首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Rapid progress in studies on flower development has resulted in refining the classical ‘ABC model’ into a new ‘ABCDE model’ to explain properly the regulation of floral organ identity. Conservation of E-function for flower organ identity among the dicotyledonous (dicot) plants has been revealed. However, its conservation in monocotyledonous (monocot) plants remains largely unknown. Here, we show the conservation of E-function in rice (Oryza sativaL.) by characterizing tissue culture-induced mutants of two MADS-box genes, OsMADS1and OsMADS5, which form a subclade within the well-supported clade of SEP-genes (E-function) phylogeny. Severe loss-of-function mutations of OsMADS1cause complete homeotic conversion of organs (lodicules, stamens, and carpels) of three inner whorls into lemma- and palea-like structures. Such basic deformed structure is reiterated along with the pedicel at the center of the same floret, indicating the loss of determinacy of the flower meristem. These phenotypes resemble the phenotypes caused by mutations of the dicot E-class genes, such as the Arabidopsis SEP123(SEPALLATA1/2/3) and the petunia FBP2(Floral Binding Protein 2), suggesting that OsMADS1play a very similar role in rice to that of defined E-class genes in dicot plants. In case of the loss-of-function mutation of OsMADS5, no defect in either panicles or vegetative organs was observed. These results demonstrate that OsMADS1clearly possesses E-function, and so, E-function is fundamentally conserved between dicot plants and rice, a monocot model plant.  相似文献   

3.
Aldo–keto reductase (AKR) is an enzyme superfamily whose members are involved in the metabolism of aldehydes/ketones. The AKR4 subfamily C (AKR4C) is a group of aldo–keto reductases that are found in plants. Some AKR4C(s) in dicot plants are capable of metabolizing reactive aldehydes whereas, such activities have not been reported for AKR4C(s) from monocot species. In this study, we have screened Indica rice genome for genes with significant homology to dicot AKR4C(s) and identified a cluster of putative AKR4C(s) located on the Indica rice chromosome I. The genes including OsI_04426, OsI_04428 and OsI_04429 were successfully cloned and sequenced by qRT-PCR from leaves of Thai Jasmine rice (KDML105). OsI_04428, later named AKR4C14, was chosen for further studies because it shares highest homology to the dicot AKR4C(s). The bacterially expressed recombinant protein of AKR4C14 was successfully produced as a MBP fusion protein and his-tagged protein. The recombinant AKR4C14 were capable of metabolizing sugars and reactive aldehydes i.e. methylglyoxal, a toxic by-product of the glycolysis pathway, glutaraldehyde, and trans-2-hexenal, a natural reactive 2-alkenal. AKR4C14 was highly expressed in green tissues, i.e. leaf sheets and stems, whereas flowers and roots had a significantly lower level of expression. These findings indicated that monocot AKR4C(s) can metabolize reactive aldehydes like the dicot AKR4C(s) and possibly play a role in detoxification mechanism of reactive aldehydes.  相似文献   

4.
5.
A characterization of the MADS-box gene family in maize   总被引:20,自引:2,他引:18  
Studies on distantly related dicot plant species have identified homeotic genes that specify floral meristem identity and determine the fate of floral organ primordia. Most of these genes belong to a family characterized by the presence of a structural motif, the MADS-box, which encodes a protein domain with DNA-binding properties. As part of an effort to understand how such genes may have been recruited during the evolution of flowers with different organ types such as those found in maize, two members of this gene family in maize, ZAG1 and ZAG2, have been characterized previously. Here, the isolation and characterization of four new members of this gene family, designated ZAP1, ZAG3, ZAG4 and ZAG5, are described and the genetic map position of these and 28 additional maize MADS-box genes is determined. The first new member of this family appears to be the Zea mays ortholog of the floral homeotic gene APETALA1 (AP1) and has been designated ZAP1. One of these genes, ZAG4, is unusual in that its deduced protein sequence includes the MADS domain but lacks the K-domain characteristically present in this family of genes. In addition, its copy number and expression varies among different inbreds. A large number of maize MADS-box genes map to duplicated regions of the genome, including one pair characterized here, ZAG3 and ZAG5. These data underscore the complexity of this gene family in maize, and provide the basis for further studies into the regulation of floral organ morphogenesis among the grasses.  相似文献   

6.
Flower development in angiosperms is controlled in part by floral homeotic genes, many of which are members of the plant MADS-box regulatory gene family. The evolutionary history of these developmental genes was reconstructed using 74 loci from 15 dicot, three monocot, and one conifer species. Molecular clock estimates suggest that the different floral homeotic gene lineages began to diverge from one another about 450–500 mya, around the time of the origin of land plants themselves. Received: 31 January 1997 / Accepted: 9 April 1997  相似文献   

7.
Biochemical and genetic analyses have previously identified caffeoyl shikimate esterase (CSE) as an enzyme in the monolignol biosynthesis pathway in Arabidopsis thaliana, although the generality of this finding has been questioned. Here we show the presence of CSE genes and associated enzyme activity in barrel medic (Medicago truncatula, dicot, Leguminosae), poplar (Populus deltoides, dicot, Salicaceae), and switchgrass (Panicum virgatum, monocot, Poaceae). Loss of function of CSE in transposon insertion lines of M. truncatula results in severe dwarfing, altered development, reduction in lignin content, and preferential accumulation of hydroxyphenyl units in lignin, indicating that the CSE enzyme is critical for normal lignification in this species. However, the model grass Brachypodium distachyon and corn (Zea mays) do not possess orthologs of the currently characterized CSE genes, and crude protein extracts from stems of these species exhibit only a weak esterase activity with caffeoyl shikimate. Our results suggest that the reaction catalyzed by CSE may not be essential for lignification in all plant species.  相似文献   

8.
9.
A gene (rps2) coding for ribosomal protein S2 (RPS2) is present in the mitochondrial (mt) genome of several monocot plants, but absent from the mtDNA of dicots. Confirming that in dicot plants the corresponding gene has been transferred to the nucleus, a corresponding Arabidopsis thaliana nuclear gene was identified that codes for mitochondrial RPS2. As several yeast and mammalian genes coding for mt ribosomal proteins, the Arabidopsis RPS2 apparently has no N-terminal targeting sequence. In the maize mt genome, two rps2 genes were identified and both are transcribed, although at different levels. As in wheat and rice, the maize genes code for proteins with long C-terminal extensions, as compared to their bacterial counterparts. These extensions are not conserved in sequence. Using specific antibodies against one of the maize proteins we found that a large protein precursor is indeed synthesized, but it is apparently processed to give the mature RPS2 protein which is associated with the mitochondrial ribosome.  相似文献   

10.
11.
The transition from the vegetative to reproductive stage followed by inflorescence is a critical step in plant life; therefore, studies of the genes that influence flowering time have always been of great interest to scientists. Flowering is a process controlled by many genes interacting mutually in a genetic network, and several hypothesis and models of flowering have been suggested so far. Plants in temperate climatic conditions must respond mainly to changes in the day length (photoperiod) and unfavourable winter temperatures. To avoid flowering before winter, some plants exploit a specific mechanism called vernalization. This review summarises current achievements in the study of genes controlling flowering in the dicot model species thale cress (Arabidopsis thaliana), as well as in monocot model species rice (Oryza sativa) and temperate cereals such as barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.). The control of flowering in crops is an attractive target for modern plant breeding efforts aiming to prepare locally well-adapted cultivars. The recent progress in genomics revealed the importance of minor-effect genes (QTLs) and natural allelic variation of genes for fine-tuning flowering and better cultivar adaptation. We briefly describe the up-to-date technologies and approaches that scientists may employ and we also indicate how these modern biotechnological tools and “-omics” can expand our knowledge of flowering in agronomically important crops.  相似文献   

12.
13.
14.
15.
16.
17.
Gray-Mitsumune M  Matton DP 《Planta》2006,223(3):618-625
The maize ZmEA1 protein was recently postulated to be involved in short-range pollen tube guidance from the embryo sac. To date, EA1-like sequences had only been identified in monocot species. Using a more conserved C-terminal motif found in the monocot species, numerous ZmEA1-like sequences were retrieved in EST databases from dicot species, as well as from unannotated genomic sequences of Arabidopsis thaliana. RT-PCR analyses were produced for these unannotated genes and showed that these were indeed expressed genes. Further structural and phylogenetic analyses revealed that all members of the EA1-like (EAL) gene family shared a conserved 27–29 amino acid motif, termed the EA box near the C-terminal end, and appear to be secretory proteins. Therefore, the EA box proteins defines a new class of small secretory proteins, some of which being possibly involved in pollen tube guidance. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

18.
Common mechanisms regulate flowering and dormancy   总被引:3,自引:0,他引:3  
David Horvath   《Plant science》2009,177(6):523-531
  相似文献   

19.
Chen D  Guo B  Hexige S  Zhang T  Shen D  Ming F 《Planta》2007,226(2):369-380
The SQUA family (AP1/FUL family) of MADS-box genes plays an important role in the transition from the vegetative to the reproductive development of angiosperms, and its origin might be concurrent with fixation of floral structure in angiosperms. Here, we isolated two Phalaenopsis MADS-box genes designated ORAP11 and ORAP13, both of which belong to the monocot FUL-like clade of the SQUA family. RT-PCR showed that both genes are strongly expressed in the floral bud, and also detected in the vegetative organs. During later stages, ORAP11 was only detected in the column, but ORAP13 signal was absent from all of the floral organs. In-situ hybridization experiments detected both genes in the tips and margins of developing petals and lips, the developing column, and ovule. Over-expression of both genes in tobacco induced early flowering and changed plant architecture. Our results suggest that in Phalaenopsis, both genes might share partly redundant activities and play important roles in the process of floral transition and morphological architecture. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号