPOLID foci colocalized with replicating minicircles at antipodal sites in a specific subset of the cells during stages II and III of kDNA replication. Additionally, the TbPOLID foci were stable following the inhibition of protein synthesis, detergent extraction, and DNase treatment. Taken together, these data demonstrate that TbPOLID has a dynamic localization that allows it to be spatially and temporally available to perform its role in kDNA replication.  相似文献   

19.
We have evaluated whether sequence polymorphisms in the rRNA intergenic spacer region can be used to study the relatedness of two subspecies of Trypanosoma brucei. Thirteen T. brucei isolates made up of 6 T. b. brucei and 7 T. b. gambiense were analyzed using restriction fragment length polymorphism (RFLP). By PCR-based restriction mapping of the ITS1-5.8S-ITS2 ribosomal repeat unit, we found a fingerprint pattern that separately identifies each of the two subspecies analyzed, with unique restriction fragments observed in all but 1 of the T. b. gambiense "human" isolates. Interestingly, the restriction profile for a virulent group 2 T. b. gambiense human isolate revealed an unusual RFLP pattern different from the profile of other human isolates. Sequencing data from four representatives of each of the two subspecies indicated that the intergenic spacer region had a conserved ITS-1 and a variable 5.8S with unique transversions, insertions, or deletions. The ITS-2 regions contained a single repeated element at similar positions in all isolates examined, but not in 2 of the human isolates. A unique 4-bp [C(3)A] sequence was found within the 5.8S region of human T. b. gambiense isolates. Phylogenetic analysis of the data suggests that their common ancestor was a nonhuman animal pathogen and that human pathogenicity might have evolved secondarily. Our data show that cryptic species within the T. brucei group can be distinguished by differences in the PCR-RFLP profile of the rDNA repeat.  相似文献   

20.
Inhibition of RNA editing by down-regulation of expression of the mitochondrial RNA editing TUTase 1 by RNA interference had profound effects on kinetoplast biogenesis in Trypanosoma brucei procyclic cells. De novo synthesis of the apocytochrome b and cytochrome oxidase subunit I proteins was no longer detectable after 3 days of RNAi. The effect on protein synthesis correlated with a decline in the levels of the assembled mitochondrial respiratory complexes III and IV, and also cyanide-sensitive oxygen uptake. The steady-state levels of nuclear-encoded subunits of complexes III and IV were also significantly decreased. Because the levels of the corresponding mRNAs were not affected, the observed effect was likely due to an increased turnover of these imported mitochondrial proteins. This induced protein degradation was selective for components of complexes III and IV, because little effect was observed on components of the F(1).F(0)-ATPase complex and on several other mitochondrial proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号