首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hematopoietic cytokine erythropoietin (Epo) exerts cytoprotective effects on several types of neuronal cells both in vivo and in culture. Detailed molecular mechanisms underlying this phenomenon have not been elucidated and even the identity of the cytoprotective Epo receptors in neuronal cells is controversial. Here we show that Epo prevents staurosporine-induced apoptosis of differentiated human neuroblastoma SH-SY5Y cells, and activates the STAT5, AKT and MAPK signaling pathways. Differentiated SH-SY5Y cells have fewer than 50 high affinity Epo surface binding sites per cell, which could not be detected by standard assays measuring binding of 125I-labeled Epo. However, by measuring endocytosis of 125I-Epo, we could reliably quantify very small numbers of high-affinity Epo surface binding sites. Using SH-SY5Y cells stably expressing an Epo receptor (EpoR) shRNA and thus lacking detectable EpoR expression, we show that high affinity binding of Epo to these neuronal cells is mediated by the hematopoietic EpoR, and that this EpoR is also essential for the antiapoptotic activity of Epo. In contrast, a mutant Epo that has an intact binding site 1 but a non-functional binding site 2 and hence binds only to one cell surface EpoR molecule ("site 2" Epo mutant) displays significantly lower antiapoptotic activity than wild-type Epo. Furthermore, expression of the GM-CSF/IL-3/IL-5 receptor common beta chain, which was proposed to be responsible for the cytoprotective activity of Epo on certain types of neuronal cells, was undetectable in differentiated SH-SY5Y cells. Epo also alleviated staurosporine-induced apoptosis of rat PC-12 pheochromocytoma cells while the R103A "site 2" Epo mutant did not, and we could not detect expression of the common beta chain in PC-12 cells. Together our results indicate that Epo exerts its antiapoptotic effects on differentiated SH-SY5Y and PC-12 cells through the standard stoichiometry of one molecule of Epo binding to two EpoR subunits, comprising the "classical" Epo receptor signaling complex.  相似文献   

2.
蛋白质氯胺-T双相碘标法的建立及其应用   总被引:2,自引:0,他引:2  
常规的蛋白质碘标方法易引起被标细胞因子的失活,是受体配基竞争结合实验失败的原因之一.试用氯胺-T双相碘标法标记rhG-CSF和rhEPO,并应用受体配基竞争结合分析法测定NFS-60细胞G-CSF受体及BET-2细胞EPO受体的特性.结果显示所获 125I-EPO和 125I-G-CSF放射比活度均较高;发现BET-2细胞有高、低两种亲和力的EPO受体,NFS-60细胞只有一种高亲和力的G-CSF受体,所获结果与文献资料相一致.说明氯胺-T双相碘标法是细胞因子同位素碘标记的理想方法之一.  相似文献   

3.
The hematopoietic glycopeptide erythropoietin (EPO) is a prime regulator of red cell production in mammals, yet the precise nature of its interaction with specific cell surface receptors is poorly understood. Towards defining domains of EPO that are involved in receptor activation, we have developed (i) conditions for the expression of recombinant human EPO (rhEPO) at high levels in SF9 cells using modified 2- and 5-liter stirred reactors, (ii) a two-step procedure for the purification of this EPO without denaturation, and (iii) forms of EPO tagged with either a hemagglutinin influenza virus epitope or a consensus sequence for in vitro phosphorylation. Compared to EPO expressed in mammalian cells, rhEPO from SF9 cells in N-glycosylated with simple, neutral oligosaccharides of limited size, yet as purified presently using nondenaturing procedures, possesses exceptionally high in vitro activity (> or = 500,000 U/mg). Thus, this form of EPO should prove advantageous for direct physicochemical analyses. Regarding epitope-tagged and phosphorylatable EPOs, forms modified at the amino terminus (Ala1) fully retained receptor binding and in vitro biological activities. In contrast, forms modified at the carboxy terminus (Cys161) were inactive and did not compete for receptor binding, indicating that integrity of this domain is essential for receptor recognition. For active amino-terminal-modified forms, the specific binding of MAb 12CA5 to native HAI-EPO and the utility of 32P-labeled PHOS-EPO in receptor binding and internalization studies also were demonstrated. The development of these unique, highly active forms of human EPO should advance studies of essential interactions between this cytokine and its cell surface receptor.  相似文献   

4.
Vascular endothelial cell growth factor (VEGF) is a potent angiogenic factor expressed during embryonic development, during wound healing, and in pathologies dependent on neovascularization, including cancer. Regulation of the receptor tyrosine kinases, KDR and Flt-1, to which VEGF binds on endothelial cells is incompletely understood. Chronic incubation with tumor-conditioned medium or VEGF diminished (125)I-VEGF binding to human umbilical vein endothelial cells, incorporation of (125)I-VEGF into covalent complexes with KDR and Flt1, and immunoreactive KDR in cell lysates. Receptor down-regulation desensitized VEGF activation of mitogen-activated protein kinase (extracellular signal-regulated kinases 1 and 2) and p38 mitogen-activated protein kinase. Preincubation with VEGF or tumor-conditioned medium down-regulated cell surface receptor expression but up-regulated KDR and Flt-1 mRNAs, an effect abrogated by a neutralizing VEGF antibody. Removal of VEGF from the medium led to recovery of (125)I-VEGF binding and resensitization of human umbilical vein endothelial cells. Recovery of receptor expression was inhibited by cycloheximide, indicating that augmented VEGF receptor mRNAs, and not receptor recycling from a cytoplasmic pool, restored responsiveness. As the VEGF receptors promote endothelial cell survival, proliferation, and other events necessary for angiogenesis, the noncoordinate regulation of VEGF receptor proteins and mRNAs suggests that human umbilical vein endothelial cells are protected against inappropriate or prolonged loss of VEGF receptors by a homeostatic mechanism important to endothelial cell function.  相似文献   

5.
Subunit structure of the erythropoietin receptor   总被引:4,自引:0,他引:4  
Chemical cross-linking of the red blood cell hormone, erythropoietin (Epo), to its receptor on erythroid cells has revealed the presence of two proteins closely associated with Epo, but the relationship between these two proteins is controversial. Using the cross-linking reagents disuccinimidyl suberate and dithiobissuccinimidyl propionate, we show that 125I-Epo can be specifically conjugated in a complex of 224kDa using mouse fetal liver cells, bone marrow cells, and Friend virus-induced splenic erythroblasts as demonstrated by electrophoresis on sodium dodecyl sulfate-polyacrylamide gels under nonreducing conditions. Under reducing conditions, the 224-kDa complex appeared as two Epo conjugates of 136 kDa and 119 kDa, and these bands were also observed to a variable extent in some nonreducing gels. Disulfide linking of the 136-kDa and 119-kDa bands was confirmed by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis run under nonreducing followed by reducing conditions. With increasing time of 125I-Epo binding to Friend virus erythroblasts in the presence of sodium azide to inhibit receptor internalization, the 136-kDa and 119-kDa bands seen under reducing conditions increased markedly in intensity, whereas the 224-kDa band seen under nonreducing conditions declined. These results suggest that the 224-kDa Epo conjugate is inefficiently solubilized under nonreducing conditions following prolonged periods of Epo binding. A single class of saturable, high affinity receptors for Epo on each of the cell types tested is demonstrated. It is concluded that the two disulfide-linked Epo-binding proteins which can be independently cross-linked to Epo form a single ligand binding site.  相似文献   

6.
Mouse L cells deficient in expression of the murine cation-independent mannose 6-phosphate receptor/insulin-like growth factor II receptor (CI-MPR/IGF-IIR) were stably transfected with a plasmid containing the cDNA for the human receptor. Transfected cells expressed high levels of the human receptor which functioned in the transport of lysosomal enzymes and was capable of binding 125I-IGF-II, both at the cell surface and intracellularly. Cell surface binding of 125I-IGF-II by the receptor could be inhibited by pretreatment of cells with antibodies to the receptor or by coincubation with the lysosomal enzyme, beta-glucuronidase. Expression of the receptor conferred on transfected cells the ability to internalize and degrade 125I-IGF-II. Cells transfected with the parental vector and those expressing the human CI-MRP/IGF-IIR were found to express an atypical binding site for IGF-II that was distinct from the CI-MPR/IGF-IIR and the type I IGF-receptor. The availability of two cell lines, one of which overexpresses the human CI-MPR/IGF-IIR and one deficient in expression of the murine receptor, may help in the analysis of the role of the receptor in mediating the biological effects of IGF-II. They should also be useful in examining the significance of binding of ligands, such as transforming growth factor-beta 1 precursor and proliferin to this receptor.  相似文献   

7.
We have partially purified and characterized erythropoietin (Epo) receptors of erythroid progenitor cells which were obtained from the spleens of anemia-inducing Friend virus infected mice. Membrane proteins of splenic erythroid progenitor cells were solubilized with 1% Triton X-102. Upon chromatography on DEAE-Sephacel anion-exchange columns, two distinct Epo receptor peak fractions referred to as Peak I and Peak II were identified by 125I-Epo binding assays using the polyethylene glycol precipitation method. The Peak I and Peak II samples were then individually chromatographed on an S-Sepharose column. The S-Sepharose-purified Peak I and Peak II samples were crosslinked with 125I-Epo in the presence and absence of excess unlabeled Epo by disuccinimidyl suberate treatment, and then analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and autoradiography. Both Peak I and Peak II samples showed a radiolabeled peptide with a Mr 135K and the labeling was blocked by excess unlabeled Epo. Since the Mr of Epo is about 35K, Epo receptor peptide has a Mr approximately 100K. To determine whether Epo stimulates autophosphorylation of the receptors, the S-Sepharose-purified Peak I and Peak II samples were incubated with or without Epo, and then briefly incubated in the presence of [gamma-32P]ATP and Mn2+. The tyrosine residue phosphorylated protein was isolated by an immunochemical technique, and then analyzed by SDS-PAGE and autoradiography. The result showed that Epo stimulates phosphorylation of a 100-kDa peptide.  相似文献   

8.
We developed an efficient production system of the soluble extracellular domain of the human erythropoietin receptor (sEPO-R) and characterized the binding of erythropoietin (EPO) with the purified recombinant protein. The sEPO-R, fused to the maltose binding protein (MBP), was expressed as a soluble protein in the periplasm of Escherichia coli (E. coli) and did not accumulate in inclusion bodies. After lysis of the bacteria by an osmotic shock, the fusion protein was purified by affinity chromatography on amylose followed by size exclusion chromatography (SEC). Specific binding of 125I-labelled EPO to the sEPO-R was demonstrated by competitive and saturation binding assays. A single affinity class (Kd = 0.25 nM) of the binding site was evident by Scatchard analysis. This value is similar to the Kd observed between EPO and the EPO-R of high affinity present on human erythroid progenitors. The complex has a molecular size corresponding to a 1:1 complex of EPO and the fusion protein.  相似文献   

9.
Using the human erythropoietin-responsive hematopoietic cell line UT-7, we showed that erythropoietin (Epo) rapidly and specifically induced the tyrosine phosphorylation of its own receptor (M(r) 75,000) and increased the tyrosine phosphorylation of other proteins of M(r) 140,000, 120,000, 95,000, 60,000, 57,000, and 42,000. Neither granulocyte-macrophage colony-stimulating factor, interleukin 3, interleukin 6, nor the kit ligand induced the phosphorylation of the M(r) 75,000 receptor protein, although these growth factors induced the phosphorylation of other proteins. Cross-linking experiments using 125I-Epo indicated that the UT-7 cells expressed three Epo receptor subunits, of M(r) 100,000, 85,000, and 75,000, among which only the M(r) 75,000 subunit was tyrosine-phosphorylated following activation with Epo.  相似文献   

10.
The properties of specific human interleukin 1 (IL 1) receptors on human Epstein Barr virus-transformed B lymphocytes (EBV-B) were studied. Purified human IL 1-beta from a myelomonocytic cell line (THP-1) was labeled with 125I by the Bolton-Hunter method without detectable loss of biological activity. Among four EBV-B cell lines tested, a pre-B cell type (VDS-O) specifically bound the highest amount of 125I-IL 1-beta. Maximal binding was reached within 20 min at 4 degrees C. Scatchard plot analysis of the binding of 125I-IL 1-beta to VDS-O cells yielded a Kd (dissociation constant) of 2.4 to 5.9 X 10(-10) M with 110 to 220 binding (receptor) sites/cell. The binding of 125I-IL 1-beta to VDS-O cells was also inhibited by F(ab)'2 fragments of anti-human IL 1 and recombinant human IL 1-alpha, as well as by unlabeled human IL 1-beta but not by recombinant lymphotoxin, recombinant tumor necrosis factor, or phorbol myristic acid, suggesting that IL 1-alpha and IL 1-beta bind specifically to the same receptor. The m.w. of IL 1 receptor on human EBV-B cells was estimated to be 60,000 by both the chemical cross-linking method and high pressure liquid chromatography (HPLC) gel filtration analysis of receptor extracted from membrane enriched fraction by a non-ionic detergent (CHAPS). The isoelectric point of solubilized human IL 1 receptor was 7.3 on HPLC chromatofocusing. The evidence of existence of IL 1 receptor on human EBV-B cells additionally supports the hypothesis that IL 1 may be an autocrine signal for these cells.  相似文献   

11.
Erythropoietin(EPO) is the major regulator of mamalian erythropoisis,which stimulates the growth and differentiation of hematopoietic cells through interaction with its receptor(EPO-R),Here we use HEL cells (a human erythro-leukemia cell line) as a model to elucidate the pathway of signal transduction in the EPO-induced HEL cells.Our data show that the EPOR (EPO receptor) on the surface of HEL cells interacts with the Janus tyrosine protein kinase(Jak2) to transduce intracellular signals through phosphorylation of cytoplasmic proteins in EPO-treated HEL cells.Both STAT1 and STAT5 in this cell line are tyrosine-phosphorylated and translocated to nucleus following the dinding of EPO to HEL cells.Furthermore,the dinding of both STAT1 and STAT5 proteins to specific DNA elements(SIE and PIE elements) is revealed in an EPO-dependent manner,Our data demonstrate that the pathway of signal transduction following the binding of EPO to HEL cells is similar to immature eryhroid cell from the spleen of mice infected with anemia strain of Friend virus.  相似文献   

12.
It has been recently shown that the biological effects of erythropoietin (EPO) are not limited to the hematopoietic compartment but, as pleiotropic glycoprotein, this hormone can exert pro-angiogenic and tissue-protective functions also in a wide range of non-hematopoietic organs. The role of EPO and the effective functionality of its receptor in solid tumors are still a controversial point of debate. In the present work we analyzed the gene expression of EPO and its cognate receptor (EpoR) in a rat model of thioacetamide-induced damage and tumor. An analysis of the EPO/EpoR axis was also performed on human cholangiocarcinoma (CC) cell lines. A progressive increase of EPO and EpoR mRNA can already be observed during the fibrotic–cirrhotic development with a peak of expression rising at tumor formation (24.7 ± 9.9-fold increase and 15.5 ± 1.1-fold increase, respectively, for the two genes). Co-localization studies by immunofluorescence revealed hepatocytes in the regenerative cirrhotic nodules (Hep Par-1+) and in the dysplastic bile duct cells (CK19+) as the major EPO producers in this specific condition. The same cell populations, together with endothelial cells, exhibited an increased expression of EpoR, although all the non-parenchymal cell populations in the liver exhibited modest basal mRNA levels. Challenging human CC cells, Mz-Cha-2, with a combination of EPO and SCF resulted in a synergistic effect on the gene expression of EPO, CyclinD1 and PCNA. This study suggests that the autocrine and paracrine release of endogenous EPO in the microenvironment may contribute to the development and maintenance of the CC possibly in cooperation with other signaling pathways.  相似文献   

13.
Erythropoietin (EPO) regulates the proliferation and differentiation of erythroid cells by binding to its specific transmembrane receptor EPOR. Recent studies, however, have shown that the EPOR is additionally present in various cancer cells and EPO induces the proliferation of these cells, suggesting a different function for EPO other than erythropoiesis. Therefore, the purpose of the present study was to examine EPOR expression and the role of EPO in the proliferation and signaling cascades involved in this process, using the rat pancreatic tumor cell line AR42J. Our results showed that AR42J cells expressed EPOR, and EPO significantly enhanced their proliferation. Cell cycle analysis of EPO-treated cells indicated an increased percentage of cells in the S phase, whereas cell numbers in G0/G1 phase were significantly reduced. Phosphorylation of extracellular regulatory kinase 1/2 (ERK1/2) and c-Jun NH2 terminal kinase 1/2 (JNK1/2) was rapidly stimulated and sustained after EPO addition. Treatment of cells with mitogen-activated protein/ERK kinase (MEK) inhibitor PD98059 or JNK inhibitor SP600125 significantly inhibited EPO-enhanced proliferation and also increased the fraction of cells in G0/G1 phase. Furthermore, the inhibition of JNK using small interference RNA (siRNA) suppressed EPO-enhanced proliferation of AR42J cells. Taken together, our results indicate that AR42J cells express EPOR and that the activation of both ERK1/2 and JNK1/2 by EPO is essential in regulating proliferation and the cell cycle. Thus both appear to play a key role in EPO-enhanced proliferation and suggest that the presence of both is required for EPO-mediated proliferation of AR42J cells. erythropoietin receptor; cell signaling; mitogen-activated protein kinase induction  相似文献   

14.
Incubation of several human tumor cell lines with human interferon-gamma (IFN-gamma) increased the specific binding of subsequently added 125I-labeled recombinant human tumor necrosis factor (TNF). A similar increase in TNF binding was seen in murine L929 cells after incubation with murine IFN-gamma, but not after incubation with human IFN-gamma. Increased TNF binding to cells incubated with IFN-gamma was due to an increase in the number of TNF receptors, with no demonstrable change in binding affinity. In one out of two human cell lines tested, IFN-alpha and IFN-beta also produced increased TNF binding, albeit with a lower efficacy than IFN-gamma. A maximal increase in TNF binding was seen after about 6 to 12 hr of incubation with IFN. Increased TNF binding due to enhanced TNF receptor expression may contribute to the enhancement of TNF cytotoxicity seen in some tumor cell lines after INF treatment. Modulation of TNF receptor expression by IFN may also influence other biological activities of TNF.  相似文献   

15.
The glycoprotein hormone Erythropoietin (EPO) stimulates red cell production and maturation. EPO is produced by the kidneys and the fetal liver in response to hypoxia (HOX). Recently, EPO expression has also been observed in the central nervous system where it may be neuroprotective. It remained unclear, however, whether EPO is expressed in the peripheral nervous system and, if so, whether a neuronal phenotype is required for its regulation. Herein, we report that EPO expression was induced by HOX and a HOX mimetic in two cell lines derived from neuroblastoma (NB), a tumor of the peripheral nervous system. Both cell lines with inducible EPO expression, SH-SY5Y and Kelly cells, expressed typical neuronal markers like neuropeptide Y (NPY), growth-associated protein-43 (GAP-43), and neuron-specific enolase (ENO). NB cells with a more epithelial phenotype like SH-SHEP and LAN-5 did not show HOX inducible EPO gene regulation. Still, oxygen sensing and up-regulation of hypoxia-inducible factor-1 (HIF-1) were intact in all cell lines. We found that CpG methylation of the HIF binding site (HBS) in the EPO gene 3' enhancer was only present in the SH-SHEP and LAN-5 cells but not in SH-SY5Y and Kelly cells with regulated EPO expression. The addition of recombinant EPO to all NB cells, both under normoxic and hypoxic conditions, had no effect on cell proliferation. We conclude that the ability to respond to HOX with an increase in EPO expression in human NB may depend on CpG methylation and the differentiation status of these embryonic tumor cells but does not affect the proliferative characteristics of the cells.  相似文献   

16.
The terminal development of erythroid progenitor cells is promoted in part through the interaction of erythropoietin (EPO) with its cell surface receptor. This receptor and a growing family of related cytokine receptors share homologous extracellular features, including a well-conserved WSXWS motif. To explore the functional significance of this motif in the murine EPO receptor, five WSAWSE mutants were prepared and their signal-transducing, ligand binding, and endocytotic properties were compared. EPO receptors mutated at tryptophan residues (W-232, W-235----G; W-235----G; W-235----F) failed to mediate EPO-induced growth or pp100 phosphorylation, while S-236----T and E-237----K mutants exhibited partial to full activity (50 to 100% of wild-type growth and induced phosphorylation). Ligand affinity was reduced for mutant receptors (two- to fivefold), yet expression at the cell surface for all receptors was nearly equivalent. Also, the ability of mutated receptors to internalize ligand was either markedly reduced or abolished (W-235----F), indicating a role for the WSAWSE region in hormone internalization. Interestingly, receptor forms lacking 97% of the cytosolic domain (no signal-transducing capacity; binding affinity reduced two- to threefold) internalized EPO efficiently. This and all WSAWSE receptor forms studied also mediated specific cross-linking of 125I-EPO to three accessory membrane proteins (M(r)s, 120,000, 105,000, and 93,000). These findings suggest that the WSAWSE domain of the EPO receptor is important for EPO-induced signal transduction and ligand internalization. In contrast, although the cytosolic domain is required for growth signaling, it appears nonessential for efficient endocytosis.  相似文献   

17.
18.
We compared transferrin receptor (TfR) expression on human peripheral blood lymphocytes (PBL) activated by phorbol myristate acetate (PMA) or L-phytohemagglutinin (LPHA) using two techniques: (1) 125I-iron-saturated transferrin (FeTf) binding, (2) reactivity with monoclonal anti-TfR antibodies--OKT9 and B3/25. These monoclonal antibodies do not block FeTf binding, and therefore bind to TfR domains separate from the ligand binding site. Unstimulated PBL bound fewer than 1,000 molecules of 125I-FeTf per cell, and less than 5% of cells expressed TfR antigens detected by OKT9 or B3/25. 125I-FeTf binding and antibody binding increased in parallel on LPHA-activated PBL. After exposure to LPHA for 72 hr, 125I-FeTf binding increased 100-fold to 10(5) molecules per cell and greater than 50% of cells expressed TfR antigens. By contrast, PMA activation of PBL markedly increased binding of OKT9 and B3/25 but not the binding of 125I-FeTf. Cell surface expression of TfR antigens seen by OKT9 and B3/25 did not differ between LPHA- and PMA-activated PBL. However, after 72 hr with PMA, 125I-FeTf binding increased only 6-fold and consistently remained at less than 10(4) molecules per cell. Therefore, PMA induced a disparity between expression of TfR ligand binding domains and immunological domains at the cell surface. Cell proliferation assessed by fluorescent DNA analysis was similar in cultures stimulated by LPHA or PMA. These data indicate that lymphoid cells may possess a mechanism for modulating TfR expression in which down-regulation of FeTf binding occurs without receptor internalization. Alternatively, it is possible that this observation may reflect a membrane perturbation effect of PMA.  相似文献   

19.
Two distinct hemopoietic growth factors, interleukin 3 (IL-3) and erythropoietin (EPO), support the growth and development of erythroid cells in a sequential manner in vitro. Stimulation of multipotential stem cells by IL-3 appears to develop committed erythroid progenitor cells that respond to EPO. When several murine IL-3-dependent cell lines were assayed for their ability to respond to EPO, the growth and survival of the three cell lines showing the profiles of either myeloid or mast cell lineage (IC-2, DA-1, FDC-P2) were stimulated by EPO in a dose-dependent fashion. To determine whether the biologic effects were mediated through the specific receptors for EPO, we performed binding experiments on these cells with radioiodinated EPO. All of these cells displayed significant levels of specific binding for EPO. Among a family of hemopoietic growth factors, only unlabeled EPO was able to compete for the binding of radioiodinated EPO to the cells. Analysis of the binding data revealed the existence of a single case of binding sites in extremely low abundance. IC-2 cells were used to study the effects of IL-3 on the regulation of expression of EPO receptors. It was demonstrated that a decrease in IL-3 concentration in the culture medium increased the responsiveness to EPO and the amount in specific binding of EPO as well. These results suggest that some IL-3-dependent cell lines have functional EPO receptors and their expression may be modulated by IL-3.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号