首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Brain-derived neurotrophic factor (BDNF) plays a key role in the differentiation and neuritogenesis of developing neurons, and in the synaptic plasticity of mature neurons, in the mammalian nervous system. BDNF binds to the receptor tyrosine kinase TrkB and transmits neurotrophic signals by activating neuron-specific tyrosine phosphorylation pathways. However, the neurotrophic function of BDNF in Aplysia neurons is poorly understood. We examined the specific effect of BDNF on neurite outgrowth and synaptic plasticity in cultured Aplysia neurons and a multipotent rat hippocampal stem cell line (HiB5). Our study indicates that mammalian BDNF has no significant effect on the neuritogenesis, neurotransmitter release, excitability, and synaptic plasticity of cultured Aplysia neurons in our experimental conditions. In contrast, BDNF in combination with platelet-derived growth factor (PDGF) increases the length of the neurites and the number of spine-like structures in cells of HiB5.  相似文献   

2.
With DNA microarrays, we identified a gene, termed Solo, that is downregulated in the cerebellum of Purkinje cell degeneration mutant mice. Solo is a mouse homologue of rat Trio8-one of multiple Trio isoforms recently identified in rat brain. Solo/Trio8 contains N-terminal sec14-like and spectrin-like repeat domains followed by a single guanine nucleotide exchange factor 1 (GEF1) domain, but it lacks the C-terminal GEF2, immunoglobulin-like, and kinase domains that are typical of Trio. Solo/Trio8 is predominantly expressed in Purkinje neurons of the mouse brain, and expression begins following birth and increases during Purkinje neuron maturation. We identified a novel C-terminal membrane-anchoring domain in Solo/Trio8 that is required for enhanced green fluorescent protein-Solo/Trio8 localization to early endosomes (positive for both early-endosome antigen 1 [EEA1] and Rab5) in COS-7 cells and primary cultured neurons. Solo/Trio8 overexpression in COS-7 cells augmented the EEA1-positive early-endosome pool, and this effect was abolished via mutation and inactivation of the GEF domain or deletion of the C-terminal membrane-anchoring domain. Moreover, primary cultured neurons transfected with Solo/Trio8 showed increased neurite elongation that was dependent on these domains. These results suggest that Solo/Trio8 acts as an early-endosome-specific upstream activator of Rho family GTPases for neurite elongation of developing Purkinje neurons.  相似文献   

3.
The vertebrate post-synaptic density (PSD) is a region of high molecular complexity in which dynamic protein interactions modulate receptor localization and synaptic function. Members of the membrane-associated guanylate kinase (MAGUK) family of proteins represent a major structural and functional component of the vertebrate PSD. In order to investigate the expression and significance of orthologous PSD components associated with the Aplysia sensory neuron-motor neuron synapse, we have cloned an Aplysia Dlg-MAGUK protein, which we identify as Aplysia synapse associated protein (ApSAP). As revealed by western blot, RT-PCR, and immunocytochemical analyses, ApSAP is predominantly expressed in the CNS and is located in both sensory neuron and motor neurons. The overall amino acid sequence of ApSAP is 55–61% identical to Drosophila Dlg and mammalian Dlg-MAGUK proteins, but is more highly conserved within L27, PDZ, SH3, and guanylate kinase domains. Because these conserved domains mediate salient interactions with receptors and other PSD components of the vertebrate synapse, we performed a series of GST pull-down assays using recombinant C-terminal tail proteins from various Aplysia receptors and channels containing C-terminal PDZ binding sequences. We have found that ApSAP selectively binds to an Aplysia Shaker-type channel AKv1.1, but not to (i) NMDA receptor subunit AcNR1-1, (ii) potassium channel AKv5.1, (iii) receptor tyrosine kinase ApTrkl, (iv) glutamate receptor ApGluR1/4, (v) glutamate receptor ApGluR2/3, or (vi) glutamate receptor ApGluR7. These findings provide preliminary information regarding the expression and interactions of Dlg-MAGUK proteins of the Aplysia CNS, and will inform questions aimed at a functional analysis of how interactions in a protein network such as the PSD may regulate synaptic strength.  相似文献   

4.
Mutations in the ALS2 gene have been known to account for a juvenile recessive form of amyotrophic lateral sclerosis (ALS2), a rare juvenile recessive form of primary lateral sclerosis, and a form of hereditary spastic paraplegia (HSP), indicating that the ALS2 protein is essential for the maintenance of motor neurons. Recently, we have demonstrated that the ALS2 protein specifically binds to the small GTPase Rab5 and acts as a GEF (guanine nucleotide exchange factor) for Rab5. We have also shown that its Rab5GEF-requisite domain resides within the C-terminal 640-amino acid region spanning membrane occupation and recognition nexus motifs and the vacuolar protein sorting 9 domain. Transiently expressed ALS2 localized onto early endosomal compartments and stimulated endosome fusions in neuronal and non-neuronal cells in an Rab5GEF activity-dependent manner. These results indicate that the C-terminal region of ALS2 plays a crucial role in endosomal dynamics by its Rab5GEF activity. Here we delineate a molecular feature of the ALS2-associated function through the C-terminal region-mediated homo-oligomerization. A yeast two-hybrid screen for interacting proteins with the ALS2 C-terminal portion identified ALS2 itself. ALS2 forms a homophilic oligomer through its distinct C-terminal regions. This homo-oligomerization is crucial for the Rab5GEF activity in vitro and the ALS2-mediated endosome enlargement in the cells. Taken together, these results indicate that oligomerization of the ALS2 protein is one of the fundamental features for its physiological function involving endosome dynamics in vivo.  相似文献   

5.
Activity-dependent rapid structural and functional modifications of central excitatory synapses contribute to synapse maturation, experience-dependent plasticity, and learning and memory and are associated with neurodevelopmental and psychiatric disorders. However, the signal transduction mechanisms that link glutamate receptor activation to intracellular effectors that accomplish structural and functional plasticity are not well understood. Here we report that NMDA receptor activation in pyramidal neurons causes CaMKII-dependent phosphorylation of the guanine-nucleotide exchange factor (GEF) kalirin-7 at residue threonine 95, regulating its GEF activity, leading to activation of small GTPase Rac1 and rapid enlargement of existing spines. Kalirin-7 also interacts with AMPA receptors and controls their synaptic expression. By demonstrating that kalirin expression and spine localization are required for activity-dependent spine enlargement and enhancement of AMPAR-mediated synaptic transmission, our study identifies a signaling pathway that controls structural and functional spine plasticity.  相似文献   

6.
The appropriate development and regulation of neuronal morphology are important to establish functional neuronal circuits and enable higher brain function of the central nervous system. R-Ras, a member of the Ras family of small GTPases, plays crucial roles in the regulation of axonal morphology, including outgrowth, branching, and guidance. GTP-bound activated R-Ras reorganizes actin filaments and microtubules through interactions with its downstream effectors, leading to the precise control of axonal morphology. However, little is known about the upstream regulatory mechanisms for R-Ras activation in neurons. In this study, we found that brain-derived neurotrophic factor (BDNF) has a positive effect on endogenous R-Ras activation and promotes R-Ras-mediated axonal growth. RNA interference knockdown and overexpression experiments revealed that RasGRF1, a guanine nucleotide exchange factor (GEF) for R-Ras, is involved in BDNF-induced R-Ras activation and the promotion of axonal growth. Phosphorylation of RasGRF1 by protein kinase A at Ser916/898 is needed for the full activation of its GEF activity and to facilitate Ras signaling. We observed that BDNF treatment markedly increased this phosphorylation. Our results suggest that BDNF is one of the critical extrinsic regulators for R-Ras activation, and that RasGRF1 is an intrinsic key mediator for BDNF-induced R-Ras activation and R-Ras-mediated axonal morphological regulation.  相似文献   

7.
The small GTPase Rab7 promotes fusion events between late endosomes and lysosomes. Rab7 activity is regulated by extrinsic signals, most likely via effects on its guanine nucleotide exchange factor (GEF) or GTPase-activating protein (GAP). Based on their homology to the yeast proteins that regulate the Ypt7 GTP binding state, TBC1D15, and mammalian Vps39 (mVps39) have been suggested to function as the Rab7 GAP and GEF, respectively. We developed an effector pull-down assay to test this model. TBC1D15 functioned as a Rab7 GAP in cells, reducing Rab7 binding to its effector protein RILP, fragmenting the lysosome, and conferring resistance to growth factor withdrawal-induced cell death. In a cellular context, TBC1D15 GAP activity was selective for Rab7. TBC1D15 overexpression did not inhibit transferrin internalization or recycling, Rab7-independent processes that require Rab4, Rab5, and Rab11 activation. TBC1D15 was thus renamed Rab7-GAP. Contrary to expectations for a Rab7 GEF, mVps39 induced lysosomal clustering without increasing Rab7 GTP binding. Moreover, a dominant-negative mVps39 mutant fragmented the lysosome and promoted growth factor independence without decreasing Rab7-GTP levels. These findings suggest that a protein other than mVps39 serves as the Rab7 GEF. In summary, although only TBC1D15/Rab7-GAP altered Rab7-GTP levels, both Rab7-GAP and mVps39 regulate lysosomal morphology and play a role in maintaining growth factor dependence.  相似文献   

8.
β-amyloid peptide (Aβ) deposition derived from sequential cleavage of the amyloid precursor protein (APP) through the amyloidogenic pathway is an important characteristic feature of Alzheimer's disease (AD). During this process, cellular trafficking plays a crucial role. A large Sec7-domain containing ADP-ribosylation factor guanine nucleotide exchange factor (ARF-GEF), Golgi brefeldin A resistance factor 1 (GBF1) has been reported to initiate the ADP-ribosylation factor (Arf) activation cascade at trans-Golgi network, which plays a crucial function at the endoplasmic reticulum-Golgi interface. In this study, we investigated the role of GBF1 in APP transmembrane transport and Aβ formation. Using APP/PS1 (presenilin 1) overexpressing transgenic mice, we demonstrate that GBF1 has upregulated the expression of APP, indicating a role for GBF1 in APP physiological process. Knocking down of GBF1 using small interfering has significantly increased the intracellular but not the surface expression of APP. In contrast, overexpression of wild-type (WT) and guanine nucleotide exchange factor (GEF) in the activated form but not the GEF deficient mutation induced continuous activation of GBF1, which subsequently increased the surface level of APP. Interestingly, inhibition of GBF1 by c(BFA) also impaired APP trafficking and induced endoplasmic reticulum (ER) stress in SH-SY5Y cells. Our results thus for identified the role of GBF1 in APP trafficking and cleavage, and provide evidence for GBF1 as a possible therapeutic target in AD.  相似文献   

9.
Tech is a RhoA guanine nucleotide exchange factor (GEF) that is highly enriched in hippocampal and cortical neurons. To help define its function, we have conducted studies aimed at identifying partner proteins that bind to its C-terminal PDZ ligand motif. Yeast two hybrid studies using the Tech C-terminal segment as bait identified MUPP1, a protein that contains 13 PDZ domains and has been localized to the post-synaptic compartment, as a candidate partner protein for Tech. Co-transfection of Tech and MUPP1 in human embryonic kidney 293 cells confirmed that these full-length proteins interact in a PDZ-dependent fashion. Furthermore, we confirmed that endogenous Tech co-precipitates with MUPP1, but not PSD-95, from hippocampal and cortical extracts prepared from rat brain. In addition, immunostaining of primary cortical cultures revealed co-localization of MUPP1 and Tech puncta in the vicinity of synapses. In assessing which PDZ domains of MUPP1 mediate binding to Tech, we found that Tech can bind to either PDZ domain 10 or 13 of MUPP1 as mutation of both these domains is needed to disrupt their interaction. Taken together, these findings demonstrate that Tech binds to MUPP1 and suggest that it regulates RhoA signaling pathways in the vicinity of synapses.  相似文献   

10.
Neuronal activity augments maturation of mushroom-shaped spines to form excitatory synapses, thereby strengthening synaptic transmission. We have delineated a Ca(2+)-signaling pathway downstream of the NMDA receptor that stimulates calmodulin-dependent kinase kinase (CaMKK) and CaMKI to promote formation of spines and synapses in hippocampal neurons. CaMKK and CaMKI form a multiprotein signaling complex with the guanine nucleotide exchange factor (GEF) betaPIX and GIT1 that is localized in spines. CaMKI-mediated phosphorylation of Ser516 in betaPIX enhances its GEF activity, resulting in activation of Rac1, an established enhancer of spinogenesis. Suppression of CaMKK or CaMKI by pharmacological inhibitors, dominant-negative (dn) constructs and siRNAs, as well as expression of the betaPIX Ser516Ala mutant, decreases spine formation and mEPSC frequency. Constitutively-active Pak1, a downstream effector of Rac1, rescues spine inhibition by dnCaMKI or betaPIX S516A. This activity-dependent signaling pathway can promote synapse formation during neuronal development and in structural plasticity.  相似文献   

11.
Si K  Giustetto M  Etkin A  Hsu R  Janisiewicz AM  Miniaci MC  Kim JH  Zhu H  Kandel ER 《Cell》2003,115(7):893-904
Synapse-specific facilitation requires rapamycin-dependent local protein synthesis at the activated synapse. In Aplysia, rapamycin-dependent local protein synthesis serves two functions: (1) it provides a component of the mark at the activated synapse and thereby confers synapse specificity and (2) it stabilizes the synaptic growth associated with long-term facilitation. Here we report that a neuron-specific isoform of cytoplasmic polyadenylation element binding protein (CPEB) regulates this synaptic protein synthesis in an activity-dependent manner. Aplysia CPEB protein is upregulated locally at activated synapses, and it is needed not for the initiation but for the stable maintenance of long-term facilitation. We suggest that Aplysia CPEB is one of the stabilizing components of the synaptic mark.  相似文献   

12.
The target of rapamycin (TOR) plays an important role in memory formation in Aplysia californica. Here, we characterize one of the downstream targets of TOR, the eukaryotic initiation factor 4E (eIF4E) binding protein (4EBP) from Aplysia. Aplysia 4EBP contains the four critical phosphorylation sites regulated by TOR as well as an N-terminal RAIP motif and a C-terminal TOS site. Aplysia 4EBP was hypophosphorylated in synaptosomes, and serotonin addition caused a rapamycin-sensitive increase in 4EBP phosphorylation both in synaptosomes and in isolated neurites. Aplysia 4EBP was regulated in a fashion similar to that of mammalian 4EBPs, binding to eIF4E when dephosphorylated and releasing eIF4E after phosphorylation. Overexpression of 4EBP in the soma of Aplysia neurons caused a specific decrease in cap-dependent translation that was rescued by concomitant overexpression of eIF4E. However, eIF4E overexpression by itself did not increase cap-dependent translation, suggesting that increasing levels of free eIF4E by phosphorylating 4EBP is not important in regulating cap-dependent translation in the cell soma. Total levels of eIF4E were also regulated by 4EBP, suggesting that 4EBP can also act as an eIF4E chaperone. These studies demonstrate the conserved nature of 4EBP regulation and its role in cap-dependent translation and suggest differential roles of 4EBP phosphorylation in the soma and synapse.  相似文献   

13.
The neuronal survival promoting ability of brain derived neurotrophic factor (BDNF), and ciliary neurotrophic factor (CNTF), individually and in combination, was evaluated in dissociated cell cultures of postnatal day 5 (P5) rat acoustic ganglia. The neuritogenic promoting effect of these same neurotrophic factors was examined in organotypic explants of P5 rat acoustic ganglia. The results showed that BDNF was maximally effective at a concentration of 10 ng/mL in promoting both survival and neuritogenesis of these postnatal auditory neurons in vitro. CNTF was maximally effective at a concentration of 0.01 ng/mL at promoting both survival and neuritogenesis in the acoustic ganglion cultures. BDNF had its strongest effect on neuronal survival while CNTF was most effective in stimulating neurite outgrowth. These two neurotrophic factors, when added together at their respective maximally effective concentrations, behave in an additive manner for promoting both survival and neuritic outgrowth by the auditory neurons. © 1996 John Wiley & Sons, Inc.  相似文献   

14.
Effects of pentobarbital on the calcium current of Aplysia neurons were investigated under current- and voltage-clamp conditions using the conventional two-microelectrode technique. Pentobarbital attenuated the progressive broadening of repeated action potentials of somata, suggesting a reduction in the calcium current. When calcium ion was replaced with barium ion in the perfusing solution, in which neither sodium nor potassium ions carried transmembrane currents, the barium current (IBa) which flowed through the calcium channel of the cell membrane was generated by depolarizing pulses of several hundred milliseconds applied every 1 min from a holding potential of -50 mV. The IBa was not affected by tetrodotoxin (30 microM). The current was decreased by pentobarbital (0.1-5 mM) in a dose-dependent manner. The inhibition was much greater at a lower pH of the perfusate, indicating that the uncharged form of the agent was responsible. The voltage-dependent inactivation of the IBa proceeded with two time constants [190 +/- 21 and 2020 +/- 146 msec (N = 4) at -10 mV], both of which were shortened by adding 1 mM pentobarbital [to 120 +/- 18 and 540 +/- 51 msec (N = 4), respectively]. The IBa recovered from the inactivation with two time constants [60 +/- 7 and 871 +/- 76 msec (N = 3) at -50 mV]. The anesthetic (1 mM) prolonged both of them, to 124 +/- 20 and 1480 +/- 172 msec (N = 3), respectively, resulting in a use-dependent depression of the current at 2-Hz stimulation. Pentobarbital reduced the IBa to a greater extent when the holding potential was more positive (-30 instead of -50 mV), indicating a higher affinity of the drug to the inactivated state of the channel. These findings suggest that the attenuation of the progressive broadening of successive spikes by pentobarbital is due to a decrease in the voltage- and time-dependent calcium current, ending in depression of transmitter release from the nerve terminal.  相似文献   

15.
Afflicted neurons in Alzheimer disease have been shown to display an imbalance in the expression of TrkA and p75NTR at the cell surface, and administration of nerve growth factor (NGF) has been considered and attempted for treatment. However, wild-type NGF causes extensive elaboration of neurites while providing survival support. This study was aimed at developing recombinant NGF muteins that did not support neuritogenesis while maintaining the survival response. Critical residues were identified at the ligand-receptor interface by point mutagenesis that played a greater importance in neuritogenesis versus survival. By combining point mutations, two survival-selective recombinant NGF muteins, i.e./7-84-103 and KKE/7-84-103, were generated. Both muteins reduced neuritogenesis in PC12 (TrkA+/p75NTR+) cells by >90%, while concurrently retaining near wild-type survival activity in MG139 (TrkA+ only) and PCNA fibroblast (p75NTR+-only) cells. Additionally, survival in both naive and terminally differentiated PC12 cells was shown to be intermediate between NGF and negative controls. Dose-response curves with 7-84-103 showed that the differentiation curve was shifted by about 100-fold, whereas the EC50 for survival was only increased by 3.3-fold. Surface plasmon resonance analysis revealed a 200-fold decrease in binding of 7-84-103 to TrkA. The retention of cell survival was attributed to maintenance of signaling through the Akt survival pathway with reduced MAPK signaling for differentiation. The effect of key mutations along the NGF receptor interface are transmitted inside the cell to enable the generation of survival-selective recombinant NGF muteins that may represent novel pharmacologic lead agents for the amelioration of Alzheimer disease.  相似文献   

16.
In fission yeast Schizosaccharomyces pombe , the directions of cell growth change from monopolar to bipolar in character, which is known as 'new end take off' (NETO). We previously found that arf6p, a member (class III) of the ADP-ribosylation factor (Arf) family, is necessary for NETO in fission yeast. Here we report the characterization of an S. pombe gene, syt22 +, encoding a putative Arf guanine nucleotide exchange factor (GEF). The syt22 protein contains a Sec7 domain and a PH domain conserved in the mammalian EFA6 GEF family, and has high similarity to Yel1p, which was identified as a GEF for Arf3p (class III Arf) in Saccharomyces cerevisiae. syt22 Δ cells, like arf6 Δ cells, completely failed to undergo NETO. Syt22p uniformly localizes to the cell periphery. Its localization is not dependent on microtubules, actin cytoskeletons or arf6p. We hypothesize that syt22p functions as a GEF for arf6p.  相似文献   

17.
To investigate the mechanisms underlying regulation of eukaryotic initiation factor 4E (eIF4E) phosphorylation in Aplysia neurons, we have cloned the Aplysia homolog of the vertebrate eIF4E kinases, Mnk1 and -2. Aplysia Mnk shares many conserved regions with vertebrate Mnk, including putative eukaryotic initiation factor 4G binding regions, activation loop phosphorylation sites, and a carboxy-terminal anchoring site for MAP kinases. As expected, purified Aplysia Mnk phosphorylated Aplysia eIF4E at a conserved carboxy-terminal serine and over-expression of Aplysia Mnk in sensory neurons led to increased phosphorylation of endogenous eIF4E. Over-expression of Aplysia Mnk led to strong decreases in cap-dependent translation, while generally sparing internal ribosomal entry site (IRES)-dependent translation. However, decreases in cap-dependent translation seen after expression of Aplysia Mnk could only be partly explained by increases in eIF4E phosphorylation. In Aplysia sensory neurons, phosphorylation of eIF4E is reduced during intermediate memory formation. However, we found that this physiological regulation of eIF4E phosphorylation was independent of changes in Aplysia Mnk phosphorylation. We propose that changes in eIF4E phosphorylation in Aplysia neurons are a consequence of changes in cap-dependent translation that are independent of regulation of Aplysia Mnk.  相似文献   

18.
19.
The metabotropic glutamate receptor type 7 (mGluR7) is the predominant group III mGluR in the presynaptic active zone, where it serves as an autoreceptor to inhibit neurotransmitter release. Our previous studies show that PKC phosphorylation of mGluR7 on Ser-862 is a key mechanism controlling constitutive and activity-dependent surface expression of mGluR7 by regulating a competitive interaction of calmodulin and protein interacting with C kinase (PICK1). As receptor phosphorylation and dephosphorylation are tightly coordinated through the precise action of protein kinases and phosphatases, dephosphorylation by phosphatases is likely to play an active role in governing the activity-dependent or agonist-induced changes in mGluR7 receptor surface expression. In the present study, we find that the serine/threonine protein phosphatase 1 (PP1) has a crucial role in the constitutive and agonist-induced dephosphorylation of Ser-862 on mGluR7. Treatment of neurons with PP1 inhibitors leads to a robust increase in Ser-862 phosphorylation and increased surface expression of mGluR7. In addition, Ser-862 phosphorylation of both mGluR7a and mGluR7b is a target of PP1. Interestingly, agonist-induced dephosphorylation of mGluR7 is regulated by PP1, whereas NMDA-mediated activity-induced dephosphorylation is not, illustrating there are multiple signaling pathways that affect receptor phosphorylation and trafficking. Importantly, PP1γ1 regulates agonist-dependent Ser-862 dephosphorylation and surface expression of mGluR7.  相似文献   

20.
PINK1 mutations cause autosomal recessive forms of Parkinson disease (PD). Previous studies suggest that the neuroprotective function of wild-type (WT) PINK1 is related to mitochondrial homeostasis. PINK1 can also localize to the cytosol; however, the cytosolic function of PINK1 has not been fully elucidated. In this study we demonstrate that the extramitochondrial PINK1 can regulate tyrosine hydroxylase (TH) expression and dopamine (DA) content in dopaminergic neurons in a PINK1 kinase activity-dependent manner. We demonstrate that overexpression of full-length (FL) WT PINK1 can downregulate TH expression and DA content in dopaminergic neurons. In contrast, overexpression of PD-linked G309D, A339T, and E231G PINK1 mutations upregulates TH and DA levels in dopaminergic neurons and increases their vulnerability to oxidative stress. Furthermore transfection of FL WT PINK1 or PINK1 fragments with the PINK1 kinase domain can inhibit TH expression, whereas kinase-dead (KD) FL PINK1 or KD PINK1 fragments upregulate TH level. Our findings highlight a potential novel function of extramitochondrial PINK1 in dopaminergic neurons. Deregulation of these functions of PINK1 may contribute to PINK1 mutation-induced dopaminergic neuron degeneration. However, deleterious effects caused by PINK1 mutations may be alleviated by iron-chelating agents and antioxidant agents with DA quinone-conjugating capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号