首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Tripathy  L Xu  G Mann    G Meissner 《Biophysical journal》1995,69(1):106-119
The calmodulin-binding properties of the rabbit skeletal muscle Ca2+ release channel (ryanodine receptor) and the channel's regulation by calmodulin were determined at < or = 0.1 microM and micromolar to millimolar Ca2+ concentrations. [125I]Calmodulin and [3H]ryanodine binding to sarcoplasmic reticulum (SR) vesicles and purified Ca2+ release channel preparations indicated that the large (2200 kDa) Ca2+ release channel complex binds with high affinity (KD = 5-25 nM) 16 calmodulins at < or = 0.1 microM Ca2+ and 4 calmodulins at 100 microM Ca2+. Calmodulin-binding affinity to the channel showed a broad maximum at pH 6.8 and was highest at 0.15 M KCl at both < or = 0.1 MicroM and 100 microM Ca2+. Under condition closely related to those during muscle contraction and relaxation, the half-times of calmodulin dissociation and binding were 50 +/- 20 s and 30 +/- 10 min, respectively. SR vesicle-45Ca2+ flux, single-channel, and [3H]ryanodine bind measurements showed that, at < or = 0.2 microM Ca2+, calmodulin activated the Ca2+ release channel severalfold. Ar micromolar to millimolar Ca2+ concentrations, calmodulin inhibited the Ca(2+)-activated channel severalfold. Hill coefficients of approximately 1.3 suggested no or only weak cooperative activation and inhibition of Ca2+ release channel activity by calmodulin. These results suggest a role for calmodulin in modulating SR Ca2+ release in skeletal muscle at both resting and elevated Ca2+ concentrations.  相似文献   

2.
The purified ryanodine receptor of heart sarcoplasmic reticulum (SR) has been reconstituted into planar phospholipid bilayers and found to form Ca2+-specific channels. The channels are strongly activated by Ca2+ (10 nM) in the presence of ATP (1 mM) and ryanodine, and inactivated by Mg2+ (3 mM) or ruthenium red (30 microM). These characteristics are diagnostic of calcium release from heart SR. The cardiac ryanodine receptor, which has previously been identified as the foot structure, is now identified as the calcium release channel. A similar identity of the calcium release channel has recently been reported for skeletal muscle. The characteristics of the calcium release channel from skeletal muscle and heart are similar in that they: 1) consist of an oligomer of a single high molecular weight polypeptide (Mr 360,000 for skeletal muscle and 340,000 for heart); 2) exist morphologically as the foot structure; 3) are activated (ATP, Ca2+, ryanodine) and inhibited (ruthenium red and Mg2+) by a number of the same ligands. Important differences include: 1) Ca2+ activation at lower concentration of Ca2+ for the heart; 2) more dramatic stabilization by ryanodine of the open state for the skeletal muscle channel; and 3) different relative permeabilities (PCa/PK).  相似文献   

3.
Yamaguchi N  Xu L  Pasek DA  Evans KE  Chen SR  Meissner G 《Biochemistry》2005,44(45):15074-15081
Ryanodine receptors (RyRs) are a family of intracellular Ca(2+) channels that are regulated by calmodulin (CaM). At low Ca(2+) concentrations (<1 microM), CaM activates RyR1 and RyR3 and inhibits RyR2. At elevated Ca(2+) concentrations (>1 microM), CaM inhibits all three RyR isoforms. Here we report that the regulation of recombinant RyR3 by CaM is sensitive to redox regulation. RyR3 in the presence of reduced glutathione binds CaM with 10-15-fold higher affinity, at low and high Ca(2+) concentrations, compared to in the presence of oxidized glutathione. However, compared to RyR1 assayed at low Ca(2+) concentrations under both reducing and oxidizing conditions, CaM binds RyR3 with reduced affinity but activates RyR3 to a greater extent. Under reducing conditions, RyR1 and RyR3 activities are inhibited with a similar affinity at [Ca(2+)] > 1 microM. Mutagenesis studies demonstrate that RyR3 contains a single conserved CaM binding site. Corresponding amino acid substitutions in the CaM binding site differentially affect CaM binding and CaM regulation of RyR3 and those of the two other isoforms. The results support the suggestion that other isoform dependent regions have a major role in the regulation of RyRs by CaM [Yamaguchi et al. (2004) J. Biol. Chem. 279, 36433-36439].  相似文献   

4.
Calmodulin (CaM) is a ubiquitous Ca2+-binding protein that regulates the ryanodine receptors (RyRs) by direct binding. CaM inhibits the skeletal muscle ryanodine receptor (RyR1) and cardiac muscle receptor (RyR2) at >1 microm Ca2+ but activates RyR1 and inhibits RyR2 at <1 microm Ca2+. Here we tested whether CaM regulates RyR2 by binding to a highly conserved site identified previously in RyR1. Deletion of RyR2 amino acid residues 3583-3603 resulted in background [35S]CaM binding levels. In single channel measurements, deletion of the putative CaM binding site eliminated CaM inhibition of RyR2 at Ca2+ concentrations below and above 1 microm. Five RyR2 single or double mutants in the CaM binding region (W3587A, L3591D, F3603A, W3587A/L3591D, L3591D/F3603A) eliminated or greatly reduced [35S]CaM binding and inhibition of single channel activities by CaM depending on the Ca2+ concentration. An RyR2 mutant, which assessed the effects of 4 amino acid residues that differ between RyR1 and RyR2 in or flanking the CaM binding domain, bound [35S]CaM and was inhibited by CaM, essentially identical to wild type (WT)-RyR2. Three RyR1 mutants (W3620A, L3624D, F3636A) showed responses to CaM that differed from corresponding mutations in RyR2. The results indicate that CaM regulates RyR1 and RyR2 by binding to a single, highly conserved CaM binding site and that other RyR type-specific sites are likely responsible for the differential functional regulation of RyR1 and RyR2 by CaM.  相似文献   

5.
We have recently reported [Mészáros L.G., Minarovic I., Zahradníková A. Inhibition of the skeletal muscle ryanodine receptor calcium release channel by nitric oxide. FEBS Lett 1996; 380: 49–52] that nitric oxide (NO) reduces the activity of the skeletal muscle ryanodine receptor Ca2+ release channel (RyRC), a principal component of the excitation-contraction coupling machinery in striated muscles. Since (i) as shown here, we have obtained evidence which indicates that the NO synthase (eNOS) of cardiac muscle origin co-purified with RyRC-containing sarcoplasmic reticulum (SR) fractions; and (ii) the effects of NO donors on the release channel, as well as on cardiac function, appear somewhat contradictory, we have made an attempt to investigate the response of the cardiac RyRC to NO that is generated in situ from L-arginine in the NOS reaction. We found that L-arginine-derived NO inactivates Ca2+ release from cardiac SR and reduces the steady-state activity (i.e. open probability) of single RyRCs fused into a planar lipid bilayer. This reduction was prevented by NOS inhibitors and the NO quencher hemoglobin and was reversed by 2-mercaptoethanol. We thus conclude that: (i) in isolated SR preparations, it is possible to assess the effects of NO that is generated from L-arginine in the NOS reaction; and (ii) cardiac RyRc responds to NO in a manner which is identical to that we have previously found with the skeletal channel. These findings suggest that the direct modulation of the RyRC by NO is a signaling mechanism which likely participates in earlier demonstrated NO-induced myocardial contractility changes.  相似文献   

6.
The calcium release channel (CRC)/ryanodine receptor (RyRec) has been identified as the foot structure of the sarcoplasmic reticulum (SR) and provides the pathway for calcium efflux required for excitation-contraction coupling in skeletal muscle. The CRC has previously been reported to consist of four identical 565-kDa protomers. We now report the identification of a 12-kDa protein which is tightly associated with highly purified RyRec from rabbit skeletal muscle SR. N-terminal amino acid sequencing and cDNA cloning demonstrates that the 12-kDa protein from fast twitch skeletal muscle is the binding protein for the immunosuppressant drug FK506. In humans, FK506 binds to the 12-kDa FK506-binding protein (FKBP12) and blocks calcium-dependent T cell activation. We find that FKBP12 and the RyRec are tightly associated in skeletal muscle SR on the basis of: 1) co-purification through sequential heparin-agarose, hydroxylapatite, and size exclusion chromatography columns; 2) coimmunoprecipitation of the RyRec and FKBP12 with anti-FKBP12 antibodies; and 3) subcellular localization of both proteins to the terminal cisternae of the SR, and not in the longitudinal tubules of SR, in fast twitch skeletal muscle. The molar ratio of FKBP12 to RyRec in highly purified RyRec preparations is approximately 1:4, indicating that one FKBP12 molecule is associated with each calcium release channel/foot structure.  相似文献   

7.
The functional effects of calmodulin (CaM) on single cardiac sarcoplasmic reticulum Ca(2+) release channels (ryanodine receptors) (RyR2s) were determined in the presence of two endogenous channel effectors, MgATP and reduced glutathione, using the planar lipid bilayer method. Single-channel activities, number of events, and open and close times were determined at varying cytosolic Ca(2+) concentrations. CaM reduced channel open probability at <10 micro M Ca(2+) by decreasing channel events and mean open times and increasing mean close times. At >10 micro M Ca(2+), CaM was less effective in inhibiting RyR2. CaM decreased mean open times but increased channel events, without significantly affecting mean close times. A series of voltage pulses was applied to the bilayer from +50 to -50 mV and from -50 mV to +50 mV to rapidly increase and decrease open channel-mediated sarcoplasmic reticulum lumenal to cytosolic Ca(2+) fluxes. CaM decreased the duration of the open events after the voltage switch from -50 mV to +50 mV. In parallel experiments, a Ca(2+)-insensitive calmodulin mutant was without effect on RyR2 activity. The results are discussed in terms of a possible role of CaM in the termination of cardiac sarcoplasmic reticulum Ca(2+) release.  相似文献   

8.
Combined patch-clamp and fura-2 measurements were performed to study the calcium release properties of Chinese hamster ovary (CHO) cells transfected with the rabbit skeletal muscle ryanodine receptor cDNA carried by an expression vector. Both caffeine (1-50 mM) and ryanodine (100 microM) induced release of calcium from intracellular stores of transformed CHO cells but not from control (non-transfected) CHO cells. The calcium responses to caffeine and ryanodine closely resembled those commonly observed in skeletal muscle. Repetitive applications of caffeine produced characteristic all-or-none rises in intracellular calcium. Inositol 1,4,5-trisphosphate (IP3) neither activated the ryanodine receptor channel nor interfered with the caffeine-elicited calcium release. These results indicate that functional calcium release channels are formed by expression of the ryanodine receptor cDNA.  相似文献   

9.
Ryanodine receptors (RyRs) are a family of calcium release channels found on intracellular calcium-handing organelles. Molecular cloning studies have identified three different RyR isoforms, which are 66-70% identical in amino acid sequence. In mammals, the three isoforms are encoded by three separate genes located on different chromosomes. The major variations among the isoforms occur in three regions, known as divergent regions 1, 2, and 3 (DR1, DR2, and DR3). In the present study, a modified RyR2 (cardiac isoform) cDNA was constructed, into which was inserted a green fluorescent protein (GFP)-encoding cDNA within DR2, specifically after amino acid residue Thr1366 (RyR2(T1366-GFP)). HEK293 cells expressing RyR2(T1366-GFP) cDNAs showed caffeine-sensitive and ryanodine-sensitive calcium release, demonstrating that RyR2(T1366-GFP) forms functional calcium release channels. Cells expressing RyR2(T1366-GFP) were identified readily by the characteristic fluorescence of GFP, indicating that the overall structure of the inserted GFP was retained. Cryo-electron microscopy (cryo-EM) of purified RyR2(T1366-GFP) showed structurally intact receptors, and a three-dimensional reconstruction was obtained by single-particle image processing. The location of the inserted GFP was obtained by comparing this three-dimensional reconstruction to one obtained for wild-type RyR2. The inserted GFP and, consequently Thr1366 within DR2, was mapped on the three-dimensional structure of RyR2 to domain 6, one of the characteristic cytoplasmic domains that form part of the multi-domain "clamp" regions of RyR2. The three-dimensional location of DR2 suggests that it plays roles in the RyR conformational changes that occur during channel gating, and possibly in RyR's interaction with the dihydropyridine receptor in excitation-contraction coupling. This study further demonstrates the feasibility and reliability of the GFP insertion/cryo-EM approach for correlating RyR's amino acid sequence with its three-dimensional structure, thereby enhancing our understanding of the structural basis of RyR function.  相似文献   

10.
Arrhythmias, a common cause of sudden cardiac death, can occur in structurally normal hearts, although the mechanism is not known. In cardiac muscle, the ryanodine receptor (RyR2) on the sarcoplasmic reticulum releases the calcium required for muscle contraction. The FK506 binding protein (FKBP12.6) stabilizes RyR2, preventing aberrant activation of the channel during the resting phase of the cardiac cycle. We show that during exercise, RyR2 phosphorylation by cAMP-dependent protein kinase A (PKA) partially dissociates FKBP12.6 from the channel, increasing intracellular Ca(2+) release and cardiac contractility. FKBP12.6(-/-) mice consistently exhibited exercise-induced cardiac ventricular arrhythmias that cause sudden cardiac death. Mutations in RyR2 linked to exercise-induced arrhythmias (in patients with catecholaminergic polymorphic ventricular tachycardia [CPVT]) reduced the affinity of FKBP12.6 for RyR2 and increased single-channel activity under conditions that simulate exercise. These data suggest that "leaky" RyR2 channels can trigger fatal cardiac arrhythmias, providing a possible explanation for CPVT.  相似文献   

11.
In striated muscle contraction is under the tight control of myoplasmic calcium concentration ([Ca2+]i): the elevation in [Ca2+]i and the consequent binding of calcium to troponin C enables, while the decrease in [Ca2+]i prevents the actin-myosin interaction. Calcium ions at rest are stored in the sarcoplasmic reticulum (SR) from which they are rapidly released upon the depolarisation of the sarcolemmal and transverse (T-) tubular membranes of the muscle cell. The protein responsible for this controlled and fast release of calcium is the calcium release channel found in the membrane of the terminal cisternae of the SR. This review focuses on the physiological and pharmacological modulators of the calcium release channel and tries to draw an up-to-date picture of the events that occur between T-tubular depolarisation and the release of calcium from the SR.  相似文献   

12.
The sequence of 4968 (or 4976 with an insertion) amino acids composing the ryanodine receptor from rabbit cardiac sarcoplasmic reticulum has been deduced by cloning and sequencing the cDNA. This protein is homologous in amino acid sequence and shares characteristic structural features with the skeletal muscle ryanodine receptor. Xenopus oocytes injected with mRNA derived from the cardiac ryanodine receptor cDNA exhibit Ca2(+)-dependent Cl- current in response to caffeine, which indicates the formation of functional calcium release channels. RNA blot hybridization analysis with a probe specific for the cardiac ryanodine receptor mRNA shows that the stomach and brain contain a hybridizable RNA species with a size similar to that of the cardiac mRNA. This result, in conjunction with cloning and analysis of partial cDNA sequences, suggests that the brain contains a cardiac type of ryanodine receptor mRNA.  相似文献   

13.
The calcium release channel (CRC) from skeletal muscle is an unusually large tetrameric ion channel of the sarcoplasmic reticulum, and it is a major component of the triad junction, the site of excitation contraction coupling. The three-dimensional architecture of the CRC was determined from a random conical tilt series of images extracted from electron micrographs of isolated detergent-solubilized channels prepared in a frozen-hydrated state. Three major classes of fourfold symmetric images were identified, and three-dimensional reconstructions were determined for two of these. The two independent reconstructions were almost identical, being related to each other by a 180 degrees rotation about an axis in the plane of the specimen grid. The CRC consists of a large cytoplasmic assembly (29 x 29 x 12 nm) and a smaller transmembrane assembly that protrudes 7 nm from one of its faces. A cylindrical low-density region, 2-3 nm in apparent diameter, extends down the center of the transmembrane assembly, and possibly corresponds to the transmembrane Ca(2+)-conducting pathway. At its cytoplasmic end this channel-like feature appears to be plugged by a globular mass of density. The cytoplasmic assembly is apparently constructed from 10 or more domains that are loosely packed together such that greater than 50% of the volume enveloped by the assembly is occupied by solvent. The cytoplasmic assembly is suggestive of a scaffolding and seems well adapted to maintain the structural integrity of the triad junction while allowing ions to freely diffuse to and away from the transmembrane assembly.  相似文献   

14.
Boschek CB  Jones TE  Squier TC  Bigelow DJ 《Biochemistry》2007,46(37):10621-10628
Calmodulin (CaM) regulates calcium release from intracellular stores in skeletal muscle through its association with the ryanodine receptor (RyR1) calcium release channel, where CaM association enhances channel opening at resting calcium levels and its closing at micromolar calcium levels associated with muscle contraction. A high-affinity CaM-binding sequence (RyRp) has been identified in RyR1, which corresponds to a 30-residue sequence (i.e., K3614-N3643) located within the central portion of the primary sequence. However, it is presently unclear whether the identified CaM-binding sequence in association with CaM (a) senses calcium over the physiological range of calcium concentrations associated with RyR1 regulation or alternatively, (b) plays a structural role unrelated to the calcium-dependent modulation of RyR1 function. Therefore, we have measured the calcium-dependent activation of the individual domains of CaM in association with RyRp and their relationship to the CaM-dependent regulation of RyR1. These measurements utilize an engineered CaM, permitting the site-specific incorporation of N-(1-pyrene)maleimide at either T34C (PyN-CaM) or T110C (PyC-CaM) in the N- and C-domains, respectively. Consistent with prior measurements, we observe a high-affinity association of both apo-CaM and calcium-activated CaM with RyRp. Upon association with RyRp, fluorescence changes in PyN-CaM or PyC-CaM permit the measurement of the calcium-dependent activation of these individual domains. Fluorescence changes upon calcium activation of PyC-CaM in association with RyRp are indicative of high-affinity calcium-dependent activation of the C-terminal domain of CaM at resting calcium levels; at calcium levels associated with muscle contraction, activation of the N-terminal domain occurs with concomitant increases in the fluorescence intensity of PyC-CaM that is associated with structural changes within the CaM-binding sequence of RyR1. Occupancy of calcium-binding sites in the N-domain of CaM mirrors the calcium dependence of RyR1 inhibition observed at activating calcium levels, where [Ca]1/2 = 4.3 +/- 0.4 microM, suggesting a direct regulation of RyR1 function upon the calcium-dependent activation of CaM. These results indicate that occupancy of the N-terminal domain calcium binding sites in CaM bound to the identified CaM-binding sequence K3614-N3643 induces conformational rearrangements within the complex between CaM and RyR1 responsible for the CaM-dependent modulation of the RyR1 calcium release channel.  相似文献   

15.
The type 1 ryanodine receptor (RyR1) on the sarcoplasmic reticulum (SR) is the major calcium (Ca2+) release channel required for skeletal muscle excitation-contraction (EC) coupling. RyR1 function is modulated by proteins that bind to its large cytoplasmic scaffold domain, including the FK506 binding protein (FKBP12) and PKA. PKA is activated during sympathetic nervous system (SNS) stimulation. We show that PKA phosphorylation of RyR1 at Ser2843 activates the channel by releasing FKBP12. When FKB12 is bound to RyR1, it inhibits the channel by stabilizing its closed state. RyR1 in skeletal muscle from animals with heart failure (HF), a chronic hyperadrenergic state, were PKA hyperphosphorylated, depleted of FKBP12, and exhibited increased activity, suggesting that the channels are "leaky." RyR1 PKA hyperphosphorylation correlated with impaired SR Ca2+ release and early fatigue in HF skeletal muscle. These findings identify a novel mechanism that regulates RyR1 function via PKA phosphorylation in response to SNS stimulation. PKA hyperphosphorylation of RyR1 may contribute to impaired skeletal muscle function in HF, suggesting that a generalized EC coupling myopathy may play a role in HF.  相似文献   

16.
Heparin has been used as a potent competitive inhibitor of inositol 1,4,5-trisphosphate (IP3)-binding to IP3 receptors and to block IP3-gated calcium channels in bilayer experiments. In contrast to the effect on the IP3-gated channel, heparin (0.1-1 micrograms/ml) opened the Ca release channel (ryanodine receptor). Other polyanions such as pentosan polysulfate and polyvinyl sulfate also activated the Ca release channel. The effect of polyanions on the Ca release channel was Ca dependent. Polyanion addition activated the Ca release channel when free Ca was > 80 nM, but was ineffective when free Ca was < 20 nM. The level of channel activation could be altered by manipulating the free Ca concentration. These results suggest that the polyanions act by increasing the local concentration of Ca near regulatory sites on the channel complex. As most cells have both types of intracellular channels, the opposite effects of the polyanions on the two channel types suggests that addition of polyanions to intact cells may produce multiple effects.  相似文献   

17.
The effect of gadolinium ions on the sarcoplasmic reticulum (SR) calcium release channel/ryanodine receptor (RyR1) was studied using heavy SR (HSR) vesicles and RyR1 isolated from rabbit fast twitch muscle. In the [(3)H]ryanodine binding assay, 5 microM Gd(3+) increased the K(d) of the [(3)H]ryanodine binding of the vesicles from 33.8 nM to 45.6 nM while B(max), referring to the binding capacity, was not affected significantly. In the presence of 18 nM[(3)H]ryanodine and 100 microM free Ca(2+), Gd(3+) inhibited the binding of the radiolabeled ryanodine with an apparent K(d) value of 14.7 microM and a Hill coefficient of 3.17. In (45)Ca(2+) experiments the time constant of (45)Ca(2+) efflux from HSR vesicles increased from 90.9 (+/- 11.1) ms to 187.7 (+/- 24.9) ms in the presence of 20 microM gadolinium. In single channel experiments gadolinium inhibited the channel activity from both the cytoplasmic (cis) (IC(50) = 5.65 +/- 0.33 microM, n(Hill) = 4.71) and the luminal (trans) side (IC(50) = 5.47 +/- 0.24 microM, n(Hill) = 4.31). The degree of inhibition on the cis side didn't show calcium dependency in the 100 microM to 1 mM Ca(2+) concentration range which indicates no competition with calcium on its regulatory binding sites. When Gd(3+) was applied at the trans side, EGTA was present at the cis side to prevent the binding of Gd(+3) to the cytoplasmic calcium binding regulatory sites of the RyR1 if Gd(3+) accidentally passed through the channel. The inhibition of the channel did not show any voltage dependence, which would be the case if Gd(3+) exerted its effect after getting to the cis side. Our results suggest the presence of inhibitory binding sites for Gd(3+) on both sides of the RyR1 with similar Hill coefficients and IC(50) values.  相似文献   

18.
The cardiac ryanodine receptor (RyR2), the major calcium release channel on the sarcoplasmic reticulum (SR) in cardiomyocytes, has recently been shown to be involved in at least two forms of sudden cardiac death (SCD): (1) Catecholaminergic polymorphic ventricular tachycardia (CPVT) or familial polymorphic VT (FPVT); and (2) Arrhythmogenic right ventricular dysplasia type 2 (ARVD2). Eleven RyR2 missense mutations have been linked to these diseases. All eleven RyR2 mutations cluster into 3 regions of RyR2 that are homologous to the three malignant hyperthermia (MH)/central core disease (CCD) mutation regions of the skeletal muscle ryanodine receptor/calcium release channel RyR1. MH/CCD RyR1 mutations have been shown to alter calcium-induced calcium release. Sympathetic nervous system stimulation leads to phosphorylation of RyR2 by protein kinase A (PKA). PKA phosphorylation of RyR2 activates the channel. In conditions associated with high rates of SCD such as heart failure RyR2 is PKA hyperphosphorylated resulting in "leaky" channels. SR calcium leak during diastole can generate "delayed after depolarizations" that can trigger fatal cardiac arrhythmias (e.g., VT). We propose that RyR2 mutations linked to genetic forms of catecholaminergic-induced SCD may alter the regulation of the channel resulting in increased SR calcium leak during sympathetic stimulation.  相似文献   

19.
The ryanodine receptor (RyR) is a Ca2+ release channel located in the sarcoplasmic/endoplasmic reticulum (ER) membrane and plays a critical role in excitation-contraction coupling of skeletal and cardiac muscles. RyR normally exists in a tetrameric structure and contains two functional domains: a carboxyl-terminal hydrophobic domain that contains the conduction pore of the Ca2+ release channel, and a large amino-terminal domain that contains sites responsible for channel regulation. Recent studies involving mutagenesis and heterologous expression have helped unravel the structure-function relationship of RyR, including transmembrane topology and intracellular localization of the Ca2+-release channel. The carboxyl-terminal portion of RyR contains the putative transmembrane segments and is sufficient to form a functional Ca2+-release channel. The amino-terminal region of the protein contains sites responsible for regulation by endogenous modulators such as Ca2+ and Mg2+ and by exogenous ligands such as caffeine. The membrane topology of RyR appears to contain an even number (four or six) of transmembrane segments with a ion selectivity filter present within a region residing between the last two segments, similar to potassium channel, whose atomic structure was described recently. The transmembrane segments also contain sequences that are responsible for localization of RyR in the endoplasmic reticulum, and this sequence is highly conserved in IP3 receptors, which also function as Ca2+-release channels.  相似文献   

20.
The brain ryanodine receptor: a caffeine-sensitive calcium release channel.   总被引:22,自引:0,他引:22  
The release of stored Ca2+ from intracellular pools triggers a variety of important neuronal processes. Physiological and pharmacological evidence has indicated the presence of caffeine-sensitive intracellular pools that are distinct from the well-characterized inositol 1,4,5,-trisphosphate (IP3)-gated pools. Here we report that the brain ryanodine receptor functions as a caffeine- and ryanodine-sensitive Ca2+ release channel that is distinct from the brain IP3 receptor. The brain ryanodine receptor has been purified 6700-fold with no change in [3H]ryanodine binding affinity and shown to be a homotetramer composed of an approximately 500 kd protein subunit, which is identified by anti-peptide antibodies against the skeletal and cardiac muscle ryanodine receptors. Our results demonstrate that the brain ryanodine receptor functions as a caffeine-sensitive Ca2+ release channel and thus is the likely gating mechanism for intracellular caffeine-sensitive Ca2+ pools in neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号