首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The gene cluster (waa) involved in Serratia marcescens N28b core lipopolysaccharide (LPS) biosynthesis was identified, cloned, and sequenced. Complementation analysis of known waa mutants from Escherichia coli K-12, Salmonella enterica, and Klebsiella pneumoniae led to the identification of five genes coding for products involved in the biosynthesis of a shared inner core structure: [L,D-HeppIIIalpha(1-->7)-L,D-HeppIIalpha(1-->3)-L,D-HeppIalpha(1-->5)-KdopI(4<--2)alphaKdopII] (L,D-Hepp, L-glycero-D-manno-heptopyranose; Kdo, 3-deoxy-D-manno-oct-2-ulosonic acid). Complementation and/or chemical analysis of several nonpolar mutants within the S. marcescens waa gene cluster suggested that in addition, three waa genes were shared by S. marcescens and K. pneumoniae, indicating that the core region of the LPS of S. marcescens and K. pneumoniae possesses additional common features. Chemical and structural analysis of the major oligosaccharide from the core region of LPS of an O-antigen-deficient mutant of S. marcescens N28b as well as complementation analysis led to the following proposed structure: beta-Glc-(1-->6)-alpha-Glc-(1-->4))-alpha-D-GlcN-(1-->4)-alpha-D-GalA-[(2<--1)-alpha-D,D-Hep-(2<--1)-alpha-Hep]-(1-->3)-alpha-L,D-Hep[(7<--1)-alpha-L,D-Hep]-(1-->3)-alpha-L,D-Hep-[(4<--1)-beta-D-Glc]-(1-->5)-Kdo. The D configuration of the beta-Glc, alpha-GclN, and alpha-GalA residues was deduced from genetic data and thus is tentative. Furthermore, other oligosaccharides were identified by ion cyclotron resonance-Fourier-transformed electrospray ionization mass spectrometry, which presumably contained in addition one residue of D-glycero-D-talo-oct-2-ulosonic acid (Ko) or of a hexuronic acid. Several ions were identified that differed from others by a mass of +80 Da, suggesting a nonstoichiometric substitution by a monophosphate residue. However, none of these molecular species could be isolated in substantial amounts and structurally analyzed. On the basis of the structure shown above and the analysis of nonpolar mutants, functions are suggested for the genes involved in core biosynthesis.  相似文献   

2.
A recombinant clone encoding enzymes for Klebsiella pneumoniae O12-antigen lipopolysaccharide (LPS) was found when we screened for serum resistance of a cosmid-based genomic library of K. pneumoniae KT776 (O12:K80) introduced into Escherichia coli DH5alpha. A total of eight open reading frames (ORFs) (wb(O12) gene cluster) were necessary to produce K. pneumoniae O12-antigen LPS in E. coli K-12. A complete analysis of the K. pneumoniae wb(O12) cluster revealed an interesting coincidence with the wb(O4) cluster of Serratia marcescens from ORF5 to ORF8 (or WbbL to WbbA). This prompted us to generate mutants of K. pneumoniae strain KT776 (O12) and to study complementation between the two enterobacterial wb clusters using mutants of S. marcescens N28b (O4) obtained previously. Both wb gene clusters are examples of ABC 2 transporter-dependent pathways for O-antigen heteropolysaccharides. The wzm-wzt genes and the wbbA or wbbB genes were not interchangeable between the two gene clusters despite their high level of similarity. However, introduction of three cognate genes (wzm-wzt-wbbA or wzm-wzt-wbbB) into mutants unable to produce O antigen allowed production of the specific O antigen. The K. pneumoniae O12 WbbL protein performs the same function as WbbL from S. marcescens O4 in either the S. marcescens O4 or E. coli K-12 genetic background.  相似文献   

3.
The waa gene cluster is responsible for the biosynthesis of the lipopolysaccharide (LPS) core region in Escherichia coli and Salmonella: Homologs of the waaZ gene product are encoded by the waa gene clusters of Salmonella enterica and E. coli strains with the K-12 and R2 core types. Overexpression of WaaZ in E. coli and S. enterica led to a modified LPS structure showing core truncations and (where relevant) to a reduction in the amount of O-polysaccharide side chains. Mass spectrometry and nuclear magnetic resonance spectroscopy were used to determine the predominant LPS structures in an E. coli isolate with an R1 core (waaZ is lacking from the type R1 waa gene cluster) with a copy of the waaZ gene added on a plasmid. Novel truncated LPS structures, lacking up to 3 hexoses from the outer core, resulted from WaaZ overexpression. The truncated molecules also contained a KdoIII residue not normally found in the R1 core.  相似文献   

4.
To determine the function of the wabG gene in the biosynthesis of the core lipopolysaccharide (LPS) of Klebsiella pneumoniae, we constructed wabG nonpolar mutants. Data obtained from the comparative chemical and structural analysis of LPS samples obtained from the wild type, the mutant strain, and the complemented mutant demonstrated that the wabG gene is involved in attachment to alpha-L-glycero-D-manno-heptopyranose II (L,D-HeppII) at the O-3 position of an alpha-D-galactopyranosyluronic acid (alpha-D-GalAp) residue. K. pneumoniae nonpolar wabG mutants were devoid of the cell-attached capsular polysaccharide but were still able to produce capsular polysaccharide. Similar results were obtained with K. pneumoniae nonpolar waaC and waaF mutants, which produce shorter LPS core molecules than do wabG mutants. Other outer core K. pneumoniae nonpolar mutants in the waa gene cluster were encapsulated. K. pneumoniae waaC, waaF, and wabG mutants were avirulent when tested in different animal models. Furthermore, these mutants were more sensitive to some hydrophobic compounds than the wild-type strains. All these characteristics were rescued by reintroduction of the waaC, waaF, and wabG genes from K. pneumoniae.  相似文献   

5.
The Serratia marcescens N28b wbbL gene has been shown to complement the rfb-50 mutation of Escherichia coli K-12 derivatives, and a wbbL mutant has been shown to be impaired in O4-antigen biosynthesis (X. Rubirés, F. Saigí, N. Piqué, N. Climent, S. Merino, S. Albertí, J. M. Tomás, and M. Regué, J. Bacteriol. 179:7581-7586, 1997). We analyzed a recombinant cosmid containing the wbbL gene by subcloning and determination of O-antigen production phenotype in E. coli DH5alpha by sodium dodecyl sulfate-polyacrylamide electrophoresis and Western blot experiments with S. marcescens O4 antiserum. The results obtained showed that a recombinant plasmid (pSUB6) containing about 10 kb of DNA insert was enough to induce O4-antigen biosynthesis. The same results were obtained when an E. coli K-12 strain with a deletion of the wb cluster was used, suggesting that the O4 wb cluster is located in pSUB6. No O4 antigen was produced when plasmid pSUB6 was introduced in a wecA mutant E. coli strain, suggesting that O4-antigen production is wecA dependent. Nucleotide sequence determination of the whole insert in plasmid pSUB6 showed seven open reading frames (ORFs). On the basis of protein similarity analysis of the ORF-encoded proteins and analysis of the S. marcescens N28b wbbA insertion mutant and wzm-wzt deletion mutant, we suggest that the O4 wb cluster codes for two dTDP-rhamnose biosynthetic enzymes (RmlDC), a rhamnosyltransferase (WbbL), a two-component ATP-binding-cassette-type export system (Wzm Wzt), and a putative glycosyltransferase (WbbA). A sequence showing DNA homology to insertion element IS4 was found downstream from the last gene in the cluster (wbbA), suggesting that an IS4-like element could have been involved in the acquisition of the O4 wb cluster.  相似文献   

6.
7.
Bacteriocin 28b from Serratia marcescens binds to Escherichia coli outer membrane proteins OmpA and OmpF and to lipopolysaccharide (LPS) core (J. Enfedaque, S. Ferrer, J. F. Guasch, J. Tomás, and M. Requé, Can. J. Microbiol. 42:19-26, 1996). A cosmid-based genomic library of S. marcescens was introduced into E. coli NM554, and clones were screened for bacteriocin 28b resistance phenotype. One clone conferring resistance to bacteriocin 28b and showing an altered LPS core mobility in polyacrylamide gel electrophoresis was found. Southern blot experiments using DNA fragments containing E. coli rfa genes as probes suggested that the recombinant cosmid contained S. marcescens genes involved in LPS core biosynthesis. Subcloning, isolation of subclones and Tn5tac1 insertion mutants, and sequencing allowed identification of two apparently cotranscribed genes. The deduced amino acid sequence from the upstream gene showed 80% amino acid identity to the KdtA protein from E. coli, suggesting that this gene codes for the 3-deoxy-manno-octulosonic acid transferase of S. marcescens. The downstream gene (kdtX) codes for a protein showing 20% amino acid identity to the Haemophilus influenzae kdtB gene product. The S. marcescens KdtX protein is unrelated to the KdtB protein of E. coli K-12. Expression of the kdtX gene from S. marcescens in E. coli confers resistance to bacteriocin 28b.  相似文献   

8.
IncI1 plasmid R64 encodes a type IV pilus called a thin pilus, which includes PilV adhesins. Seven different sequences for the C-terminal segments of PilV adhesins can be produced by shufflon DNA rearrangement. The expression of the seven PilV adhesins determines the recipient specificity in liquid matings of plasmid R64. Salmonella enterica serovar Typhimurium LT2 was recognized by the PilVA' and PilVB' adhesins, while Escherichia coli K-12 was recognized by the PilVA', PilVC, and PilVC' adhesins. Lipopolysaccharide (LPS) on the surfaces of recipient cells was previously shown to be the specific receptor for the seven PilV adhesins. To identify the specific receptor structures of LPS for various PilV adhesins, R64 liquid matings were carried out with recipient cells consisting of various S. enterica serovar Typhimurium LT2 and E. coli K-12 waa mutants and their derivatives carrying various waa genes of different origins. From the mating experiments, including inhibition experiments, we propose that the GlcNAc(alpha1-2)Glc and Glc(alpha1-2)Gal structures of the LPS core of S. enterica serovar Typhimurium LT2 function as receptors for the PilVB' and PilVC' adhesins, respectively, while the PilVC' receptor in the wild-type LT2 LPS core may be masked. We further propose that the GlcNAc(beta1-7)Hep and Glc(alpha1-2)Glc structures of the LPS core of E. coli K-12 function as receptors for the PilVC and PilVC' adhesins, respectively.  相似文献   

9.
The type R3 core oligosaccharide predominates in the lipopolysaccharides from enterohemorrhagic Escherichia coli isolates including O157:H7. The R3 core biosynthesis (waa) genetic locus contains two genes, waaD and waaJ, that are predicted to encode glycosyltransferases involved in completion of the outer core. Through determination of the structures of the lipopolysaccharide core in precise mutants and biochemical analyses of enzyme activities, WaaJ was shown to be a UDP-glucose:(galactosyl) lipopolysaccharide alpha-1,2-glucosyltransferase, and WaaD was shown to be a UDP-glucose:(glucosyl)lipopolysaccharide alpha-1,2-glucosyltransferase. The residue added by WaaJ was identified as the ligation site for O polysaccharide, and this was confirmed by determination of the structure of the linkage region in serotype O157 lipopolysaccharide. The initial O157 repeat unit begins with an N-acetylgalactosamine residue in a beta-anomeric configuration, whereas the biological repeat unit for O157 contains alpha-linked N-acetylgalactosamine residues. With the characterization of WaaJ and WaaD, the activities of all of the enzymes encoded by the R3 waa locus are either known or predicted from homology data with a high level of confidence. However, when core oligosaccharide structure is considered, the origin of an additional alpha-1,3-linked N-acetylglucosamine residue in the outer core is unknown. The gene responsible for a nonstoichiometric alpha-1,7-linked N-acetylglucosamine substituent in the heptose (inner core) region was identified on the large virulence plasmids of E. coli O157 and Shigella flexneri serotype 2a. This is the first plasmid-encoded core oligosaccharide biosynthesis enzyme reported in E. coli.  相似文献   

10.
In Salmonella, ilv-linked rfe genes participate in the biosynthesis of the enterobacterial common antigen (CA) as well as of certain types of O antigen (serogroups C1 and L). rff genes, probably in the same cluster with rfe, are required for CA synthesis (P.H. M?kel? et al., in preparation). Several Escherichia coli strains were studied to determine whether they also have rfe-rff genes that are involved in the synthesis of O antigen and CA, or of CA only. In a first approach, E, coli K-12 F-prime factors carrying the genes ilv and argH or argE and presumably rfe-rff genes were introduced into CA-negative Salmonella mutants that are blocked in CA synthesis because of mutated rfe or rff genes. All resulting ilv+ hybrids were CA positive. In recipients with group C1-derived rfb genes, the synthesis of O6,7-specific antigen was also restored. This result shows that E. coli K-12 has rfe and rff genes providing the functions required in the synthesis of CA and Salmonella 6,7-specific polysaccharide. By introduction of defective rfe regions from suitable Salmonella donors into E. coli O8, 09, and O100 strains, the synthesis of CA as well as of the O-specific polysaccharides was blocked. This indicates that in the E. coli strains tested the rfe genes are involved in the synthesis of both O antigen and CA. This suggestion was confirmed by the finding of E. coli rough mutants that had simultaneously become CA negative. In transduction experiments it could be shown that the appearance of the rough and CA- phenotype was due to a defect in the ilv-linked rfe region.  相似文献   

11.
Genetic and molecular analyses of Escherichia coli K1 antigen genes   总被引:33,自引:24,他引:9       下载免费PDF全文
The plasmid pSR23, composed of a 34-kilobase E. coli chromosomal fragment inserted into the BamHI site of the pHC79 cosmid cloning vector, contains genes encoding biosynthesis of the K1 capsular polysaccharide. Deletions, subclones, and Tn5 insertion mutants were used to localize the K1 genes on pSR23. The only deletion derivative of pSR23 that retained the K1 phenotype lacked a 2.7-kilobase EcoRI fragment. Subclones containing HindIII and EcoRI fragments of pSR23 did not produce K1. Cells harboring pSR27, a subclone containing a 23-kilobase BamHI fragment, synthesized K1 that was not detectable extracellularly. Six acapsular Tn5 insertion mutants of three phenotypic classes were observed. Class I mutants synthesized K1 only when N-acetylneuraminic acid (NANA) was provided in the medium. Reduced amounts of K1 were detectable in cell extracts of class II mutants. Class III mutants did not produce detectable K1 in either extracts or when cells were provided exogenous NANA. All mutants had sialyltransferase activity. Analysis in the E. coli minicell system of proteins expressed by derivatives of pSR23 identified a minimum of 12 polypeptides, ranging in size from 18,000 to 80,000 daltons, involved in K1 biosynthesis. The 16-kilobase coding capacity required for the proteins was located in three gene clusters designated A, B, and C. We propose that the A cluster contains a NANA operon of two genes that code for proteins with apparent molecular weights of 45,000 and 50,000. The A region also includes a 2-kilobase segment involved in regulation of K1 synthesis. The B region encoding five protein species appears responsible for the translocation of the polymer from its site of synthesis on the cytoplasmic membrane to the cell surface. The C region encodes four protein species. Since the three gene clusters appear to be coordinately regulated. we propose that they constitute a kps regulon.  相似文献   

12.
Sucrose-positive derivatives of Escherichia coli K-12, containing the plasmid pUR400, and of Klebsiella pneumoniae hydrolyse intracellular sucrose 6-phosphate by means of an invertase into D-glucose 6-phosphate and free D-fructose. The latter is phosphorylated by an ATP-dependent fructokinase (gene scrK of an scr regulon) to D-fructose 6-phosphate. The lack of ScrK does not cause any visible phenotype in wild-type strains of both organisms. Using genes and enzymes normally involved in D-arabinitol metabolism from E. coli C and K. pneumoniae, derivatives of E. coli K-12 were constructed which allowed the identification of scrK mutations on conventional indicator plates. Cloning and sequencing of scrK from sucrose plasmid pUR400 and from the chromosome of K. pneumoniae revealed an open reading frame of 924 bp in both cases--the equivalent of a peptide containing 307 amino acid residues (Mr 39 and 34 kDa, respectively, on sodium dodecyl sulphate gels). The sequences showed overall identity among each other (69% identical residues) and to a kinase from Vibrio alginolyticus (57%) also involved in sucrose metabolism, lower overall identity (39%) to a D-ribose-kinase from E. coli, and local similarity to prokaryotic, and eukaryotic phosphofructokinases at the putative ATP-binding sites.  相似文献   

13.
A gene bank of Sau3AI-generated Streptococcus pneumoniae DNA fragments was constructed in Escherichia coli K-12 by cloning into the BamHI site of the cosmid vector pHC79. One clone capable of cleaving the fluorogenic neuraminidase substrate 2'-(4-methylumbelliferyl)-alpha-D-N-acetyl-neuraminic acid was isolated. This activity was inhibited by treatment with a mouse antiserum raised against purified pneumococcal neuraminidase. The recombinant plasmid purified from this clone (designated pJCP301) contained approximately 3.0 kb of pneumococcal DNA. Western-blot analysis indicated that E. coli K-12[pJCP301] produced a 98-kDa polypeptide which reacted with antineuraminidase serum.  相似文献   

14.
Escherichia coli K-12 has the ability to migrate on semisolid media by means of swarming motility. A systematic and comprehensive collection of gene-disrupted E. coli K-12 mutants (the Keio collection) was used to identify the genes involved in the swarming motility of this bacterium. Of the 3,985 nonessential gene mutants, 294 were found to exhibit a strongly repressed-swarming phenotype. Further, 216 of the 294 mutants displayed no significant defects in swimming motility; therefore, the 216 genes were considered to be specifically associated with the swarming phenotype. The swarming-associated genes were classified into various functional categories, indicating that swarming is a specialized form of motility that requires a wide variety of cellular activities. These genes include genes for tricarboxylic acid cycle and glucose metabolism, iron acquisition, chaperones and protein-folding catalysts, signal transduction, and biosynthesis of cell surface components, such as lipopolysaccharide, the enterobacterial common antigen, and type 1 fimbriae. Lipopolysaccharide and the enterobacterial common antigen may be important surface-acting components that contribute to the reduction of surface tension, thereby facilitating the swarm migration in the E. coli K-12 strain.  相似文献   

15.
We have cloned chromosomal genes determining the aerobactin iron transport system from the Escherichia coli K1 strain VW187. Mapping and hybridization experiments showed that the VW187 aerobactin region was identical to that of the plasmid ColV-K30. However, in the E. coli K-12 background, the biosynthesis of both siderophore and ferric aerobactin receptor encoded by the VW187-derived recombinant plasmids was not repressed by iron to the same extent found when a recombinant plasmid derived from pColV-K30 was used. RNA-DNA dot-blot hybridization experiments demonstrated that the aerobactin-specific mRNA synthesized by the VW187-derived clones was not iron regulated in E. coli K-12. In contrast, the synthesis of aerobactin and its receptor in strain VW187 was completely repressed by iron regardless of whether the recombinant plasmids originated from VW187 or pColV-K30. Similar results were obtained with gene fusions in which a promoterless lac operon was placed under the control of aerobactin promoter regions of either chromosome- or plasmid-mediated aerobactin systems. DNA sequencing of the chromosomal aerobactin promoter region showed changes in bases located immediately upstream to the -35 region compared with the corresponding region in pColV-K30, which is known to be part of the binding site for the Fur repressor protein.  相似文献   

16.
Z Yao  H Liu    M A Valvano 《Journal of bacteriology》1992,174(23):7500-7508
Most of the Shigella flexneri O-specific serotypes result from O-acetyl and/or glucosyl groups added to a common O-repeating unit of the lipopolysaccharide (LPS) molecule. The genes involved in acetylation and/or glucosylation of S. flexneri LPS are physically located on lysogenic bacteriophages, whereas the rfb cluster contains the biosynthesis genes for the common O-repeating unit (D.A.R. Simmons and E. Romanowska, J. Med. Microbiol. 23:289-302, 1987). Using a cosmid cloning strategy, we have cloned the rfb regions from S. flexneri 3a and 2a. Escherichia coli K-12 containing plasmids pYS1-5 (derived from S. flexneri 3a) and pEY5 (derived from S. flexneri 2a) expressed O-specific LPS which reacted immunologically with S. flexneri polyvalent O antiserum. However, O-specific LPS expressed in E. coli K-12 also reacted with group 6 antiserum, indicating the presence of O-acetyl groups attached to one of the rhamnose components of the O-repeating unit. This was confirmed by measuring the amounts of acetate released from purified LPS samples and also by the chemical removal of O-acetyl groups, which abolished group 6 reactivity. The O-acetylation phenotype was absent in an E. coli strain with an sbcB-his-rfb chromosomal deletion and could be restored upon conjugation of F' 129, which carries sequences corresponding to a portion of the deleted region. Our data demonstrate that E. coli K-12 strains possess a novel locus which directs the O acetylation of LPS and is located in the sbcB-rfb region of the chromosomal map.  相似文献   

17.
We have cloned genes from Klebsiella pneumoniae which are required for pyrroloquinoline quinone (PQQ) biosynthesis. The cloned 6.7 kb fragment can complement several chromosomal pqq mutants. Escherichia coli strains are unable to synthesize PQQ but E. coli strains containing the cloned 6.7 kb K. pneumoniae fragment can synthesize PQQ in large amounts and E. coli pts mutants can be complemented on minimal glucose medium by this clone.  相似文献   

18.
A gene library of Yersinia enterocolitica 8081 was constructed in the cosmid vector pHC79. Recombinants containing the aroA gene, encoding 5-enolpyruvylshikimate 3-phosphate synthase, were identified by complementation of the aroA mutation in Escherichia coli K-12 strain AB2829. All six recombinant plasmids which complemented aroA also complemented the serC mutation in E. coli K-12 strain KL282. Tn5 mutagenesis suggested serC encoding 3-phosphoserine aminotransferase was the proximal gene in an operon with aroA. The nucleotide sequence of a 3-kb HindII-EcoRV fragment encoding the two genes was determined. The serC and aroA open reading frames contain 362 and 428 codons, respectively, and the deduced amino acid sequences share 78% and 81% homology, respectively, with the corresponding E. coli genes. Sequence inspection revealed no obvious terminators or promoters in the intergenic region. The cloned Y. enterocolitica aroA gene was inactivated in vitro and reintroduced into the parental Y. enterocolitica 8081 strain using the suicide vector pJM703.1. Stable aroA insertion mutants of Y. enterocolitica were isolated.  相似文献   

19.
When Escherichia coli O157:H7 bacteria are added to alfalfa sprouts growing in water, the bacteria bind tightly to the sprouts. In contrast, laboratory K-12 strains of E. coli do not bind to sprouts under similar conditions. The roles of E. coli O157:H7 lipopolysaccharide (LPS), capsular polysaccharide, and exopolysaccharides in binding to sprouts were examined. An LPS mutant had no effect on the binding of the pathogenic strain. Cellulose synthase mutants showed a significant reduction in binding; colanic acid mutants were more severely reduced, and binding by poly-beta-1,6-N-acetylglucosamine (PGA) mutants was barely detectable. The addition of a plasmid carrying a cellulose synthase gene to K-12 strains allowed them to bind to sprouts. A plasmid carrying the Bps biosynthesis genes had only a marginal effect on the binding of K-12 bacteria. However, the introduction of the same plasmid allowed Sinorhizobium meliloti and a nonbinding mutant of Agrobacterium tumefaciens to bind to tomato root segments. These results suggest that although multiple redundant protein adhesins are involved in the binding of E. coli O157:H7 to sprouts, the polysaccharides required for binding are not redundant and each polysaccharide may play a distinct role. PGA, colanic acid, and cellulose were also required for biofilm formation by a K-12 strain on plastic, but not for the binding of E. coli O157:H7 to mammalian cells.  相似文献   

20.
The presence of cell-bound K1 capsule and K1 polysaccharide in culture supernatants was determined in a series of in-frame nonpolar core biosynthetic mutants from Escherichia coli KT1094 (K1, R1 core lipopolysaccharide [LPS] type) for which the major core oligosaccharide structures were determined. Cell-bound K1 capsule was absent from mutants devoid of phosphoryl modifications on L-glycero-D-manno-heptose residues (HepI and HepII) of the inner-core LPS and reduced in mutants devoid of phosphoryl modification on HepII or devoid of HepIII. In contrast, in all of the mutants, K1 polysaccharide was found in culture supernatants. These results were confirmed by using a mutant with a deletion spanning from the hldD to waaQ genes of the waa gene cluster to which individual genes were reintroduced. A nuclear magnetic resonance (NMR) analysis of core LPS from HepIII-deficient mutants showed an alteration in the pattern of phosphoryl modifications. A cell extract containing both K1 capsule polysaccharide and LPS obtained from an O-antigen-deficient mutant could be resolved into K1 polysaccharide and core LPS by column chromatography only when EDTA and deoxycholate (DOC) buffer were used. These results suggest that the K1 polysaccharide remains cell associated by ionically interacting with the phosphate-negative charges of the core LPS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号