首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human Il-1 alpha induces the synthesis of kappa Ig L chains by the pre-B cell line 7OZ/3, IL-2R alpha by the human NK cell line YT, and PGE2 by human rheumatoid synovial cells. Pertussis toxin (PT) markedly inhibited all three IL-1-induced activation events. The inhibition by PT was associated with a decrease in IL-1-mediated cAMP production. PT also inhibited IL-1-stimulated cAMP production in crude membrane fractions from 7OZ/3, YT, and 3T3 fibroblasts. In addition, IL-1 stimulated GTPase activity present in the membranes IL-1-responsive cells. Furthermore, the IL-1-induced GTPase activity was sensitive to PT. PT induced the ADP-ribosylation of a 46-kDa substrate in membrane preparations from IL-1-responsive cells. Cholera toxin also induced the ADP-ribosylation of a 46-kDa substrate in the same membrane preparations. The present findings indicate that the IL-1R is linked to a PT-sensitive G protein that stimulates the activity of adenylate cyclase.  相似文献   

2.
Interleukin 3 (IL-3) is an important regulator of haemopoietic stem cell proliferation both in vivo and in vitro. Little is known about the possible mechanisms whereby this growth factor acts on stem cells to stimulate cell survival and proliferation. Here we have investigated the role of intracellular pH and the Na+/H+ antiport in stem cell proliferation using the multipotential IL-3-dependent stem cell line, FDCP-Mix 1. Evidence is presented that IL-3 can stimulate the activation of an amiloride-sensitive Na+/H+ exchange via protein kinase C activation. IL-3-mediated activation of the Na+/H+ exchange is not observed in FDCP-Mix 1 cells where protein kinase C levels have been down-modulated by treatment with phorbol esters. Also the protein kinase C inhibitor H7 can inhibit IL-3-mediated increases in intracellular pH. This activation of Na+/H+ exchange via protein kinase C has been shown to occur with no measurable effects of IL-3 on inositol lipid hydrolysis or on cytosolic Ca2+ levels. Evidence is also presented that this IL-3-stimulated alkalinization acts as a signal for cellular proliferation in stem cells.  相似文献   

3.
Transforming growth factor-beta1 (TGF-beta1) can inhibit cell proliferation or induce apoptosis in multipotent hematopoietic cells. To study the mechanisms of TGF-beta1 action on primitive hematopoietic cells, we used the interleukin-3 (IL-3)-dependent, multipotent FDCP-Mix cell line. TGF-beta1-mediated growth inhibition was observed in high concentrations of IL-3, while at lower IL-3 concentrations TGF-beta1 induced apoptosis. The proapoptotic effects of TGF-beta1 occur via a p53-independent pathway, since p53(null) FDCP-Mix demonstrated the same responses to TGF-beta1. IL-3 has been suggested to enhance survival via an increase in (antiapoptotic) Bcl-x(L) expression. In FDCP-Mix cells, neither IL-3 nor TGF-beta1 induced any change in Bcl-x(L) protein levels or the proapoptotic proteins Bad or Bax. However, TGF-beta1 had a major effect on Bcl-2 levels, reducing them in the presence of high and low concentrations of IL-3. Overexpression of Bcl-2 in FDCP-Mix cells rescued them from TGF-beta1-induced apoptosis but was incapable of inhibiting TGF-beta1-mediated growth arrest. We conclude that TGF-beta1-induced cell death is independent of p53 and inhibited by Bcl-2, with no effect on Bcl-x(L). The significance of these results for stem cell survival in bone marrow are discussed.  相似文献   

4.
Bcr-Abl protein tyrosine kinase (PTK) activity is a feature of chronic myeloid leukaemia and confers a survival advantage on haemopoietic progenitor cells. We have expressed conditional mutant of the Bcr-Abl PTK in the FDCP-Mix A4 multipotent haematopoietic cell line in order to examine the molecular mechanisms whereby Bcr-Abl PTK leads to enhanced cell survival under conditions in which normal cells die. Activation of Bcr-Abl PTK does not phosphorylate or activate either ERK-1/2 or JAK-2/STAT-5b, suggesting that these signal transduction pathways are not involved in Abl PTK-mediated suppression of apoptosis in FDCP-Mix cells. However, protein kinase C (PKC) does have a role to play. Inhibition of PKC results in a reversal of Bcr-Abl PTK-mediated survival in the absence of growth factor and Bcr-Abl stimulates translocation of the PKCbetaII isoform to the nucleus. Furthermore, expression of a constitutively activated PKCbetaII in haemopoietic progenitor FDCP-Mix cells stimulates enhanced cell survival when IL-3 is withdrawn. However, expression of this constitutively activated PKC isoform does not suppress cytotoxic drug-induced apoptosis. Thus Bcr-Abl PTK has pleiotropic effects which can suppress cell death induced by a number of stimuli.  相似文献   

5.
6.
Interleukin 3 (IL-3) stimulates several biochemical and biological responses in IL-3-dependent tissue culture cells. We examined the possibility that guanyl nucleotide regulatory (G) proteins may transduce signals from IL-3 receptors. We report here that pertussis toxin (PT), which can covalently modify a subclass of G proteins, is capable of inhibiting IL-3-stimulated proliferation in a dose-dependent fashion. PT inhibition of IL-3-stimulated proliferation could be overcome by using the Ca++ ionophore A23187 in conjunction with TPA. PT could also inhibit IL-3-stimulated hexose transport. In the absence of IL-3, hexose transport could be stimulated by introducing GTP-gamma S into intact cells. From these data we propose that IL-3 receptors transduce signals via a PT-sensitive G protein(s).  相似文献   

7.
Previously we described a cell line OCI-LY3 derived from a patient with non-Hodgkin's lymphoma. The cell line produced interleukin-6 (IL-6) mRNA and protein and demonstrated an autocrine pattern of growth for IL-6. Southern blot analysis of the IL-6 gene did not reveal any rearrangement. To determine whether the production of IL-6 by OCI-LY3 was due to subtle changes in the promoter of IL-6 or due to the expression of trans-acting factors chloramphenicol acetyltransferase (CAT) reporter constructs containing from -1,180 to +13 to -112 to +13 of a normal IL-6 gene were electroporated into the cell line. When these constructs are transferred into unstimulated fibroblasts, no CAT activity is seen; however, CAT activity is induced when the cells are stimulated with either IL-1 alpha, lipopolysaccharide (LPS), or cyclic adenosine monophosphate (cAMP) analogues. When the cell line OCI-LY3 was transfected with these constructs, CAT activity was observed; it was not necessary to stimulate the cells with exogenous factors to observe this activity. No CAT activity was observed in a second lymphoma cell line, OCI-LY13.1, that does not produce IL-6. These results suggest that the constitutive production of IL-6 by the cell line OCI-LY3 is due to the presence of trans-acting factors that stimulate the expression of IL-6 and not due to a cis-acting mutation of the IL-6 promoter.  相似文献   

8.
Differentiation of hematopoietic cells from multipotential progenitors is regulated by multiple growth factors and cytokines. A prominent feature of these soluble factors is promotion of cell survival, in part mediated by expression of either of the anti-apoptotic proteins, BCL-2 and BCL-XL. The complex expression pattern of these frequently redundant survival factors during hematopoiesis may indicate a role in lineage determination. To investigate the latter possibility, we analyzed factor-dependent cell-Patersen (FDCP)-Mix multipotent progenitor cells in which we stably expressed BCL-2 or BCL-XL. Each factor maintained complete survival of interleukin-3 (IL-3)-deprived FDCP-Mix cells but, unexpectedly, directed FDCP-Mix cells along restricted and divergent differentiation pathways. Thus, IL-3-deprived FDCP-Mix BCL-2 cells differentiated exclusively to granulocytes and monocytes/macrophages, whereas FDCP-Mix BCL-XL cells became erythroid. FDCP-Mix BCL-2 cells grown in IL-3 were distinguished from FDCP-Mix and FDCP-Mix BCL-XL cells by a striking reduction in cellular levels of Raf-1 protein. Replacement of the BCL-2 BH4 domain with the related BCL-XL BH4 sequence resulted in a switch of FDCP-Mix BCL-2 cells to erythroid fate accompanied by persistence of Raf-1 protein expression. Moreover, enforced expression of Raf-1 redirected FDCP-Mix BCL-2 cells to an erythroid fate, and prohibited generation of myeloid cells. These results identify novel roles for BCL-2 and BCL-XL in cell fate decisions beyond cell survival. These effects are associated with differential regulation of Raf-1 expression, perhaps involving the previously identified interaction between BCL-2-BH4 and the catalytic domain of Raf-1.  相似文献   

9.
In the preceding report (Kelvin, D.J., G. Simard, H.H. Tai, T.P. Yamaguchi, and J.A. Connolly. 1989. J. Cell Biol. 108:159-167) we demonstrated that pertussis toxin (PT) blocked proliferation and induced differentiation in BC3H1 muscle cells. In the present study, we have used PT to examine specific growth factor signaling pathways that may regulate these processes. Inhibition of [3H]thymidine by PT in 20% FBS was reversed in a dose-dependent fashion by purified fibroblast growth factor (FGF). In 0.5% FBS, the normally induced increase in creatine kinase (CK) activity was blocked by FGF in both the presence and absence of PT. Similar results were obtained with purified epidermal growth factor (EGF). We subsequently examined the effect of a family of growth factors linked to inositol lipid hydrolysis and found that thrombin, like FGF, would increase [3H]thymidine incorporation and block CK synthesis. However, PT blocked thymidine incorporation induced by thrombin, and blocked the inhibition of CK turn-on in 0.5% FBS by thrombin. The ras oncogene, a G protein homologue, has previously been shown to block muscle cell differentiation in C2 muscle cells (Olson, E.N., G. Spizz, and M.A. Tainsky. 1987. Mol. Cell. Biol. 7:2104-2111); we have characterized a BC3H1 cell line, BCT31, which we transfected with the val12 oncogenic Harvey ras gene. This cell line did not express CK in response to serum deprivation. Whereas [3H]thymidine incorporation was inhibited by 70-80% by increasing doses of PT in control cells, BCT31 cells were only inhibited by 15-20%. ADP ribosylation studies indicate this PT-insensitivity is not because of the lack of a PT substrate in this cell line. Furthermore, PT could not induce CK expression in BCT31 cells as it did in parental cells. We conclude that there are at least two distinct growth factor pathways that play a key role in regulating proliferation and differentiation in BC3H1 muscle cells, one of which is PT sensitive, and postulate that a G protein is involved in transducing signals from the thrombin receptor. We believe that ras functions in the transduction of growth factor signals in the nonPT-sensitive pathway or downstream from the PT substrate in the second pathway.  相似文献   

10.
Pertussis toxin (PT) has been shown to have a variety of effects on T lymphocyte function, and its activity has been used to suggest the involvement of a G protein in the early events of T lymphocyte activation. In this report, the effects of PT on T lymphocytes have been investigated in detail. PT at a concentration of 10 micrograms/ml rapidly stimulated early events that are normally induced by occupancy of the TCR complex in Jurkat cells and cloned, murine CTL including increased intracellular Ca2+ concentration, serine esterase release, and induction of Ag non-specific target cell lysis. However, 1-h treatment with this concentration of PT induced a state that was refractory to further receptor stimulation in Jurkat cells but not cloned CTL although substrate membrane proteins were modified to a similar extent in both cell lines. The functional effects of PT were mimicked by the B oligomer of PT which did not, however, catalyze ADP-ribosylation of membrane proteins. In addition, overnight exposure of Jurkat cells to a lower concentration of PT also modified substrate membrane proteins but did not inhibit receptor stimulation. These findings indicate that PT catalyzed ADP-ribosylation of a G protein does not account for the actions of the toxin on T lymphocytes. Finally, direct stimulation of increased intracellular Ca2+ concentration by PT and the B oligomer only occurred in T lymphocytes expressing CD3. This suggests that the mitogenic effect of PT holotoxin is mediated by the interaction of the B oligomer with CD3 and that this may account for many of the effects of PT holotoxin both in vivo and in vitro.  相似文献   

11.
Interleukin 3 (IL-3) and granulocyte-macrophage colony-stimulating factor (GM-CSF) stimulate the proliferation of several kinds of cultured hematopoietic cell lines. Growth signals from IL-3 and GM-CSF cause accumulation of active Ras.GTP complexes in PT18 mouse mast cell line (Satoh, T., Nakafuku, M., Miyajima, A., and Kaziro, Y. (1991) Proc. Natl. Acad. Sci. U. S. A. 88, 3314-3318). In this paper we describe the effect of herbimycin A, a tyrosine kinase-specific inhibitor, on the activation of Ras. The increase of Ras.GTP induced by IL-3 and GM-CSF diminished in cells treated with 0.5 approximately 1 micrograms/ml of herbimycin A for 24 h prior to the addition of the growth factors. Under this condition, the extent of phosphorylation on tyrosine residues of proteins decreased. However, the activity of cAMP-dependent protein kinase and protein kinase C did not change. Growth of cells in the presence of IL-3 or GM-CSF was also completely inhibited. These observations suggest that tyrosine kinases are involved in the pathways between IL-3 and GM-CSF receptors and Ras and that they are essential for the growth stimulated by these growth factors.  相似文献   

12.
Murine IL-10 (cytokine synthesis inhibitory factor) inhibits cytokine production by Th1 cell clones when they are activated under conditions requiring the presence of APC. By preincubating APC with IL-10, we demonstrate that IL-10 acts principally on APC to inhibit IFN-gamma production by Th1 clones. Moreover, IL-10 is not active when Th1 cells are stimulated with glutaraldehyde-fixed APC, which also indicates that its action involves regulation of APC function. Furthermore, IL-10 inhibits cytokine synthesis by Th1 cells stimulated with the super-antigen Staphylococcus enterotoxin B, which does not appear to require processing. Flow microfluorimetry purified splenic or peritoneal B cells and macrophages, and B cell and macrophage cell lines can present Ag to Th1 clones. However, IL-10 acts only on sorted macrophages and the macrophage cell line to suppress IFN-gamma production by Th1 clones. IL-10 does not show this effect when B cells are used as APC. In contrast, IL-10 does not impair the ability of APC to stimulate cytokine production by Th2 cells. IL-10 does not decrease IFN-gamma-induced I-Ad levels on a macrophage cell line. Inasmuch as IL-10 also inhibits IL-2-induced IFN-gamma production by Th1 cells in an Ag-free system requiring only the presence of accessory cells, these data suggest that IL-10 may inhibit macrophage accessory cell function which is independent of TCR-class II MHC interactions.  相似文献   

13.
Although many functions of phagocytes are known to be regulated by guanosine triphosphate (GTP)-binding proteins, phagocytosis itself has not been considered one of these. However, previous studies have examined only unstimulated neutrophil phagocytosis. Motivated by our previous work, which showed that stimulated neutrophil phagocytosis is regulated by GTP-binding proteins (H. D. Gresham, M. G. Peters, and E. J. Brown. 1986. J. Cell Biol. 103:215a), we have examined the effect of pertussis toxin (PT) on monocyte receptor-mediated phagocytosis. PT inhibited unstimulated and fibronectin-stimulated IgG-mediated phagocytosis and also inhibited C3b-mediated phagocytosis stimulated by fibronectin or phorbol dibutyrate. Cholera toxin (CT) had no effect on unstimulated or stimulated phagocytosis mediated by IgG or C3b. PT inhibition of phagocytosis was not mediated via increases in cellular cAMP levels or by inhibition of the respiratory burst. Inhibition of phagocytosis did not result from decreased numbers of plasma membrane opsonin receptors nor decreased ability to bind opsonized targets. Although phorbol ester-stimulated phagocytosis was inhibited by PT, ligand-independent internalization of CR1 stimulated by phorbol dibutyrate proceeded normally in PT-intoxicated cells. We conclude that a PT-sensitive GTP-binding protein does regulate phagocytic function in monocytes. This protein operates on a molecular mechanism specific to the process of ingestion in both unstimulated monocytes and in cells stimulated to increase phagocytosis. Because unstimulated neutrophil phagocytosis is unaffected by PT or CT, and stimulated neutrophil phagocytosis is inhibited by both PT and CT, our data also demonstrate that monocytes and neutrophils have distinct mechanisms for regulation of phagocytic function.  相似文献   

14.
When highly enriched multipotential spleen colony forming cells (CFU-S) obtained following fluorescence activated cell sorting (FACS-CFU-S) are cultured on marrow stromal cells, they undergo proliferation and development to produce mature haemopoietic cells (Spooncer et al., Nature, 316:62-64, 1985). We now show that FACS-CFU-S behave in a similar way when cultured on monolayers of 3T3 cells, indicating that the 3T3 cells can supply at least part of the environment which is representative of marrow stromal cells and provide, therefore, a system for studying stromal cell: haemopoietic cell interactions. We also demonstrate that IL-3-dependent multipotential stem cell lines (FDCP-Mix), but not a variety of other "committed" IL-3-dependent cell lines, resemble FACS-CFU-S in terms of their ability to proliferate and differentiate when cultured on 3T3 cells in the absence of IL-3. In this system, attachment of the FDCP-Mix to the 3T3 cells is critical for the subsequent maintenance of viability and stimulation of development of the cells. When the FDCP-Mix cells are physically separated from the 3T3 cells, they die and their death cannot be prevented by using 3T3-cell-conditioned medium. The extracellular matrix generated by 3T3 cells is not sufficient for promoting attachment or viability of the FDCP-Mix cells, indicating the importance of integral membrane components. However, attachment and development of FDCP-Mix cells occurs on 3T3 cells that have been lightly fixed with glutaraldehyde indicating that active metabolism is not essential for the effects promoted by the 3T3 cells. We suggest that the ability of FACS-CFU-S and FDCP-Mix cells to respond to 3T3 cells involves specific ligand/receptor interactions.  相似文献   

15.
Lymphokines including IL-2, IL-4, and IL-6 are involved in the induction of Ig production by activated B cells. We have investigated the role of protein kinases in IL-6-induced IgM secretion by SKW6.4 cells, an IL-6 responsive B cell line. IL-6-stimulated IgM production was inhibited by elevated intracellular cAMP induced either by the addition of dibutyryl cAMP or cholera toxin. The inhibitory effect of elevated intracellular cAMP was blocked by n-(2-(Methylamino)ethyl)-5-isoquinolinesulfonic dihydrochloride (H8), an inhibitor of protein kinase A. H8 did not affect IgM secretion induced by IL-6. In contrast, the addition of 1-(5-isoquinolinesulfonyl)-2-methylpiperizine dihydrochloride (H7), an inhibitor of protein kinase C activity, markedly inhibited IL-6-stimulated IgM production by SKW6.4 cells. H7 and elevated intracellular cAMP inhibited IgM mRNA expression and subsequent IgM synthesis by SKW6.4 cells. SKW6.4 proliferation, as determined by [3H]thymidine incorporation, was not markedly affected by IL-6, dibutyryl cAMP, cholera toxin, H7 or H8. PMA, an activator of protein kinase C, directly stimulated significant IgM secretion by SKW6.4 cells. When added to PMA-stimulated SKW6.4 cells, IL-6 stimulated additional IgM production. This observation suggested that IL-6 could stimulate differentiation without activating protein kinase C. This was confirmed by demonstrating that IL-6 did not stimulate production of diacylglycerol, did not induce the translocation of protein kinase C from the cytosolic compartment to the plasma membrane and could induce SKW6.4 cells to produce IgM after depletion of their cellular protein kinase C by PMA. Taken together these results suggests that IL-6-stimulated IgM production requires utilization of an H7-inhibitable protein kinase that can be inhibited by a protein kinase A-dependent pathway. Despite the fact that PMA can stimulate IgM production in SKW6.4 cells, IL-6 appears to use a protein kinase pathway other than protein kinase C to induce IgM production.  相似文献   

16.
Data presented in this paper indicate that polymorphonuclear leukocyte (PMN) Fc receptor-mediated phagocytosis can be markedly augmented and that this augmentation is under regulatory control. Stimulation of PMN with either a low m.w., heat-labile cytokine(s) (the culture supernatant effluent from a YM-10 Centricon unit, YM-10E), phorbol esters (phorbol dibutyrate), or the polyene antibiotic, amphotericin B, enhances Fc-mediated ingestion in a dose-dependent manner. YM-10 effluent- and amphotericin B-stimulated ingestion is completely abrogated by treating the PMN with either pertussis toxin (PT), cholera toxin (CT), or a monoclonal antibody (mAb), 1C2. However, neither toxin nor mAb 1C2 affects nonstimulated ingestion or phagocytosis stimulated by phorbol esters or synthetic diacylglycerol. Increasing intracellular cyclic adenosine monophosphate levels by stimulation with prostaglandin E1 and the phosphodiesterase inhibitor, isobutylmethylxanthine, does not mimic the effect of either toxin or mAb 1C2. In addition, toxin-mediated inhibition is not due to loss of either the Fc receptor recognized by mAb 3G8 or the antigen recognized by mAb 1C2. These data indicate that both CT and PT regulate the phagocytic response of PMN, in a manner like mAb 1C2, probably by affecting a guanosine 5'-triphosphate-binding protein distinct from those that regulate adenylate cyclase. Since phorbol ester-stimulated ingestion is not inhibited by either PT, CT, or mAb 1C2 and phorbol esters activate protein kinase C directly, phagocytosis amplification regulated by PT, CT, and mAb 1C2 may involve protein kinase C activation.  相似文献   

17.
Polymorphonuclear leukocytes (PMNs) activate phospholipase C via a guanine nucleotide regulatory (G) protein. Pretreatment of the PMNs with pertussis toxin (PT) or 4-beta-phorbol 12-myristate 13-acetate (PMA) inhibited chemoattractant-induced inositol trisphosphate generation. To determine the loci of inhibition by PT and PMA, G protein-mediated reactions in PMN plasma membranes were examined. Plasma membranes prepared from untreated and PMA-treated PMNs demonstrated equivalent ability of a GTP analogue to suppress high affinity binding of the chemoattractant-N-formyl-methionyl-leucyl-phenylalanine (fMet-Leu-Phe) to its receptor. The rate, but not the extent, of high affinity binding of GTP gamma[35S] to untreated PMN membranes was stimulated up to 2-fold by preincubation with 1 microM fMet-Leu-Phe. The ability of fMet-Leu-Phe to stimulate the rate of GTP gamma S binding was absent in membranes prepared from PT-treated PMNs, but remained intact in membranes from PMA-treated cells. Hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) via phospholipase C could be activated in untreated PMN membranes by either fMet-Leu-Phe plus GTP or GTP gamma S alone at low concentrations of Ca2+ (0.1-1 microM). Membranes prepared from PT-treated PMNs degraded PIP2 upon exposure to GTP gamma S, but not fMet-Leu-Phe plus GTP. In contrast, membranes prepared from phorbol ester-treated PMNs did not hydrolyze PIP2 when incubated with GTP gamma S. Treatment with PT or PMA did not affect the ability of 1 mM Ca2+ to activate PIP2 hydrolysis in PMN membranes, indicating that neither treatment directly inactivated phospholipase C. Therefore, PT appears to block coupling of the chemoattractant receptors to G protein activation, while phorbol esters disrupt coupling of the activated G protein to phospholipase C. The phorbol ester-mediated effect may mimic a negative feedback signal induced by protein kinase C activation by diacylglycerol generated upon activation of phospholipase C.  相似文献   

18.
A combination of the pro-inflammatory cytokines interleukin (IL)-1alpha, interferon (IFN)-gamma, and tumor necrosis factor (TNF)-alpha induces nitric oxide synthase mRNA expression and nitric oxide (NO) generation in the human colon carcinoma cell line HT-29. This can be inhibited by pretreatment with IL-13 via a phosphatidylinositol (PI) 3-kinase-dependent mechanism (Wright, K., Ward, S. G., Kolios, G., and Westwick, J. (1997) J. Biol. Chem. 272, 12626-12633). Since NO has been implicated in regulating mechanisms leading to cell death, while activation of PI 3-kinase-dependent signaling cascades are thought to be involved with promoting cell survival events, we have investigated the outcome of these cytokine treatments on apoptosis and cell survival of HT-29 cells. Initiation of apoptosis can be achieved by the combinations of IFN-gamma/TNF-alpha, IFN-gamma/CD95, IL-1alpha/IFN-gamma, and IL-1alpha/IFN-gamma/TNF-alpha to varying extents. Induction of apoptotic markers by HT-29 cells in response to cytokine treatment is not dependent on NO production. Pretreatment with IL-13 protects against IL-1alpha/IFN-gamma/TNF-alpha- and IFN-gamma/TNF-alpha- as well as IFN-gamma/CD95-induced (but not IL-1alpha/IFN-gamma-induced) cell death. In addition, IFN-gamma/TNF-alpha and IL-1alpha/IFN-gamma/TNF-alpha stimulate activation of caspase-8 and caspase-3, which IL-13 pretreatment was able to partially inhibit and delay. IL-13 also stimulates activation of the major PI 3-kinase effector, protein kinase B. The PI 3-kinase inhibitors wortmannin and LY294002 inhibit IL-13 stimulation of protein kinase B as well as the cell survival effects of IL-13. These data demonstrate that cytokine-induced apoptosis of HT-29 cells is NO-independent and that the activation of a PI 3-kinase-dependent signaling cascade by IL-13 is a key signal responsible for the inhibition of apoptosis.  相似文献   

19.
Our previous studies showed that platelet-derived growth factor (PDGF) modulated interleukin-1 (IL-1) activity and IL-1 binding to Balb/c3T3 fibroblasts (Bonin, P. D., and Singh, J. P. (1988) J. Biol. Chem. 263, 11052-11055). Subsequent studies have demonstrated an action of PDGF at the level of IL-1 receptor (IL-1R) gene expression. PDGF treatment of Balb/c3T3 cells produces a 10-20-fold stimulation of mRNA for IL-1 receptor. Investigation of the signal transduction pathways shows that activation of either the protein kinase C pathway or the cAMP-mediated pathway leads to the stimulation of IL-1 receptor expression in Balb/c3T3 cells. Treatment of Balb/c3T3 cells with phorbol 12-myristate 13-acetate (PMA), a known activator of protein kinase C, produced an increased 125I-IL-1 binding to cells and stimulation of IL-1R mRNA. Staurosporine, an inhibitor of protein kinase C, blocked the induction of IL-1 binding by PDGF or PMA. Down-regulation of protein kinase C by pretreatment with PMA reduced the subsequent stimulation by PDGF. Chronic treatment with PMA, however, did not produce a complete inhibition of PDGF effect on IL-1R. Further studies showed that the agents that stimulate cAMP accumulation (isobutyl methylxanthine, dibutyryl), directly stimulate adenylate cyclase (forskolin), or activate G protein (choleragen) stimulated 125I-IL-1 binding and IL-1R mRNA accumulation in Balb/c3T3 cells. These studies suggest that potentially two signal transduction pathways mediate IL-1 receptor expression in Balb/c3T3 fibroblasts. Evidence is presented that suggests that stimulation of IL-1R through these two pathways (PMA/PDGF-stimulated and cAMP-stimulated) occurs independent of each other.  相似文献   

20.
The biochemical pathways through which tumor cell locomotion is mediated are poorly understood. Autocrine motility factor (AMF), which is produced by and stimulates motility in A2058 human melanoma cells, was used to characterize phosphoinositide (PtdIns) metabolism activated in association with tumor cell motility. AMF stimulated up to a 400% increase in de novo incorporation of 3H-myo-inositol into cellular lipids beginning 40 minutes after exposure. In cells prelabeled with 3H-myo-inositol, AMF stimulated a 200% increase in total inositol phosphates (inositol monophosphate, InsP1; inositol bisphosphate, InsP2; inositol trisphosphate, InsP3) after 90 minutes of exposure, with a 300% maximal increase in InsP3 at 120 minutes. InsP1 and InsP2 were maximally increased 130% of control values. Treatment with AMF stimulated a parallel dose-dependent increase in both motility and PtdIns levels. We have shown previously that the A2058 motile response to AMF is inhibited markedly by cell pretreatment with pertussis toxin (PT). Inositol phosphate production was inhibited by a 2-hour pretreatment of cells with PT (0.5 microgram/ml). PT treatment of A2058 membranes was associated with ADP-ribosylation of a 40-kDa protein consistent with the presence of an alpha subunit of a guanine nucleotide-binding protein (G protein). These data indicate that AMF elicits increases in cell motility and phosphoinositide metabolism via a PT-sensitive G protein signal transduction pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号