首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
We have previously found that chronic infusion of atrial natriuretic peptide (ANP) decreased mean arterial pressure (MAP) by 16% in two-kidney, one-clip (2K-1C) hypertensive rats, and we hypothesized that natriuresis might be modified through the pressure-natriuresis mechanism. We therefore decided to evaluate sodium balance in 2K-1C rats infused with ANP (0.5 micrograms/h for 4 days). The ANP infusion to the 2K-1C rats induced a significant decrease in MAP from 171 +/- 3 to a minimum value of 147 +/- 6 mm Hg after 2 days of treatment (p less than 0.001). Sodium excretion fell from 2,536 +/- 60 to 2,047 +/- 86 (p less than 0.001) and 2,211 +/- 96 mu Eq/24 h (p less than 0.05) by days 1 and 2 of ANP administration. Furthermore, fractional excretion of sodium intake decreased from 99.1 +/- 1.5 to 81.1 +/- 2.9 (p less than 0.001), 84.1 +/- 2.6 (p less than 0.05) and 85.9 +/- 5.15% (p less than 0.05) by days 1, 2 and 3 of ANP infusion, respectively, returning to basal values thereafter. The administration of vehicle (0.9% NaCl) did not induce any significant change in 2K-1C hypertensive rats. The infusion of either vehicle or the same dose of ANP to normotensive rats (0.5 micrograms/h, for 4 days) did not modify sodium balance throughout the experiment. These results strongly suggest that the ANP-induced decrease in MAP might be responsible for the transitory sodium retention observed in 2K-1C hypertensive rats during the administration of the peptide.  相似文献   

2.
Angiotensin II (ANG II) and vasopressin (AVP) are two powerful vasoconstrictors, and atrial natriuretic peptide (ANP) is a potent vasorelaxant. The changes in the density or affinity of binding sites for these agents that may alter target organ responsiveness in hypertension are reviewed. ANG II binding in mesenteric arteries was unaltered in one-kidney, one-clip (1-K, 1-C) and in 2-K, 1-C hypertensive rats, while in deoxycorticosterone acetate (DOCA)-salt hypertensive rats ANG II binding to blood vessels was significantly increased. A role of mineralocorticoids to increase the number of vascular ANG II sites in some hypertensive models is suggested. In spontaneously hypertensive rats (SHR) ANG II receptors were increased in young rats in the prehypertensive stage with respect to Wistar-Kyoto (WKY) control rats, but normal in older rats. AVP binding in the vasculature of hypertensive rats was uniformly decreased in inverse correlation to plasma AVP levels, but vascular responsiveness to AVP was exaggerated. Inositol trisphosphate production by blood vessels of SHR in response to AVP showed that increased AVP receptor-coupled phospholipase C activity may mediate in part the exaggerated pressor response in spite of reduced or normal density of receptors for vasoconstrictor peptides. Vascular ANP sites in 2-K, 1-C, 1-K,1-C, and DOCA-salt hypertensive rats varied inversely with plasma concentrations of ANP. Normal densities of ANP receptors in saralasin-sensitive 2-K, 1-C hypertensive rats correlated with ANP sensitivity, while saralasin-insensitive 2-K, 1-C hypertensive rats, which did not respond to ANP, had significantly decreased density of ANP vascular receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We explored the effects of 12-hour infusion of atrial natriuretic peptide (alpha-rANP:rat, 1-28) on arterial acid-base balance, using 5/6 nephrectomized rats with chronic renal failure. Before the infusion, nephrectomized rats had a higher mean arterial blood pressure, greater urine volume, and lower creatinine clearance than the normal controls, but they did not show a significant difference in arterial hydrogen ion concentration (pH), plasma bicarbonate concentration (HCO3-), partial pressure of carbon dioxide (PCO2), plasma base excess (BE), or plasma ANP concentration. alpha-rANP infusion produced a continuous blood pressure reduction in both nephrectomized and control rats. Urine volume and urinary sodium and potassium excretion tended to increase at 2-hour infusion, but not at 12-hour infusion. In the controls alpha-rANP significantly increased pH from 7.47 to 7.50, and decreased PCO2 by 14%. In contrast, in nephrectomized rats alpha-rANP significantly decreased pH from 7.48 to 7.44, HCO3- by 13%, and BE from -0.07 to -3.22 meq/l. Rats with chronic renal failure had greater reduction in HCO3- than the controls (p less than 0.05). There was no difference in plasma ANP level between the two groups. Thus, it is indicated that the long-term infusion of alpha-rANP reduces pH in rats with chronic renal failure, thereby adversely affecting the acid-base balance.  相似文献   

4.
Quantitative autoradiography was used to localize and characterize atrial natriuretic peptide (ANP) receptors in the rat brain and to study their regulation. Peptide receptors are selectively located to circumventricular organs outside the blood brain barrier, such as the subfornical organ, and to brain areas involved in fluid and cardiovascular regulation. Dehydration, either by water deprivation of normal rats, or chronic dehydration present in homozygous Brattleboro rats lacking vasopressin, results in large increases in ANP binding in receptor number in the subfornical organ. In the deoxycorticosterone acetate (DOCA)-salt hypertensive model, only salt treatment, but not DOCA alone or the combination of DOCA-salt, increased the ANP receptor number in the subfornical organ and the choroid plexus. Both young and adult genetically hypertensive rats have a greatly decreased ANP receptor number in the subfornical organ and the choroid plexus. Selective displacement with an inactive analog lacking the disulfide bond (ANP 111-126) suggests that genetically hypertensive rats may lack C (clearance) atrial natriuretic peptide receptors. Our results implicate brain atrial natriuretic peptide receptors in the central response to alterations in fluid regulation and blood pressure.  相似文献   

5.
Atrial natriuretic peptide (ANP) is secreted by the heart in response mainly to atrial distension and circulates in plasma in picomolar concentrations. It binds to receptors in blood vessels which it relaxes, renal glomeruli where it induces increased glomerular filtration rate, renal papilla to produce natriuresis, adrenal glomerulosa celts to inhibit aldosterone secretion, and median eminence and pituitary where it may inhibit vasopressin secretion. In experimental models of hypertension plasma levels of ANP are uniformly elevated, except in spontaneously hypertensive rats, in which plasma ANP may only rise transiently. The action of ANP on smooth muscle cells of the blood vessel wall results in production of cyclic GMP, which appears to be the second messenger producing relaxation of pre-contracted blood vessels. Mechanisms other than cGMP generation have been proposed but remain unproven as mediators of ANP action. Receptors for ANP in blood vessels are of two subtypes: B-receptors (or R1-receptors), which contain guanylate cyclase in their structure, and C-receptors (or R2-receptors), which have not been shown to the present to be biologically active. Our studies on vascular ANP receptors are reviewed. In several experimental models of hypertension such as saralasin-insensitive 2-kidney, 1-clip and 1-kidney, 1-clip Goldblatt hypertensive rats and in DOCA-salt hypertensive rats, we have found elevated plasma ANP, as well as decreased binding and ANP-induced vascular relaxation and blood pressure-lowering effects of ANP. Both the B and C ANP receptors appear decreased in density, even after acid washing of membranes to remove any retained circulating ANP. In SHR we have found that plasma ANP was higher than in control WKY rats only transiently at 8 weeks. Binding was significantly lower in 4 and 8 week-old SHR, but cGMP generation and relaxation produced by ANP were increased in the 4 week-old SHR but normal at 8, 12 or 16 weeks. Expression of B-receptors was exaggerated in 4 week-old SHR relative to C receptors in comparison to age-matched WKY and Wistar rats. These results may underly the normalization of blood pressure found in SHR when a small dose of ANP is infused intravenously, in contrast to other models of experimental hypertension which appear to be more resistant to ANP-induced blood pressure lowering effects. In humans with essential hypertension, plasma ANP was increased in patients with moderate to severe uncontrolled high blood pressure, associated with echocardiographic evidence of left ventricular hypertrophy. In these patients, platelet ANP binding was significantly reduced. If these sites resemble vascular ANP sites in their behavior, severely hypertensive patients may be less sensitive to ANP, which may contribute to blood pressure elevation.  相似文献   

6.
We have previously shown the augmented levels of Gialpha-2 and Gialpha-3 proteins (isoforms of inhibitory guanine nucleotide regulatory protein (G-protein)), and not of Gsalpha, in the hearts and aortas of spontaneously and experimentally induced hypertensive rats. The increased expression of Gialpha and blood pressure was restored toward WKY levels by captopril treatment, suggesting a role for angiotensin (Ang) II in the enhanced expression of Gialpha protein and blood pressure. This study was undertaken to investigate whether 1 kidney 1 clip (1K-1C) hypertensive rats that exhibit enhanced levels of Ang II also express enhanced levels of Gialpha proteins. Aortas from 1K-1C hypertensive rats were used. The expression of G-proteins was determined at protein levels with immunoblotting techniques, using specific antibodies for different isoforms of G-proteins. The levels of Gialpha-2 and Gialpha-3 proteins were significantly higher in aortas from 1K-1C hypertensive rats than in control rats; Gsalpha levels were unchanged. The inhibitory effect of low concentrations of guanosine 5'-[gamma-thio]triphosphate (GTPgammaS) on forskolin (FSK)-stimulated adenylyl cyclase (AC) activity was significantly enhanced in aortas from 1K-1C hypertensive rats; the inhibitory effect of C-ANP(4-23), which specifically interacts with the atrial natriuretic peptide (ANP)-C receptor, and Ang II on AC was attenuated. GTPgammaS, isoproterenol, glucagon, NaF, and FSK stimulated the AC activity in aortas from control and hypertensive rats to varying degrees; however, the stimulations were significantly lower in hypertensive rats than in control rats. These data suggest that aortas from 1K-1C hypertensive rats exhibit enhanced expression of Gialpha proteins and associated functions.  相似文献   

7.
Long-term nitric oxide (NO) blockade is known to induce a severe and progressive hypertension. The influence of the salt-intake on atrial natriuretic peptide (ANP) system in this hypertension model is unknown. The aim of this study was to evaluate ANP plasma levels, content and mRNA in atria of male Wistar rats chronically treated with oral Nomega-nitro-L-arginine methyl ester (L-NAME) after 4 weeks of high-salt diet. The high-salt diet induced an increase (P < 0.05) in ANP plasma levels in normotensive rats and no significant changes in hypertensive animals. We observed a significant increase in the ANP content in the left and right atria of hypertensive rats (P < 0.001) when compared to normotensive ones. However, no significant changes were observed during high-salt diet in normotensive and hypertensive animals. Northern blot analysis revealed that ANP gene expression is higher in the right and left atria of hypertensive rats when compared to normotensive rats. However, we found no significant changes in ANP mRNA of rats treated with high-salt diet in normotensive and hypertensive rats when compared to low-salt diet. The present observations indicate no interaction between salt-intake and activation of the ANP system during chronic nitric oxide synthase (NOS) inhibition.  相似文献   

8.
The effect of short lasting hypoxia on blood pressure, plasma atrial natriuretic peptide level and number of specific atrial granules were studied in 26 male spontaneously hypertensive and 24 normotensive Wistar rats. A great difference occurred in ANP secretion between hypertensive and normotensive rats. In the hypertensive animals elevated plasma ANP concentration (130 +/- 27 pg/ml) and decreased granularity in the right atria (73 +/- 2) were found on the first day of hypoxia with a slight elevation in urinary sodium content versus normotensive controls. The blood pressure also decreased although not significantly (190 +/- 14 mm Hg). In Wistar rats increased plasma ANP (130 +/- 34 pg/ml) and decreased atrial granularity versus normotensive controls (72 +/- 10 in the left and 113 +/- 16 in the right atrium) were observed only on the third day of hypoxia without changes in blood pressure and natriuresis. In SHR the rapid but short timed ANP release might be of right atrial origin and probably the consequence of a continuous and perhaps increased secretion of the peptide in normoxic conditions too. In Wistar rats the plasma ANP elevation could be secondary due to the increased plasma level of different vasoactive hormones to hypoxia. In the altered effect of ANP in hypertensive and normotensive hypoxic animals, structural and functional changes in the vascular bed may play a role.  相似文献   

9.
To investigate the possible involvement of endothelin-1 (ET-1), an endothelium-derived potent vasoconstrictor peptide, in the pathophysiology of hypertension, plasma ET-1 levels in 15-week-old spontaneously hypertensive rats (SHR) and DOCA-salt hypertensive rats were measured with a sandwich-type enzyme immunoassay. The vasocontractile effect of ET-1 in aortic helical preparations was significantly more sensitive in DOCA-salt hypertensive rats than in control sham-operated rats, but plasma levels of ET-1 did not differ between them. Plasma ET-1 levels in genetically hypertensive rats (SHR and stroke-prone SHR) were significantly lower than those in age-matched normotensive Wistar-Kyoto (WKY) rats. The plasma concentrations of big ET-1, a precursor of ET-1, in both SHR and SHR-SP were significantly lower than those of WKY, suggesting that the production of ET-1 is decreased in rats of genetic hypertension. Although the vascular reactivity to ET-1 increased in both DOCA-salt hypertensive and genetically hypertensive rats, present findings of the plasma ET-1 levels suggest that the role of ET-1 in the vascular control system may be different in DOCA-salt hypertensive rats and genetically hypertensive rats.  相似文献   

10.
In hypertension, the relationship between atrial natriuretic peptide (ANP) and vasopressin (AVP) is not yet clear, although their renal actions are effectively autoregulation. To examine the possible interaction further, the responses to ANP infusion (75 ng x min (-1), i.v.) have been investigated in both hypertensive and normotensive AVP-replete (HT and NT) and AVP-deficient (HTDI and NTDI) rats. This study aimed to assess the renal function and the plasma hormone concentrations of AVP, angiotensin II (AII), ANP, aldosterone, and corticosterone in the conscious, chronically catheterized, fluid-balanced rats, and to examine the cardiovascular, renal, and endocrine responses to a constant infusion of a low-dose ANP. Data gained from the present study showed, for the first time, the hormone profile, plasma electrolyte composition, and detailed renal function of the servo-controlled, fluid-balanced rats. The similarities of plasma electrolyte composition between servo-controlled and untreated rats indicated that the servo-controlled fluid replacement technique maintained the differences between the strains and maintained body fluid balance during the experimental periods. Following ANP administration, there were no changes in glomerular filtration rate (GFR) in all groups, but an enduring diuresis and natriuresis were observed in HT and NT, which were milder in HTDI rats. However, the hypotensive effect of ANP was of a similar magnitude in all rat strains. HTDI rats exhibited an inhibition of the renin-angiotensin system (RAS), which may have participated in the reduced mean arterial blood pressure (MAP) and natriuresis observed in these rats. The renal actions of ANP appear to rely upon renal tubular events, as indicated by increased fractional electrolyte excretions in the AVP-replete rats. This study highlights the importance of AVP to the profile of the renal actions of ANP in normal rats.  相似文献   

11.
The aim of the study was to find out whether vasopressin (AVP) modifies hypotensive and heart rate accelerating effects of atrial natriuretic peptide (ANP) in normotensive (WKY) and spontaneously hypertensive (SHR) conscious rats. The effect of i.v. administration of 1; 2 and 4 micrograms of ANP on blood pressure (MP) and heart rate (HR) was compared during i.v. infusion of 0.9% NaCl (NaCl), NaCl+AVP (1.2 ng kg-1 min-1) and NaCl+dEt2AVP (V1 receptors antagonist, 0.5 microgram kg-1 min-1). AVP increased MP in SHR and WKY and decreased HR in SHR. V1 antagonist decreased MP and increased HR only in SHR. In SHR ANP decreased MP and increased HR during NaCl, AVP and V1 antagonist infusion. In WKY these effects were observed only during AVP administration. In each experimental situation hypotension and tachycardia induced by ANP were greater in SHR than in WKY. In both strains ANP induced changes in MP and HR were enhanced during AVP in comparison to NaCl infusion. V1 antagonist did not modify effects of ANP in WKY and SHR. The results indicate that ANP abolishes hypertensive response induced by blood AVP elevation and that the basal levels of endogenous vasopressin acting through V1 receptors does not interfere with hypotensive action of ANP neither in WKY nor in SHR.  相似文献   

12.
This study characterizes vascular responsiveness to sodium arachidonate (C 20:4) in four models of hypertension [deoxycorticosterone acetate (DOCA) hypertensive rats, two kidney-one clip (2K-1C) renal hypertensive rats, spontaneously hypertensive rats (SHR), and psychosocial hypertensive mice]. Isolated arterial strips (aorta, mesenteric artery, tail artery) were equilibrated under optimal resting tension in physiological salt solution for measurement of isometric force generation. Dose-response curves to arachidonate (10(-10) to 10(-4) g/ml) in arteries from DOCA and 2K-1C hypertensive rats were shifted to the left compared to those in arteries from control rats. In arteries from SHR and psychosocial hypertensive mice, the dose-response relationships were unchanged compared to normotensive values. Arteries from DOCA hypertensive and 2K-1C hypertensive rats developed greater maximal contractile responses to arachidonate than controls; maximal responses in arteries from SHR and psychosocial hypertensive mice were unchanged compared to normotensive values. Contractions to arachidonate were inhibited by indomethacin (0.5 and 5 micrograms/ml) and by aspirin (5 and 50 micrograms/ml). The fatty acid, oleate (C 18:1), had no effect on the contractile state of the arteries, whereas prostaglandin F2 alpha caused contraction. These results indicate altered responsiveness to exogenous arachidonate in arteries from DOCA and 2K-1C hypertensive rats, but not in arteries from SHR and psychosocial hypertensive mice.  相似文献   

13.
Free and bound forms of atrial natriuretic peptide (ANP) in rat plasma were analysed by gel permeation chromatography combined with a radioimmunoassay (RIA) for rat ANP (rANP). Gel permeation chromatography showed two immunoreactive peaks in rat plasma, one corresponding to alpha-rANP, rANP(99-126), and the other eluted at a high molecular weight, clearly different from gamma-rANP, rANP(1-126). The chromatographic profile of rat plasma after incubation with synthetic alpha-rANP demonstrated that the high molecular immunoreactivity had ANP-binding capacity. This bound form of ANP was almost totally excluded following extraction procedure, therefore, the immunoreactive ANP (ir-ANP) measured with the extraction assay was mainly free ANP. On the other hand, direct RIA may detect not only the free but also the bound form of ANP. Using both direct RIA and the extraction method, bound forms of plasma ANP in spontaneously hypertensive rats (SHR) and stroke-prone SHR (SHRSP) were compared to normotensive Wistar Kyoto rats (WKY). Bound forms of plasma ANP in 20-week-old SHR and SHRSP were significantly higher than that in age-matched WKY. The ratio of free/bound form of plasma ANP in SHR and SHRSP also significantly increased compared to WKY, indicating a preferential increase in free ANP in the plasma of these hypertensive rats. These findings suggest that a bound form of ANP may be present in rat plasma and that it may play some pathophysiological role in the hypertension of SHR and SHRSP. Increased free ANP in plasma may indicate a compensatory increase in ANP release in these hypertensive rats.  相似文献   

14.
We demonstrated previously that intravenous administration of exogenous atrial natriuretic peptide (ANP) lowers mean pulmonary arterial pressure (MPAP) in hypoxia-adapted rats. To test the hypothesis that endogenous ANP may also lower MPAP in this model, C-ANP-(4-23), a ring-deleted analogue of ANP that binds to the biologically silent ANP clearance receptor (C-ANP receptor) but not to the ANP biological receptor (B-ANP receptor), was administered intravenously as a bolus injection (10 micrograms/kg) followed by an infusion (1 micrograms.kg-1.min-1 for 60 min) to rats adapted to hypoxia (10% O2) for 4 wk and to air control rats. C-ANP-(4-23) significantly lowered MPAP in hypoxic rats but not in air controls. A statistically insignificant reduction in mean systemic arterial pressure was found in both groups after C-ANP-(4-23) administration. C-ANP-(4-23) significantly (two- to threefold) increased endogenous plasma ANP levels in both groups; the increase was not significantly different between groups. Both basal and post-C-ANP-(4-23) levels of plasma ANP were greater in hypoxia-adapted animals than in air controls; the C-ANP-induced increase in plasma ANP was not significantly different between groups. These results suggest that the endogenous ANP may modulate pulmonary vascular tone in rats with hypoxic pulmonary hypertension.  相似文献   

15.
Angiotensin II (Ang II) type 1 receptor (AT1R) mediates the major cardiovascular effects of Ang II. However, the effects mediated via AT2R are still controversial. The aim of the present study is to define the effect of AT2R agonist CGP42112A (CGP) on high stretch-induced ANP secretion and its mechanism using in vitro and in vivo experiments. CGP (0.01, 0.1 and 1 μM) stimulated high stretch-induced ANP secretion and concentration from isolated perfused rat atria. However, atrial contractility and the translocation of extracellular fluid did not change. The augmented effect of CGP (0.1 μM) on high stretch-induced ANP secretion was attenuated by the pretreatment with AT2R antagonist or inhibitor for phosphoinositol 3-kinase (PI3K), nitric oxide (NO), soluble guanylyl cyclase (sGC), or protein kinase G (PKG). However, antagonist for AT1R or Mas receptor did not influence CGP-induced ANP secretion. In vivo study, acute infusion of CGP for 10 min increased plasma ANP level without blood pressure change. In renal hypertensive rat atria, AT2R mRNA and protein levels were up-regulated and the response of plasma ANP level to CGP infusion in renal hypertensive rats augmented. The pretreatment with AT2R antagonist for 10 min followed by CGP infusion attenuated an increased plasma ANP level induced by CGP. However, pretreatment with AT1R or Mas receptor antagonist unaffected CGP-induced increase in plasma ANP level. Therefore, we suggest that AT2R agonist CGP stimulates high stretch-induced ANP secretion through PI3K/NO/sGC/PKG pathway and these effects are augmented in renal hypertensive rats.  相似文献   

16.
Atrial natriuretic peptide (ANP) and nitric oxide (NO) induce diuresis, natriuresis and diminish vascular tone. Our previous studies showed NO system is involved in ANP hypotensive effect. The aim was to investigate ANP effects on renal and cardiac NO-synthase (NOS) activity. Rats were divided into two groups: group I, infused with saline (1 h, 0.05 ml/min); group II, received ANP bolus (5 microg/kg)+ANP infusion (1 h, 0.2 microg/kg x min). NADPH-diaphorase activity (NADPH-d) was determined in kidney and heart. NOS catalytic activity was determined in renal medulla and cortex and cardiac atria and ventricle by measuring the conversion of l-[U(14)C]-arginine to l-[U(14)C]-citrulline. In group I, NOS activity was determined in basal conditions and plus 1 microM ANP and in group II, NOS activity was determined in basal conditions. NADPH-d was higher in group II than in group I in glomeruli, proximal tubule, cortical and medullar collecting duct, right atria and left ventricle. NOS activity was increased by in vitro ANP addition and, in vivo, ANP infusion in all the studied tissues. ANP treatment increases renal and cardiac NO synthesis. This effect would be independent on the hemodynamic changes induced by ANP. The activation of NO pathway would be one of the mechanisms involved in diuretic, natriuretic and hypotensive effects of ANP.  相似文献   

17.
Atrial natriuretic peptide (ANP) is released from the cardiac atria in response to acute volume loads; when infused acutely ANP causes diuresis and natriuresis. Cyclic GMP (cGMP) appears to be the second messenger for ANP in the kidney. The role that ANP plays in the long-term regulation of salt and water balance is unclear, however, since resistance to ANP's natriuretic and diuretic activity develops during prolonged administration. The purpose of the present study is to examine the relationship between the rate of cGMP excretion in response to ANP and the development of resistance to ANP's diuretic and natriuretic activity. Following a 30-min baseline period of infusion of Ringer's solution conscious rats received ANP at 15 micrograms/kg/hr (n = 6) or Ringer's alone (n = 5) for 240 min. ANP-infused rats had a significant diuresis and natriuresis during the first hour of infusion; urinary cGMP excretion also increased compared to baseline. By 120 min after initiating the infusion in ANP-rats urinary volume and sodium excretion had declined to values not significantly different from those of baseline or control. In contrast, urinary cGMP excretion remained elevated for the duration of the ANP infusion, whether compared to baseline values or the control group. Resistance to the diuretic and natriuretic activity of ANP is not a result of mechanisms that involve cGMP generation.  相似文献   

18.
The influence of chronic changes in sodium intake on the acute effects of atrial natriuretic peptide (ANP) on arterial pressure and fluid translocation was assessed in acutely binephrectomized rats. After 3 weeks of either low sodium or high sodium diet, animals were administered ANP at doses of 0.1 and 1 microgram/kg/min. A marked and irreversible hypotensive response to ANP was observed with the higher infusion rate in the low sodium group, whereas blood pressure did not change significantly in the other groups. The effect of ANP on plasma protein concentration was less marked than that on hematocrit in all groups and was not significantly affected by sodium intake. The effect of both doses of ANP on hematocrit was enhanced in the high sodium group, indicating that the fluid shift out of the intravascular compartment was magnified by high sodium intake.  相似文献   

19.
A-type (atrial) natriuretic peptide (ANP) levels in heart and plasma were examined by immunohistochemistry, electron microscopy, and radioimmunoassay (RIA) in hypertensive transgenic mice (Tsukuba hypertensive mice; THM). Additionally, the ANP mRNA level in the heart was measured using real-time polymerase chain reaction (PCR) assay. The blood pressure and the ratio of heart weight to body weight in THM was significantly higher than those in the control mice (C57BL/6J). The number of ANP-granules and ANP immunoreactivity in the auricular cardiocytes were significantly lower in THM than in the control. Ultrastructurally, the ventricular cardiocytes in the THM occasionally had ANP-like granules, which were not present in the controls. Using RIA, the plasma, auricular, and ventricular ANP concentrations were significantly higher in THM than in the control, but there was no significant difference in plasma cyclic guanosine monophosphate (GMP) concentration between THM and the control. The ANP mRNA levels of the auricular and ventricular cardiocytes in the THM were siginificantly higher than those in the controls. The present study suggested that the ANP release system of the auricular cardiocytes in these transgenic mice is different from normal (control mice).  相似文献   

20.
R W Lappe  J A Todt  R L Wendt 《Peptides》1987,8(4):747-749
In the present study the regional hemodynamic effects of CGRP were examined in conscious unrestrained spontaneously hypertensive rats (SHR). The animals were chronically instrumented with miniaturized pulsed Doppler flow probes to allow continuous measurement of renal, mesenteric and hindquarter blood flow. Bolus intravenous injection of CGRP (0.1-5 micrograms/kg) produced a dose-dependent fall in mean arterial pressure (maximal change = -48 +/- 5 mmHg) which was accompanied by a marked tachycardia (maximal change = 143 +/- 16 b/min). Depressor responses to CGRP were sustained for approximately 3-5 min. CGRP markedly reduced regional vascular resistance in all three vascular beds. No regional-selective vasodilator response was observed. These data indicate that CGRP is a potent vasodilator peptide in conscious SHR. The study suggests further that CGRP may contribute to the physiologic regulation of cardiovascular function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号