首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hydrogen peroxide and diamide inactivate the steroid-binding capacity of unoccupied glucocorticoid receptors in rat liver cytosol at 0 degrees C, and steroid-binding capacity is reactivated with dithiothreitol. Treatment of cytosol with peroxide or sodium molybdate, but not diamide, inhibits the irreversible inactivation (i.e., inactivation not reversed by dithiothreitol) of steroid-binding capacity that occurs when cytosol is incubated at 25 degrees C. Pretreatment of cytosol with the thiol derivatizing agent methyl methanethiosulfonate at 0 degrees C prevents the ability of peroxide, but not molybdate, to stabilize binding capacity at 25 degrees C. As derivatization of thiol groups prevents peroxide stabilization of steroid-binding capacity and as treatment with dithiothreitol reverses the effect, we propose that peroxide acts by promoting the formation of new disulfide linkages. The receptor in our rat liver cytosol preparations is present as three major degradation products of Mr 40,000, 52,000, and 72,000 in addition to the Mr 94,000 intact receptor. Like the intact receptor, these three forms exist in the presence of molybdate as an 8-9S complex, they bind glucocorticoid in a specific manner, and they copurify with the intact Mr 94,000 receptor on sequential phosphocellulose and DNA-cellulose chromatography. Despite the existence of receptor cleavage products, it is clear that peroxide does not stabilize steroid-binding capacity by inhibiting receptor cleavage.  相似文献   

2.
High multiplicity of GSH S-transferases (GST) with overlapping substrate specificities may be essential to their multiple roles in xenobiotics metabolism, drug biotransformation, and protection against peroxidative damage. Subunit composition analysis of rat liver GSH S-transferases indicated that heterodimer associations were not random, limiting the generation of GST isozyme multiplicity. We have analyzed a Yb subunit cDNA clone, pGTR187, that may correspond to an anionic Yb subunit sequence. Comparison with other GSH S-transferase cDNA sequences and blot hybridization results indicates that the multiple Yb subunits are encoded by a multigene family. This Yb subunit sequence has very limited homology to Ya and Yc subunit cDNAs, but slightly more sequence homology to the Yp subunit cDNA. More consistent sequence homology is found at the amino acid level with 28% conservation throughout the coding sequences. These results and results published from other laboratories clearly indicate that rat GSH S-transferases are products of at least four different gene families that constitute a supergene family. Conceptually, the supergene family may encode GSH S-transferases of very different structures that are essential to metabolize a multitude of xenobiotics in addition to serving other physiologically important functions.  相似文献   

3.
We have studied the tissue-specific expression of GSH S-transferases in rat seminal vesicles and pituitary glands by in vitro translation and immunoprecipitation. The major GSH S-transferase subunit expressed in rat seminal vesicles belongs to the Yb mobility class whose expression diminishes when the rats are treated with pentobarbital. The pattern of GSH S-transferase expression in the pituitary gland is very similar to that of the rat brain with Yb size subunit(s) predominant. The Y beta size subunit is also expressed together with the Yc and Y delta subunits. The expression of GSH S-transferases was drastically reduced in pituitary gland poly(A) RNAs from diethylstilbestrol-treated, ovariectomized female rats. Xenobiotics such as phenobarbital, 3-methylcholanthrene, and trans-stilbene oxide induce rat liver GSH S-transferase activities, especially the Ya- and Yb-subunit containing isozymes. Induction of GSH S-transferases by a combination of the three xenobiotics is neither additive nor synergistic, however. Our results clearly demonstrate that GSH S-transferase expression in seminal vesicles and pituitary glands can be suppressed by phenobarbital and diethylstilbestrol, respectively. Our findings suggest that different GSH S-transferase isozymes respond differently to various xenobiotics. Both induction and suppression occur in rats treated with xenobiotics. This notion helps to explain the lack of additive or synergistic induction in rats treated with more than one xenobiotic.  相似文献   

4.
We have previously observed that the Ya subunit-containing glutathione (GSH) S-transferases from rat liver exhibit a common high affinity binding site for lithocholic acid, bilirubin, and sulfobromophthalein (BSP) (1984. J. Lipid Res. 25: 1177-1183). Subsequently we found that cholic acid and its amidates bound to a site on the Ya subunit separate for the lithocholic acid/bilirubin site (1986. J. Lipid Res. 27: 955-966). We now have extended this work by showing that amidates of lithocholic acid as well as chenodeoxycholic acid and its amidates competitively displace [14C]lithocholic acid from the Ya subunit. GSH did not inhibit binding of any of the ligands to the high affinity Ya site, but did inhibit binding to the cholic acid site on the Ya subunit. We have also defined the binding sites and effects of GSH on the Yb class of subunits. Lithocholic, chenodeoxycholic, and cholic acids (and amidates) shared a common site on the Yb or Y'b subunit, whereas BSP and bilirubin were bound at a different site. Both the bile acid and organic anion sites on the Yb subunit were inhibited by GSH. The inhibition by GSH in all cases (Ya cholic acid site or Yb bile acid or bilirubin sites) was saturable, of the competitive type, and incomplete at maximal GSH concentrations, suggesting that when GSH binds to its distinct substrate site, it induces a conformational change in the proteins affecting the other binding sites.  相似文献   

5.
Six forms of glutathione S-transferases designated as GSH S-transferase I (pI 8.8), II (pI 7.2), III (pI 6.8), IV (pI 6.0), V (pI 5.3) and VI (pI 4.8) have been purified from rat lung. GSH S-transferase I (pI 8.8) is a homodimer of Mr 25,000 subunits; GSH S-transferases II (pI 7.2) and VI (pI 4.8) are homodimers of Mr 22,000 subunits; and GSH S-transferases III (pI 6.8), IV (pI 6.0) and V (pI 5.3) are dimers composed of Mr 23,500 and 22,000 subunits. Immunological properties, peptide fragmentation analysis, and substrate specificity data indicate that Mr 22,000, 23,500 and 25,000, are distinct from each other and correspond to Ya, Yb, and Yc subunits, respectively, of rat liver.  相似文献   

6.
Testis cytosol is shown to contain the Yb2Yb2 -homodimer glutathione S-transferase D in addition to the previously described glutathione S-transferases A ( Yb1Yb1 ) and C ( Yb1Yb2 ). Treatment of rats with phenobarbital induces the level of glutathione S-transferase D in testis with no increase in the activities of glutathione S-transferases A and C. This result indicates a specific induction of the Yb2 subunit in testis, in contrast with the situation in rat liver, where phenobarbital specifically induces the Yb1 subunit.  相似文献   

7.
Glutathione S-transferases containing Yb3 subunits are relatively uncommon forms that are expressed in a tissue-specific manner and have not been identified unequivocally or characterized. A cDNA clone containing the entire coding sequence of Yb3 glutathione S-transferase mRNA was incorporated into a pIN-III expression vector used to transform Escherichia coli. A fusion Yb3-protein containing 14 additional amino acid residues at its N terminus was purified to homogeneity. Recombinant Yb3 was enzymatically active with both 1-chloro-2,4-dinitrobenzene and 1,2-dichloro-4-nitrobenzene as substrates but lacked glutathione peroxidase activity. Substrate specificity patterns of recombinant Yb3 were more limited than those of glutathione S-transferase isoenzymes containing Yb1- or Yb2-type subunits. Peptides corresponding to unique amino acid sequences of Yb3 as well as a peptide from a region of homology with Yb1 and Yb2 subunits were synthesized. These synthetic peptides were used to raise antibodies specific to Yb3 and others that cross-reacted with all Yb forms. Immunoblotting was utilized to identify the natural counterpart of recombinant Yb3 among rat glutathione transferases. Brain and testis glutathione S-transferases were rich in Yb3 subunits, but very little was found in liver or kidney. Physical properties, substrate specificities, and binding patterns of the recombinant protein paralleled properties of the natural isoenzyme isolated from brain.  相似文献   

8.
9.
10.
Extraction of rat liver cytosol with 10% charcoal at 4 degrees C inactivates specific glucocorticoid-binding capacity. The steroid-binding capacity of extracted cytosol can be restored by adding dithiothreitol or by incubating with boiled liver cytosol at 20 degrees C in the presence of 10 mM sodium molybdate. Two components of boiled cytosol are required for receptor activation: NADPH and an endogenous heat-stable protein with an apparent Mr of 12,300 by Sephadex G-50 chromatography. This endogenous receptor-activating protein coelutes on Sephadex G-50 chromatography with endogenous thioredoxin activity, and it can be replaced in the activating system by purified Escherichia coli thioredoxin. These observations suggest that glucocorticoid receptors in cytosol preparations are maintained in a reduced, steroid-binding state by a NADPH-dependent, thioredoxin-mediated reducing system.  相似文献   

11.
L K Miller  S C Diaz  M R Sherman 《Biochemistry》1975,14(20):4433-4443
Conditions for discontinuous polyacrylamide gel electrophoresis have been defined in which progesterone receptors of chick oviduct cytosol and a variety of steroid-binding proteins from other sources are stable and amenable to quantitative analysis. The essential modifications from standard procedures include the use of (1) separation gels in which the cross-linking agent/acrylamide monomer = 15:85, (2) glycerol (10% v/v) in all phases of the Trisglycine-HCl buffer system (pH 10.2 in the separation phase during electrophoresis at 0 degrees), and (3) a layer of a charged reducing agent, thioglycolate, beneath the sample layer. Electrophoresis of untreated oviduct cytosol labeled with [3H]progesterone +/- competing steroids revealed a heterodisperse slow peak and a sharp fast peak. Both peaks displayed the steroid-binding specificity and saturability that are characteristic of intracellular receptors. Recovery of steroid from both the slow and fast components increased linearly with sample load up to 60 mul of cytosol (1.2 mg of protein)/gel (6 mm diameter). The specific progesterone binding detected by this technique was comparable to that detected by charcoal-dextran treatment or ion exchange filtration. Relative electrophoretic mobilities (Rf) of globular protein standards and steroid-protein complexes in cytosol and chick serum were measured in separation gels with total gel concentrations (T) systematically varied from 5 to 15% (w/v). Data were processed by computer programs to obtain weighted linear regressions of log Rf on T (Ferguson plots) and the joint 95% confidence limits of the slopes (-KR) and intercepts of these plots. Molecular radii (R) of the binding components and apparent molecular weights (M) were calculated from the linear correlation of R with KR 1/2 for the standards. The value of M is approximately 158,000 obtained for the cytosol fast component was independent of the length of the separation gel, the presence of a stacking gel or prior exposure of the cytosol to KCl. It was higher than expected from the sedimentation coefficient of 4.2 S in the same pH 10.2 buffer. Electrophoresis in 170-mm separation gels without stacking gels revealed that KCl extracts of protamine-precipitated cytosol contain a different receptor form, of lower net negative charge than the cytosol fast form. The results demonstrate the utility of electrophoresis in highly cross-linked gels of several concentrations to discriminate between various receptor forms and steroid-binding components of serum. This method may lead to overestimates of M for highly asymmetric receptor forms.  相似文献   

12.
Binding of bile acids by glutathione S-transferases from rat liver   总被引:4,自引:0,他引:4  
Binding of bile acids and their sulfates and glucuronides by purified GSH S-transferases from rat liver was studied by 1-anilino-8-naphthalenesulfonate fluorescence inhibition, flow dialysis, and equilibrium dialysis. In addition, corticosterone and sulfobromophthalein (BSP) binding were studied by equilibrium and flow dialysis. Transferases YaYa and YaYc had comparable affinity for lithocholic (Kd approximately 0.2 microM), glycochenodeoxycholic (Kd approximately to 60 microM), and cholic acid (Kd approximately equal 60 microM), and BSP (Kd approximately 0.09 microM). YaYc had one and YaYa had two high affinity binding sites for these ligands. Transferases containing the Yb subunit had two binding sites for these bile acids, although binding affinity for lithocholic acid (Kd approximately 4 microM) was lower than that of transferases with Ya subunit, and binding affinities for the other bile acids were comparable to the Ya family. Sulfated bile acids were bound with higher affinity and glucuronidated bile acids with lower affinity by YaYa and YaYc than the respective parent bile acids. In the presence of GSH, binding of lithocholate by YaYc was unchanged and binding by YbYb' was inhibited. Conversely, GSH inhibited the binding of cholic acid by YaYc but had less effect on binding by YbYb'. Cholic acid did not inhibit the binding of lithocholic acid by YaYa.  相似文献   

13.
Subunit structure of human and rat glutathione S-transferases   总被引:4,自引:0,他引:4  
In rat tissues different forms of glutathione (GSH) S-transferases represent various dimeric combinations of at least four different classes of subunits categorized on the basis of their Mr values as seen on polyacrylamide gels. These subunit types represent heterogeneous populations and the actual number of subunits in rat GSH S-transferases may be far more than is known at present. Human GSH S-transferases arise from dimeric combinations of at least four immunologically and functionally distinct subunits which can be classified into three types, A (Mr 26,500), B (Mr 24,500) and C (Mr 22,500). There is evidence for considerable charge heterogeneity in each of these subunit types.  相似文献   

14.
Effects of sodium tungstate on various properties of rat liver glucocorticoid receptor were examined at pH7 and pH 8. At pH 7, [3H]triamcinolone acetonide binding in rat liver cytosol preparations was completely blocked in the presence of 10--20 mM-sodium tungstate at 4 degrees C, whereas at 37 degrees C a 30 min incubation of cytosol receptor preparation with 1 mM-sodium tungstate reduced the loss of unoccupied receptor by 50%. At pH 8.0, tungstate presence during the 37 degrees C incubation maintained the steroid-binding capacity of unoccupied glucocorticoid receptor at control (4 degrees C) levels. In addition, heat-activation of cytosolic glucocorticoid-receptor complex was blocked by 1 mM- and 10 mM-sodium tungstate at pH 7 and pH 8 respectively. The DNA-cellulose binding by activated receptor was also inhibited completely and irreversibly by 5 mM-tungstate at pH 7, whereas at pH 8 no significant effect was observed with up to 20 mM-tungstate. The entire DNA-cellulose-bound glucocorticoid-receptor complex from control samples could be extracted by incubation with 1 mM- and 20 mM-tungstate at pH 7 and pH 8 respectively, and appeared to sediment as a 4.3--4.6 S molecule, both in 0.01 M- and 0.3 M-KCl-containing sucrose gradients. Tungstate effects are, therefore, pH-dependent and appear to involve an interaction with both the non-activated and the activated forms of the glucocorticoid receptor.  相似文献   

15.
Binding affinities of purified Z proteins from rat and human liver for bile acids, oleic acid, and organic anions were studied. Purification of Z protein from both rat and human hepatic cytosol was performed by gel filtration, chromatofocusing, and hydroxyapatite chromatography. Both purified proteins showed the same molecular weight (Mr = 14,000) and isoelectric points were 6.9 and 6.5 for rat and human proteins, respectively. Binding studies were performed by the competitive displacement of 1-anilino-8-naphthalene sulfonate. Rat and human Z proteins exhibited similar binding affinities for bile acids, oleic acid, and organic anions. Among various bile acids, both proteins bound monohydroxy bile acids with high affinity and trihydroxy bile acids with low affinity; sulfates were bound with higher and glucuronides with lower affinity than their parent bile acids. In comparison with GSH S-transferases, rat Z protein had lower affinity for bile acids than rat GSH S-transferase B and human Z protein had higher affinity for bile acids than human cationic GSH S-transferase. The role for Z protein in the intracellular binding of bile acids may be particularly important in human liver.  相似文献   

16.
Rat liver glutathione S-transferases with isoelectric points near 6.7 were resolved from more basic forms of the protein. This anionic fraction represented about 30% of the total activity in liver with 1-chloro-2,4-dinitrobenzene and was the preponderant form utilizing trans-4-phenyl-3-butene-2-one as a substrate. The anionic transferases are dimeric proteins composed of two subunits designated as Yb and were distinguished from the cationic transferases on the basis of structural, immunological, and binding properties. Amino acid compositions and immunological properties of the anionic protein were similar to those of glutathione S-transferases A and C. The anionic forms had substantially less ordered secondary structure than cationic forms composed of subunits Ya and Yc. Stoichiometric ratios of two high affinity binding sites per dimer, also differentiated between the anionic and all of the cationic transferases which bind only a single mole of ligand. Affinity matrices composed of corticosterone or cholate, and circular dichroism methods, were used to demonstrate selective binding of steroids and bile acids to the anionic glutathione S-transferases. Glucocorticoids and progestins were shown to bind with high affinity whereas estrogens were bound at distinct lower affinity sites. In contrast to the cationic transferases, glutathione had no effect on binding of the steroids to the anionic forms, which suggested that these proteins have the capacity to bind these substances even in a milieu with high concentrations of glutathione.  相似文献   

17.
The cytosol fraction of rat pancrease can bind [3H] estradiol specifically and extensively. In contrast to the rat uterus, the binding protein in pancreas requires an accessory factor as a coligand in the steroid-binding reaction. Removal of this accessory factor by passage of the cytosol through CM Affi-Gel blue columns renders eluate fractions virtually incompetent with respect to binding of [3H]estradiol (10 nM). Certain synthetic oligopeptides such as N-benzoyl-L-argininyl-p-nitroanilide, as well as an endogenous accessory factor, can reactivate binding of [3H]estradiol. Thus, localization of the protein that binds [3H]estradiol following chromatography with CM Affi-Gel blue columns can be determined readily by assaying eluate fractions in the absence and presence of either accessory factor or N-benzoyl-L-argininyl-p-nitroanilide. Addition of somatostatin (tetradecapeptide referred to as SRIF14; somatotropin release inhibiting factor) to the activatable, but incompetent, eluate fractions, also enhanced binding of [3H]estradiol. The effect of SRIF14 was biphasic. The threshold concentration required for activation of [3H]estradiol binding was about 1 microM, and maximal stimulation occurred at 25 microM. At higher concentrations of SRIF14, binding declined and reached basal levels at about 75 microM. The concentrations of somatostatin required for activation of binding of [3H]estradiol in vivo may be lower than those indicated above since 1) preparations containing [3H]estradiol-binding protein also contained an SRIF14 peptidase. Following incubation of [125I-Tyr1]SRIF14 with these preparations there was loss of binding of radiolabeled peptide with SRIF14 antiserum. 2) The biphasic nature of SRIF14 activation may reflect feedback inhibition of [3H]estradiol binding by a degradation product of SRIF14. Since SRIF14 has been identified in the delta- (or D-) islet cells of the pancreas, and in concentrations that may be in the microM range, the possibility is raised that these cells serve a paracrine function with respect to acinar cell secretion.  相似文献   

18.
The glucocorticoid receptor from rat liver cytosol prepared in 2 ml buffer/g tissue sedimented at approximately 10 S in low salt density gradient centrifugation without molybdate. When the receptor was heated at 25 degrees C, both approximately 10 S and approximately 7 S forms were seen in low salt gradient. The approximately 10 S form was not capable of binding to DNA-cellulose and was stabilized by sodium molybdate, namely it corresponded to untransformed receptor. The approximately 7 S form was capable of binding to DNA-cellulose and regarded as transformed receptor. On the other hand, partially-purified transformed receptor labeled with [3H]dexamethasone-21-mesylate sedimented at approximately 5 S, which migrated as a approximately 94 kDa species in SDS-polyacrylamide gel electrophoresis. The reconstitution analysis of this partially-purified approximately 5 S receptor and liver cytosol, showed the shift to approximately 7 S form. RNase A or T1 converted approximately 7 S transformed form into approximately 5 S but it did not affect approximately 10 S untransformed form. 5-20 mM sodium molybdate also shifted approximately 7 S to approximately 5 S. These results indicate that the approximately 7 S transformed form of the glucocorticoid receptor observed in low salt conditions might be an oligomer, probably including both approximately 5 S steroid-binding component and RNA/ribonucleoprotein, and that molybdate dissociates these interactions in a specific manner.  相似文献   

19.
A specific glucocorticoid binding macromolecule of rabbit uterine cytosol   总被引:1,自引:0,他引:1  
A high affinity (Kd=2.7 × 10?10M at 0°) dexamethasone binding macro-molecule has been identified in the cytosol fraction of rabbit uteri. Competition studies show high specificity for glucocorticoids since binding of labeled dexamethasone is inhibited by cortisol and corticosterone but not by progesterone, testosterone, or estradiol 17β. The binding component has a sedimentation coefficient of 8S and its concentration in uterine cytosol is about 0.2 pmoles per mg protein. Uptake of labeled dexamethasone by isolated uterine nuclei requires the presence of cytosol and is temperature dependent. The KCl-extractable nuclear complex sediments at 4S. Thus the dexamethasone binding components of the rabbit uterus have properties similar to those described for steroid hormone receptors present in target tissues. Specific dexamethasone binding could not be demonstrated in rat uterine cytosol.  相似文献   

20.
Three cationic glutathione S-transferase forms isolated from rat liver were characterized as dimers that originated from different combinations of two subunit types, Ya and Yc. The cationic forms were purified using lysyl glutathione affinity matrices and were chromatographically resolved from anionic glutathione S-transferases that contain Yb subunits. The three classes of cationic transferase exhibited similar specific activities with 1-chloro-2,4-dinitrobenzene as a substrate, all forms cross-reacted with antibodies to glutathione S-transferase B, and all had comparable secondary structures and tryptophan fluorescence properties. In spite of those similarities, the Yc-containing forms were clearly distinguishable from Ya forms on the basis of characteristic differences in circular dichroic patterns associated with their aromatic side chains. All cationic transferases bound bilirubin with stoichiometric ratios of 1 mol/dimeric protein molecule, but discrete differences in mode of binding were ascribed to forms containing Ya subunits as compared to Yc dimers. Binding to Yc forms was of lower affinity and may be associated with the catalytic region of the protein since glutathione effectively displaced bilirubin from the Yc component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号