首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thiamine pyrophosphate is an essential cofactor that is synthesized de novo in Salmonella enterica serovar Typhimurium and other bacteria. In addition to genes encoding enzymes in the biosynthetic pathway, mutations in other metabolic loci have been shown to prevent thiamine synthesis. The latter loci identify the integration of the thiamine biosynthetic pathway with other metabolic processes and can be uncovered when thiamine biosynthesis is challenged. Mutations in gshA, encoding gamma-L-glutamyl-L-cysteine synthetase, prevent the synthesis of glutathione, the major free thiol in the cell, and are shown here to result in a thiamine auxotrophy in some of the strains tested, including S. enterica LT2. Phenotypic characterization of the gshA mutants indicated they were similar enough to apbC and apbE mutants to warrant the definition of a class of mutants unified by (i) a requirement for both the hydroxymethyl pyrimidine (HMP) and thiazole (THZ) moiety of thiamine, (ii) the ability of L-tryosine to satisfy the THZ requirement, (iii) suppression of the thiamine requirement by anaerobic growth, and (iv) suppression by a second-site mutation at a single locus. Genetic data indicated that a defective ThiH generates the THZ requirement in these strains, and we suggest this defect is due to a reduced ability to repair a critical [Fe-S] cluster.  相似文献   

2.
Phosphoribosyl amine (PRA) is an intermediate in purine biosynthesis and also required for thiamine biosynthesis in Salmonella enterica. PRA is normally synthesized by phosphoribosyl pyrophosphate amidotransferase, a high-turnover enzyme of the purine biosynthetic pathway encoded by purF. However, PurF-independent PRA synthesis has been observed in strains having different genetic backgrounds and growing under diverse conditions. Genetic analysis has shown that the anthranilate synthase-phosphoribosyltransferase (AS-PRT) enzyme complex, involved in the synthesis of tryptophan, can play a role in the synthesis of PRA. This work describes the in vitro synthesis of PRA in the presence of the purified components of the AS-PRT complex. Results from in vitro assays and in vivo studies indicate that the cellular accumulation of phosphoribosyl anthranilate can result in nonenzymatic PRA formation sufficient for thiamine synthesis. These studies have uncovered a mechanism used by cells to redistribute metabolites to ensure thiamine synthesis and may define a general paradigm of metabolic robustness.  相似文献   

3.
In bacteria, the biosynthetic pathway for the hydroxymethyl pyrimidine moiety of thiamine shares metabolic intermediates with purine biosynthesis. The two pathways branch after the compound aminoimidazole ribotide. Past work has shown that the first common metabolite, phosphoribosyl amine (PRA), can be generated in the absence of the first enzyme in purine biosynthesis, PurF. PurF-independent PRA synthesis is dependent on both strain background and growth conditions. Standard genetic approaches have not identified a gene product singly responsible for PurF-independent PRA formation. This result has led to the hypothesis that multiple enzymes contribute to PRA synthesis, possibly as the result of side products from their dedicated reaction. A mutation that was able to restore PRA synthesis in a purF gnd mutant strain was identified and found to map in the gene coding for the TrpD subunit of the anthranilate synthase (AS)-phosphoribosyl transferase (PRT) complex. Genetic analyses indicated that wild-type AS-PRT was able to generate PRA in vivo and that the P362L mutant of TrpD facilitated this synthesis. In vitro activity assays showed that the mutant AS was able to generate PRA from ammonia and phosphoribosyl pyrophosphate. This work identifies a new reaction catalyzed by AS-PRT and considers it in the context of cellular thiamine synthesis and metabolic flexibility.  相似文献   

4.
In Salmonella typhimurium, the first five steps in purine biosynthesis also serve as the first steps in the biosynthesis of the pyrimidine moiety of thiamine (vitamin B1). Strains with null mutations of the first gene of purine-thiamine synthesis (purF) can, under some circumstances, grow without thiamine. This suggests the existence of an alternative pathway to thiamine that can function without the purF protein. To demonstrate the nature and map position of the purF mutations corrected, a fine-structure genetic map of the purF gene was made. The map allows identification of deletion mutations that remove virtually all of the purF gene, as defined by mutations. We describe conditions and mutations (panR) which allow B1 synthesis appears to require enzymes which act mutants lacking purF function. The alternative route of B1 synthesis appears to require enzymes which act subsequent to the purF enzyme in the purine pathway.  相似文献   

5.
Aymeric Goyer 《Phytochemistry》2010,71(14-15):1615-1624
Thiamine diphosphate (vitamin B1) plays a fundamental role as an enzymatic cofactor in universal metabolic pathways including glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle. In addition, thiamine diphosphate has recently been shown to have functions other than as a cofactor in response to abiotic and biotic stress in plants. Recently, several steps of the plant thiamine biosynthetic pathway have been characterized, and a mechanism of feedback regulation of thiamine biosynthesis via riboswitch has been unraveled. This review focuses on these most recent advances made in our understanding of thiamine metabolism and functions in plants. Phenotypes of plant mutants affected in thiamine biosynthesis are described, and genomics, proteomics, and metabolomics data that have increased further our knowledge of plant thiamine metabolic pathways and functions are summarized. Aspects of thiamine metabolism such as catabolism, salvage, and transport in plants are discussed.  相似文献   

6.
In Salmonella enterica serovar Typhimurium, PurF-independent thiamine synthesis (or alternative pyrimidine biosynthesis) allows strains, under some growth conditions, to synthesize thiamine in the absence of the first step in the purine biosynthetic pathway. Mutations have been isolated in a number of loci that prevent this synthesis and thus result in an Apb(-) phenotype. Here we identify a new class of mutations that prevent PurF-independent thiamine synthesis and show that they are defective in the nuo genes, which encode the major, energy-generating NADH dehydrogenase of the cell. Data presented here indicated that a nuo mutant has reduced flux through the oxidative pentose phosphate pathway that may contribute to, but is not sufficient to cause, the observed thiamine requirement. We suggest that reduction of the oxidative pentose phosphate pathway capacity in a nuo mutant is an attempt to restore the ratio between reduced and oxidized pyridine nucleotide pools.  相似文献   

7.
A method is described to rapidly select and classify many independent near-UV irradiation-resistant Escherichia coli mutants, which include tRNA modification and RNA synthesis control mutants. One class of these mutants was found to be simultaneously deficient in thiamine biosynthesis and in the ability to modify uridine in tRNA to 4-thiouridine, known to be the target for near-UV irradiation. These mutants were found to be unable to make thiazole, a thiamine precursor. The addition of thiazole restores the thiamine deficiency but does not render the cells near-UV irradiation sensitive. In vitro studies on one of these mutants indicated a deficiency in protein factor C (nuvC), required for the 4-thiouridine modification of tRNA. In P1 transduction, the thiazole marker cotransduced with the histidine marker, which places the thiazole marker between 42 and 46 min on the E. coli chromosome map. Both thiamine production and 4-thiouridine production were resumed by 87% of the spontaneous reversions, suggesting a single-point mutation. Our results indicate that we have isolated nuvC mutants and that the nuvC polypeptide is involved in two functions, tRNA modification and thiazole biosynthesis.  相似文献   

8.
Recently, we identified CyPBP37 of Neurospora crassa as a binding partner of cyclophilin41. CyPBP37 function had not yet been described, although orthologs in other organisms have been implicated in the biosynthesis of the thiazole moiety of thiamine (vitamin B1) and/or stress-related pathways. Here, CyPBP37 is characterized as an abundant cytosolic protein with a functional NAD-binding site. Saccharomyces cerevisiae mutants lacking Thi4p (the CyPBP37 ortholog) are auxotrophic for vitamin B1 (thiamine) but can grow in the presence of the thiazole moiety of thiamine, suggesting a role for Thi4p in the biosynthesis of thiazole. N.crassa CyPBP37 is able to functionally replace Thi4p in yeast thiazole synthesis. Cellular fractionation studies revealed that Thi4p is a cytosolic protein in S.cerevisiae, like its ortholog CyPBP37 in N.crassa. This implies that thiamine synthesis takes place in the cytosol of both organisms and not in the mitochondria, as suggested. The expression of CyPBP37 and Thi4p is repressed by thiamine but not by thiazole in the growth medium. In addition to its function in thiazole synthesis, CyPBP37 is a stress-inducible protein. N.crassa cyclophilin41 can chaperone the folding of CyPBP37, its own binding partner.  相似文献   

9.
In Salmonella typhimurium, the synthesis of the pyrimidine moiety of thiamine can occur by utilization of the first five steps in de novo purine biosynthesis or independently of the pur genes through the alternative pyrimidine biosynthetic, or APB, pathway (D. M. Downs, J. Bacteriol. 174:1515-1521, 1992). We have isolated the first mutations defective in the APB pathway. These mutations define the apbA locus and map at 10.5 min on the S. typhimurium chromosome. We have cloned and sequenced the apbA gene and found it to encode a 32-kDa polypeptide whose sequence predicts an NAD/flavin adenine dinucleotide-binding pocket in the protein. The phenotypes of apbA mutants suggest that, under some conditions, the APB pathway is the sole source of the pyrimidine moiety of thiamine in wild-type S. typhimurium, and furthermore, the pur genetic background of the strain influences whether this pathway can function under aerobic and/or anaerobic growth conditions.  相似文献   

10.
The first five steps in de novo purine biosynthesis are involved in the formation of the 4-amino-5-hydroxymethyl-2-methyl pyrimidine (HMP) moiety of thiamine. We show here that the first enzyme in de novo purine biosynthesis, PurF, is required for thiamine synthesis during aerobic growth on some but not other carbon sources. We show that PurF-independent thiamine synthesis depends on the recently described alternative pyrimidine biosynthetic (APB) pathway. Null mutations in zwf (encoding glucose-6-P dehydogenase), gnd (encoding gluconate-6-P dehydrogenase), purE (encoding aminoimidazole ribo-nucleotide carboxylase), and purR (encoding a regulator of gene expression) were found to affect the function of the APB pathway. A model is presented to account for the involvement of these gene products in thiamine biosynthesis via the APB pathway. Results presented herein demonstrate that function of the APB pathway can be prevented either by blocking intermediate formation or by diverting intermediate(s) from the pathway. Strong genetic evidence supports the conclusion that aminoimidazole ribotide (AIR) is an intermediate in the APB pathway.  相似文献   

11.
Vitamin B1 (thiamine) is an essential cofactor for several key enzymes of carbohydrate metabolism. Mammals have to salvage this crucial nutrient from their diet to complement their deficiency of de novo synthesis. In contrast, bacteria, fungi, plants and, as reported here, Plasmodium falciparum, possess a vitamin B1 biosynthesis pathway. The plasmodial pathway identified consists of the three vitamin B1 biosynthetic enzymes 5-(2-hydroxy-ethyl)-4-methylthiazole (THZ) kinase (ThiM), 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP)/HMP-P kinase (ThiD) and thiamine phosphate synthase (ThiE). Recombinant PfThiM and PfThiD proteins were biochemically characterised, revealing K(m)app values of 68 microM for THZ and 12 microM for HMP. Furthermore, the ability of PfThiE for generating vitamin B1 was analysed by a complementation assay with thiE-negative E. coli mutants. All three enzymes are expressed throughout the developmental blood stages, as shown by Northern blotting, which indicates the presence of the vitamin B1 biosynthesis enzymes. However, cultivation of the parasite in minimal medium showed a dependency on the provision of HMP or thiamine. These results demonstrate that the human malaria parasite P. falciparum possesses active vitamin B1 biosynthesis, which depends on external provision of thiamine precursors.  相似文献   

12.
Thiamine is an essential component of the human diet and thiamine diphosphate-dependent enzymes play an important role in carbohydrate metabolism in all living cells. Although the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe can derive thiamine from biosynthesis, both are also able to take up thiamine from external sources, leading to the down-regulation of the enzymes involved in its formation. We have isolated the S. pombe thiamine transporter Thi9 by genetic complementation of mutants defective in thiamine biosynthesis and transport. Thi9 localizes to the S. pombe cell surface and works as a high-affinity proton/thiamine symporter. The uptake of thiamine was reduced in the presence of pyrithiamine, oxythiamine, amprolium, and the thiazole part of thiamine, indicating that these compounds are substrates of Thi9. In pyrithiamine-resistant mutants, a conserved glutamate residue close to the first of the 12 transmembrane domains is exchanged by a lysine and this causes aberrant localization of the protein. Thiamine uptake is significantly increased in thiamine-deficient medium and this is associated with an increase in thi9(+) mRNA and protein levels. Upon addition of thiamine, the thi9(+) mRNA becomes undetectable within minutes, whereas the Thi9 protein appears to be stable. The protein is distantly related to transporters for amino acids, gamma-aminobutyric acid and polyamines, and not to any of the known thiamine transporters. We also found that the pyridoxine transporter Bsu1 has a marked contribution to the thiamine uptake activity of S. pombe cells.  相似文献   

13.
14.
Nutritional auxotrophs of Escherichia coli synthesize vitamin B(6) compounds at a rate of 1 x 10(-10) to 2 x 10(-10) moles per hr per mg (dry weight) of cells when they are suspended in minimal medium lacking their required nutrients. A few auxotrophs have been found to stop or reduce vitamin B(6) synthesis during such an experiment. These include thiamineless, citrate synthaseless, and pyridoxineless mutants as well as mutants which require four carbon compounds for growth. Glycolaldehyde was found to restore vitamin B(6) synthesis in the last named of these mutants without restoring normal growth. A class of pyridoxineless mutants which responded with normal growth to 0.4 mm glycolaldehyde or 0.15 x 10(-3) mm pyridoxol was also found. The results suggest that a thiamine pyrophosphate-requiring step as well as glycolaldehyde may be involved in pyridoxal phosphate biosynthesis.  相似文献   

15.
Thiamine diphosphate (TDP) serves as a cofactor for enzymes engaged in pivotal carbohydrate metabolic pathways, which are known to be modulated under stress conditions to ensure the cell survival. Recent reports have proven a protective role of thiamine (vitamin B(1)) in the response of plants to abiotic stress. This work aimed at verifying a hypothesis that also baker's yeast, which can synthesize thiamine de novo similarly to plants and bacteria, adjust thiamine metabolism to adverse environmental conditions. Our analyses on the gene expression and enzymatic activity levels generally showed an increased production of thiamine biosynthesis enzymes (THI4 and THI6/THI6), a TDP synthesizing enzyme (THI80/THI80) and a TDP-requiring enzyme, transketolase (TKL1/TKL) by yeast subjected to oxidative (1 mM hydrogen peroxide) and osmotic (1 M sorbitol) stress. However, these effects differed in magnitude, depending on yeast growth phase and presence of thiamine in growth medium. A mutant thi4Δ with increased sensitivity to oxidative stress exhibited enhanced TDP biosynthesis as compared with the wild-type strain. Similar tendencies were observed in mutants yap1Δ and hog1Δ defective in the signaling pathways of the defense against oxidative and osmotic stress, respectively, suggesting that thiamine metabolism can partly compensate damages of yeast general defense systems.  相似文献   

16.
Yeast glycan biosynthetic pathways are commonly studied through metabolic incorporation of an exogenous radiolabeled compound into a target glycan. In Saccharomyces cerevisiae glycosylphosphatidylinositol (GPI) biosynthesis, [(3) H]inositol has been widely used to identify intermediates that accumulate in conditional GPI synthesis mutants. However, this approach also labels non-GPI lipid species that overwhelm detection of early GPI intermediates during chromatography. In this study, we show that despite lacking the ability to metabolize N-acetylglucosamine (GlcNAc), S.?cerevisiae is capable of importing low levels of extracellular GlcNAc via almost all members of the hexose transporter family. Furthermore, expression of a heterologous GlcNAc kinase gene permits efficient incorporation of exogenous [(14) C]GlcNAc into nascent GPI structures in vivo, dramatically lowering the background signal from non-GPI lipids. Utilizing this new method with several conditional GPI biosynthesis mutants, we observed and characterized novel accumulating lipids that were not previously visible using [(3) H]inositol labeling. Chemical and enzymatic treatments of these lipids indicated that each is a GPI intermediate likely having one to three mannoses and lacking ethanolamine phosphate (Etn-P) side-branches. Our data support a model of yeast GPI synthesis that bifurcates after the addition of the first mannose and that includes a novel branch that produces GPI species lacking Etn-P side-branches.  相似文献   

17.
Work presented here establishes a connection between cellular coenzyme A (CoA) levels and thiamine biosynthesis in Salmonella enterica serovar Typhimurium. Prior work showed that panE mutants (panE encodes ketopantoate reductase) had a conditional requirement for thiamine or pantothenate. Data presented herein show that the nutritional requirement of panE mutants for either thiamine or pantothenate is manifest only when flux through the purine biosynthetic pathway is reduced. Further, the data show that under the above conditions it is the lack of thiamine pyrophosphate, and not decreased CoA levels, that directly prevents growth.  相似文献   

18.
Structure-function relationships of the flavoprotein glycine oxidase (GO), which was recently proposed as the first enzyme in the biosynthesis of thiamine in Bacillus subtilis, has been investigated by a combination of structural and functional studies. The structure of the GO-glycolate complex was determined at 1.8 A, a resolution at which a sketch of the residues involved in FAD binding and in substrate interaction can be depicted. GO can be considered a member of the "amine oxidase" class of flavoproteins, such as d-amino acid oxidase and monomeric sarcosine oxidase. With the obtained model of GO the monomer-monomer interactions can be analyzed in detail, thus explaining the structural basis of the stable tetrameric oligomerization state of GO, which is unique for the GR(2) subfamily of flavooxidases. On the other hand, the three-dimensional structure of GO and the functional experiments do not provide the functional significance of such an oligomerization state; GO does not show an allosteric behavior. The results do not clarify the metabolic role of this enzyme in B. subtilis; the broad substrate specificity of GO cannot be correlated with the inferred function in thiamine biosynthesis, and the structure does not show how GO could interact with ThiS, the following enzyme in thiamine biosynthesis. However, they do let a general catabolic role of this enzyme on primary or secondary amines to be excluded because the expression of GO is not inducible by glycine, sarcosine, or d-alanine as carbon or nitrogen sources.  相似文献   

19.
Thiamine pyrophosphate (TPP) is an essential cofactor for all forms of life. In Salmonella enterica, the thiH gene product is required for the synthesis of the 4-methyl-5-beta hydroxyethyl-thiazole monophosphate moiety of TPP. ThiH is a member of the radical S-adenosylmethionine (AdoMet) superfamily of proteins that is characterized by the presence of oxygen labile [Fe-S] clusters. Lack of an in vitro activity assay for ThiH has hampered the analysis of this interesting enzyme. We circumvented this problem by using an in vivo activity assay for ThiH. Random and directed mutagenesis of the thiH gene was performed. Analysis of auxotrophic thiH mutants defined two classes, those that required thiazole to make TPP (null mutants) and those with thiamine auxotrophy that was corrected by either L-tyrosine or thiazole (ThiH* mutants). Increased levels of AdoMet also corrected the thiamine requirement of members of the latter class. Residues required for in vivo function were identified and are discussed in the context of structures available for AdoMet enzymes.  相似文献   

20.
Mutants lacking the first enzyme in de novo purine synthesis (PurF) can synthesize thiamine if increased levels of pantothenate are present in the culture medium (J. L. Enos-Berlage and D. M. Downs, J. Bacteriol. 178:1476-1479, 1996). Derivatives of purF mutants that no longer required pantothenate for thiamine-independent growth were isolated. Analysis of these mutants demonstrated that they were defective in succinate dehydrogenase (Sdh), an enzyme of the tricarboxylic acid cycle. Results of phenotypic analyses suggested that a defect in Sdh decreased the thiamine requirement of Salmonella typhimurium. This reduced requirement correlated with levels of succinyl-coenzyme A (succinyl-CoA), which is synthesized in a thiamine pyrophosphate-dependent reaction. The effect of succinyl-CoA on thiamine metabolism was distinct from the role of pantothenate in thiamine synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号