首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
V Hines  M Johnston 《Biochemistry》1989,28(3):1222-1226
The steady-state kinetic mechanism of highly purified bovine liver mitochondrial dihydroorotate dehydrogenase has been investigated. Initial velocity analysis using S-dihydroorotate and coenzyme Q6 revealed parallel-line, double-reciprocal plots, indicative of a ping-pong mechanism. The dead-end inhibition pattern with barbituric acid and the reactions with alternate cosubstrates methyl-S-dihydroorotate and menadione also point to a ping-pong mechanism. However, product orotate was found to be competitive with dihydroorotate and uncompetitive with Q6. These findings suggest that dihydroorotate dehydrogenase may follow a nonclassical, two-site ping-pong mechanism, typical of an enzyme that contains two non-overlapping and kinetically isolated substrate binding sites. That these two sites communicate by an intramolecular electron-transfer system involving FMN and perhaps an iron-sulfur center is also suggested by the kinetic behavior of the enzyme.  相似文献   

2.
The flavoprotein dihydroorotate dehydrogenase (DHOD) catalyzes the oxidation of dihydroorotate to orotate. Dihydrooxonate is an analogue of dihydroorotate in which the C5 carbon is substituted by a nitrogen atom. We have investigated dihydrooxonate as a substrate of three DHODs, each representing a distinct evolutionary class of the enzyme, namely the two family 1 enzymes from Lactococcus lactis, DHODA and DHODB, and the enzyme from Escherichia coli, which, like the human enzyme, belongs to family 2. Dihydrooxonate was accepted as a substrate although much less efficiently than dihydroorotate. The first half-reaction was rate limiting according to pre-steady-state and steady-state kinetics with different electron acceptors. Cysteine and serine have been implicated as active site base residues, which promote substrate oxidation in family 1 and family 2 DHODs, respectively. Mutants of DHODA (C130A) and E. coli DHOD (S175A) have extremely low activity in standard assays with dihydroorotate as substrate, but with dihydrooxonate the mutants display considerable and increasing activity above pH 8.0. Thus, the absence of the active site base residue in the enzymes seems to be compensated for by a lower pK(a) of the 5-position in the substrate. Oxonate, the oxidation product of dihydrooxonate, was a competitive inhibitor versus dihydroorotate, and DHODA was the most sensitive of the three enzymes. DHODA was reinvestigated with respect to product inhibition by orotate. The results suggest a classical one-site ping-pong mechanism with fumarate as electron acceptor, while the kinetics with ferricyanide is highly dependent on the detailed reaction conditions.  相似文献   

3.
V Hines  M Johnston 《Biochemistry》1989,28(3):1227-1234
Dihydroorotates deuteriated at both C5 and C6 have been prepared and used to probe the mechanism of the bovine liver mitochondrial dihydroorotate dehydrogenase. Primary deuterium isotope effects on kcat are observed with both (6RS)-[5(S)-2H]- and (6RS)-[6-2H] dihydroorotates (3 and 6, respectively); these effects are maximal at low pH. At pH 6.6, DV = 3.4 for the C5-deuteriated dihydroorotate (3), and DV = 2.3 for the C6-deuteriated compound (6). The isotope effects approach unity at pH 8.8. Analysis of the pH dependence of the isotope effects on kcat reveals a shift in the rate-determining step of the enzyme mechanism as a function of pH. Dihydroorotate oxidation appears to require general base catalysis (pKB = 8.26); this step is completely rate-determining at low pH and isotopically sensitive. Reduction of the cosubstrate, coenzyme Q6, is rate-limiting at high pH and is isotopically insensitive; this step appears to require general acid catalysis (pKA = 8.42). The results of double isotope substitution studies and analysis for substrate isotope exchange with solvent point toward a concerted mechanism for oxidation of dihydroorotate. This finding serves to distinguish further the mammalian dehydrogenase from its parasitic cognate, which catalyzes a stepwise oxidation reaction [Pascal, R., & Walsh, C.T. (1984) Biochemistry 23, 2745].  相似文献   

4.
Leishmania major Friedlin (LmjF) is a protozoan parasite whose genomic sequence has been recently elucidated. Here we have cloned, overexpressed, purified, and characterized the product of the gene from LmjF chromosome 16: LmjF16.0530, which encodes a protein with putative dihydroorotate dehydrogenase activity. Dihydroorotate dehydrogenase (DHODH) is a flavoprotein that catalyses the oxidation of L-dihydroorotate to orotate, the fourth sequential step in the de novo pyrimidine nucleotide synthesis pathway. The predicted enzyme from L. major was cloned and expressed in Escherichia coli strain BL21(DE3) as a histidine-tag fusion protein and purified to homogeneity using affinity chromatography. The final product was homogeneous in SDS-PAGE gel electrophoresis. The dihydroorotate oxidase activity has been assayed and the steady-state kinetic mechanism has been determined using fumarate as the oxidizing substrate. The catalysis by LmDHODH enzyme proceeds by a Ping-Pong Bi-Bi mechanism and the kinetic parameters Km were calculated to be 90 and 418 microM for dihydroorotate and fumarate, respectively, and Vmax was calculated to be 11 micromol min-1 mg-1. Our results confirmed that the product of the gene LmjF16.0530, whose function has previously been predicted based on homology to known proteins, can therefore be positively assigned as L. major DHODH.  相似文献   

5.
We report the identification, expression, and characterization of a second Dihydroorotate dehydrogenase (DHODase A) from the human pathogen Enterococcus faecalis. The enzyme consists of a polypeptide chain of 322 amino acids that shares 68% identity with the cognate type A enzyme from the bacterium Lactococcus lactis. E. faecalis DHODase A catalyzed the oxidation of l-dihydroorotate while reducing a number of substrates, including fumarate, coenzyme Q(0), and menadione. The steady-state kinetic mechanism has been determined with menadione as an oxidizing substrate at pH 7.5. Initial velocity and product inhibition data suggest that the enzyme follows a two-site nonclassical ping-pong kinetic mechanism. The absorbance of the active site FMN cofactor is quenched in a concentration-dependent manner by titration with orotate and barbituric acid, two competitive inhibitors with respect to dihydroorotate. In contrast, titration of the enzyme with menadione had no effect on FMN absorbance, consistent with nonoverlapping binding sites for dihyroorotate and menadione, as suggested from the kinetic mechanism. The reductive half-reaction has been shown to be only partially rate limiting, and an attempt to evaluate the slow step in the overall reaction has been made by simulating orotate production under steady-state conditions. Our data indicate that the oxidative half-reaction is a rate-limiting segment, while orotate, most likely, retains significant affinity for the reduced enzyme, as suggested by the product inhibition pattern.  相似文献   

6.
Some of the catalytic properties of the biosynthetic dihydroorotate dehydrogenase purified from an anaerobic bacterium, Lactobacillus bulgaricus, are described. Studies with p-hydroxymercuribenzoate, N-ethylmaleimide, and mercuric chloride showed that sulfhydryl groups are necessary for transfer of electrons from dihydroorotate to a variety of electron acceptors. Protection studies with substrates for the enzyme indicated that free sulfhydryl groups at or near the active center are required for catalytic activity. Evidence is presented for the production of superoxide free radicals during reaction of the enzyme with molecular oxygen. Inhibitor studies with Tiron indicated that reduction of cytochrome c by the enzyme may involve the superoxide free radical as an intermediate. Orotate, one of the substrates for the enzyme, has been found to be a competitive inhibitor for the dihydroorotate site. The K(i) for orotate as estimated by several techniques is 0.1 mM. The K(m) for dihydroorotate with ferricyanide as the electron acceptor is estimated to be 0.5 mM.  相似文献   

7.
Yeast dihydroorotate dehydrogenase (DHOD) was purified 2800-fold to homogeneity from its natural source. Its sequence is 70% identical to that of the Lactococcus lactis DHOD (family IA) and the two active sites are nearly the same. Incubations of the yeast DHOD with dideuterodihydroorotate (deuterated in the positions eliminated in the dehydrogenation) as the donor and [14C]orotate as the acceptor revealed that the C5 deuteron exchanged with H2O solvent at a rate equal to the 14C exchange rate, whereas the C6 deuteron was infrequently exchanged with H2O solvent, thus indicating that the C6 deuteron of the dihydroorotate is sticky on the flavin cofactor. The pH dependencies of the steady-state parameters (k(cat) and k(cat)/Km) are similar, indicating that k(cat)/Km reports the productive binding of substrate, and the parameters are dependent on the donor-acceptor pair. The lower pKa values for k(cat) and k(cat)/Km observed for substrate dihydroorotate (around 6) in comparison to the values determined for dihydrooxonate (around 8) suggest that the C5 pro S hydrogen atom of dihydroorotate (but not the analogous hydrogen of dihydrooxonate), which is removed in the dehydrogenation, assists in lowering the pKa of the active site base (Cys133). The pH dependencies of the kinetic isotope effects on steady-state parameters observed for the dideuterated dihydroorotate are consistent with the dehydrogenation of substrate being rate limiting at low pH values, with a pKa value approximating that assigned to Cys133. Electron acceptors with dihydroorotate as donor were preferred in the following order: ferricyanide (1), DCPIP (0.54), Qo (0.28), fumarate (0.15), and O2 (0.035). Orotate inhibition profiles versus varied concentrations of dihydroorotate with ferricyanide or O2 as acceptors suggest that both orotate and dihydroorotate have significant affinities for the reduced and oxidized forms of the enzyme.  相似文献   

8.
Dihydroorotate dehydrogenase catalyzes the oxidation of dihydroorotate to orotate. The enzyme from Escherichia coli was overproduced and characterized in comparison with the dimeric Lactococcus lactis A enzyme, whose structure is known. The two enzymes represent two distinct evolutionary families of dihydroorotate dehydrogenases, but sedimentation in sucrose gradients suggests a dimeric structure also of the E. coli enzyme. Product inhibition showed that the E. coli enzyme, in contrast to the L. lactis enzyme, has separate binding sites for dihydroorotate and the electron acceptor. Trypsin readily cleaved the E. coli enzyme into two fragments of 182 and 154 residues, respectively. Cleavage reduced the activity more than 100-fold but left other molecular properties, including the heat stability, intact. The trypsin cleavage site, at R182, is positioned in a conserved region that, in the L. lactis enzyme, forms a loop where a cysteine residue is very critical for activity. In the corresponding position, the enzyme from E. coli has a serine residue. Mutagenesis of this residue (S175) to alanine or cysteine reduced the activities 10000- and 500-fold, respectively. The S175C mutant was also defective with respect to substrate and product binding. Structural and mechanistic differences between the two different families of dihydroorotate dehydrogenase are discussed.  相似文献   

9.
Biosynthetic Dihydroorotate Dehydrogenase from Lactobacillus bulgaricus   总被引:5,自引:3,他引:2  
This paper describes the first detailed study on a dihydroorotate dehydrogenase involved in pyrimidine biosynthesis. In most organisms the enzyme is membrane-bound; however, a soluble dihydroorotate dehydrogenase was produced in relatively high levels when the anaerobe, Lactobacillus bulgaricus, was released from repression. The enzyme was purified 213-fold over derepressed levels with a 39% recovery of enzyme units. The enzyme showed only one minor protein contaminant when analyzed by polyacrylamide electrophoresis. It was characterized as a flavoprotein containing only flavine mononucleotide as the prosthetic group. Molecular weight estimations by gel filtration gave a value of approximately 55,000, which is one-half that of the degradative enzyme described by others. During aerobic oxidation of dihydroorotate, the rates of oxygen consumption, orotate formation, and hydrogen peroxide formation were equal, as would be expected in a flavoprotein-catalyzed reaction. The enzymatic activity with ferricyanide as acceptor was optimum around pH 7.7. The stimulation of enzymatic activity over a wide pH range by ammonium sulfate was attributed to an effect on the maximum velocity of the reaction. As analyzed by polyacrylamide electrophoresis, inactivation of the enzyme by visible light resulted in the appearance of a second protein band with lowered specific activity. The purified enzyme used redox dyes, oxygen, or cytochrome c as electron acceptors but was not active with pyridine nucleotides. Flavine adenine dinucleotide has been implicated at the active site for pyridine nucleotide reduction in the degradative enzyme. The biosynthetic enzyme lacks this flavine and the associated activity.  相似文献   

10.
Dihydroorotate dehydrogenase (DHOD) (EC 1.3.3.1) from the thermoacidophilic archaeon Sulfolobus solfataricus P2 (DSM 1617) was partially purified 3,158-fold, characterized, and the encoding genes identified. Based on enzymological as well as phylogenetic methods, dihydroorotate dehydrogenase from S. solfataricus (DHODS) represents a new type of DHOD, type 1S. Furthermore, it is unable to use any of the (type-specific) natural electron acceptors employed by all other presently known DHODs. DHODS shows optimal activity at 70 degrees C in the pH range 7-8.5. It is capable of using ferricyanide, 2,6-dichlorophenolindophenol (DCIP), Q(0), and molecular oxygen as electron acceptor. Kinetic studies employing ferricyanide indicate a two-site ping-pong mechanism with K(M) values of 44.2+/-1.9 microM for the substrate dihydroorotate and 344+/-21 microM for the electron acceptor ferricyanide, as well as competitive product inhibition with a K(i) of 23.7+/-3.4 microM for the product orotate (OA). The specific activity, as determined from a partially purified sample, is approximately 20 micromol mg(-1) min(-1). DHODS is a heteromeric enzyme comprising a catalytic subunit encoded by pyrD (291 aa; MW=31.1 kDa) and an electron acceptor subunit (208 aa; MW=23.6 kDa), encoded by orf1. DHODS employs a serine as catalytic base, which is unique for a cytosolic DHOD. To our knowledge, this work represents not only the first study on an archaeal DHOD but the first on a nonmesophilic DHOD as well.  相似文献   

11.
12.
Dihydroorotate dehydrogenase B (DHODB) catalyzes the oxidation of dihydroorotate (DHO) to orotate and is found in the pyrimidine biosynthetic pathway. The Lactococcus lactis enzyme is a dimer of heterodimers containing FMN, FAD, and a 2Fe-2S center. Lys-D48 is found in the catalytic subunit and its side-chain adopts different positions, influenced by ligand binding. Based on crystal structures of DHODB in the presence and absence of orotate, we hypothesized that Lys-D48 has a role in facilitating electron transfer in DHODB, specifically in stabilizing negative charge in the reduced FMN isoalloxazine ring. We show that mutagenesis of Lys-D48 to an alanine, arginine, glutamine, or glutamate residue (mutants K38A, K48R, K48Q, and K48E) impairs catalytic turnover substantially (approximately 50-500-fold reduction in turnover number). Stopped-flow studies demonstrate that loss of catalytic activity is attributed to poor rates of FMN reduction by substrate. Mutation also impairs electron transfer from the 2Fe-2S center to FMN. Addition of methylamine leads to partial rescue of flavin reduction activity. Nicotinamide coenzyme oxidation and reduction at the distal FAD site is unaffected by the mutations. Formation of the spin-interacting state between the FMN semiquinone-reduced 2Fe-2S centers observed in wild-type enzyme is retained in the mutant proteins, consistent with there being little perturbation of the superexchange paths that contribute to the efficiency of electron transfer between these cofactors. Our data suggest a key charge-stabilizing role for Lys-D48 during reduction of FMN by dihydroorotate, or by electron transfer from the 2Fe-2S center, and establish a common mechanism of FMN reduction in the single FMN-containing A-type and the complex multicenter B-type DHOD enzymes.  相似文献   

13.
Dihydroorotate dehydrogenase purified from mitochondria of Plasmodium berghei, a rodent malaria parasite, mediates production of superoxide radical during oxidation of dihydroorotate to orotate. Reduction of dichlorophenolindophenol or cytochrome c or nitroblue tetrazolium was significantly inhibited by superoxide dismutase or theonyltrifluoroacetone, a specific iron chelator of the enzyme. These results, together with the recent evidence of manganese-superoxide dismutase activity in malarial mitochondria [Ranz, A., and Meshnick, S.R. (1989) Exp. Parasitol. 69, 125-128], suggest that the production of superoxide radical may occur in vivo.  相似文献   

14.
The present work deals with the effects of alloxan on rat liver mitochondria, involving formation of toxic oxygen derivatives and Ca2+ release, and its relations to a physiological pathway, pyrimidine biosynthesis, particularly dihydroorotate dehydrogenation. Ca2+ release by intact isolated mitochondria was studied and redox transfer from solubilized mitochondria to 2,6-dichloroindophenol in the presence of cyanide. In intact mitochondria 5mM dihydroorotate caused a Ca2+ efflux comparable to 2mM alloxan. Both effects were suppressed by orotate, a potent inhibitor of dihydroorotate dehydrogenase, and by ADP, an inhibitor of the alloxan effects. In lysed mitochondria orotate but not ADP inhibited ubiquinone-linked reduction of 2,6-dichloroindophenol with dihydroorotate and with alloxan in a concentration-dependent manner. It is concluded that in vitro part of the redox cycling of alloxan is catalysed by dihydroorotate dehydrogenase whereas the nonsuppressible part reacts nonenzymatically. Without ADP the respiratory control blocks the reoxidation of coenzyme Q via the respiratory chain, thus giving preference to the regeneration by artificial electron acceptors, e.g. oxygen, yielding superoxide radicals and hydrogen peroxide, a notorious inducer of Ca2+ release. In vivo the enzymatic reoxidation of reduced alloxan by dihydroorotate dehydrogenase may be superior to the non-enzymatic pathway since the nonenzymatic fraction of reoxidation decreases with decreasing alloxan concentration.  相似文献   

15.
In all organisms the fourth catalytic step of the pyrimidine biosynthesis is driven by the flavoenzyme dihydroorotate dehydrogenase (DHODH, EC 1.3.99.11). Cytosolic DHODH of the established model organism Saccharomyces cerevisiae catalyses the oxidation of dihydroorotate to orotate and the reduction of fumarate to succinate. Here, we investigate the structure and mechanism of DHODH from S. cerevisiae and show that the recombinant ScDHODH exists as a homodimeric enzyme in vitro. Inhibition of ScDHODH by the reaction product was observed and kinetic studies disclosed affinity for orotate (K(ic)=7.7 microM; K(ic) is the competitive inhibition constant). The binding constant for orotate was measured through comparison of UV-visible spectra of the bound and unbound recombinant enzyme. The midpoint reduction potential of DHODH-bound flavine mononucleotide determined from analysis of spectral changes was -242 mV (vs. NHE) under anaerobic conditions. A search for alternative electron acceptors revealed that homologues such as mesaconate can be used as electron acceptors.  相似文献   

16.
The cytosol 3alpha-hydroxysteroid dehydrogenase of rat ventral prostate has been partially purified. The rates of both the oxidation and reduction by crude and partially purified enzymes have been measured with a variety of radioactive substrates, and the effects of several inhibitor steroids have been assessed. Four conclusions have been drawn from the study. First, no detectable 3beta-androstanediol was formed from dihydrotestosterone, and the oxidation of 3beta-androstanediol was undetectable. Second, the cytosol enzyme exhibits a distinct and unique substrate specificity in that steroids with keto or hydroxyl substitution on the 11th carbon of the steroid cannot serve as substrates or as inhibitors of the enzyme. Third, either 5alpha or 5 beta reduction of delta4,3-keto steroids must take place before the steroids can serve as substrates of the enzyme. Fourth, many delta4,3-keto steroids that cannot act as substrates for the enzyme inhibit the enzyme competitively and may well serve as physiological regulators of the reaction in intact cell.  相似文献   

17.
Michaelis-Menten kinetics are observed in studies of highly purified bovine adrenal glucose-6-phosphate dehydrogenase at pH8.0 in 0.1 M bicine. The Km for NADP+ is 3.8 muM and for glucose-6-phosphate, 61 muM. At pH 6.9 Km for NADP+ increases to 6.5 muM. The enzyme is inhibited by NADPH both at pH 6.8 and at 8.0 with a Kip of 2.36 muM at pH 8.0. Inhibition is competitive with respect to both substrates implying that addition of substrates is random ordered. The data are also interpreted in terms of "reducing charge", the mole fraction of coenzyme in the reduced form. This appears to be the major mechanism for regulation of the pentose shunt. D-glucose, oxidized by the enzyme at a very slow rate, is also a competitive inhibitor for the natural substrate with a Ki of 0.29 M. Phosphate is a competitive inhibitor for glucose-6-phosphate oxidation but both phosphate and sulfate accelerate glucose oxidation suggesting a common binding site for the two anions and the phosphate of the natural substrate. While binding of ACTH to our enzyme preparations has been observed, we have not been able, in spite of repeated attempts, to demonstrate augmentation of the activity of the enzyme by the addition of ACTH.  相似文献   

18.
二氢乳清酸脱氢酶是黄素依赖的线粒体酶,它催化嘧啶从头合成的第4步反应,将二氢乳清酸氧化为乳清酸。通过选择性抑制二氢乳清酸脱氢酶,从而抑制嘧啶的合成,已被开发用于治疗癌症、自身免疫性疾病、细菌或病毒感染以及寄生虫疾病等。抑制剂的开发需详细了解二氢乳清酸脱氢酶的结构特征和催化循环机制。因此,文中主要从这两个方面进行了综述,并展望了该酶的抑制剂在临床应用中的前景。  相似文献   

19.
The flavin enzyme dihydroorotate dehydrogenase (DHOD; EC 1.3.99.11) catalyzes the oxidation of dihydroorotate to orotate, the fourth step in the de novo pyrimidine biosynthesis of UMP. The enzyme is a promising target for drug design in different biological and clinical applications for cancer and arthritis. The first crystal structure of the class 2 dihydroorotate dehydrogenase from rat has been determined in complex with its two inhibitors brequinar and atovaquone. These inhibitors have shown promising results as anti-proliferative, immunosuppressive, and antiparasitic agents. A unique feature of the class 2 DHODs is their N-terminal extension, which folds into a separate domain comprising two alpha-helices. This domain serves as the binding site for the two inhibitors and the respiratory quinones acting as the second substrate for the class 2 DHODs. The orientation of the first N-terminal helix is very different in the two complexes of rat DHOD (DHODR). Binding of atovaquone causes a 12 A movement of the first residue in the first alpha-helix. Based on the information from the two structures of DHODR, a model for binding of the quinone and the residues important for the interactions could be defined. His 56 and Arg 136, which are fully conserved in all class 2 DHODs, seem to play a key role in the interaction with the electron acceptor. The differences between the membrane-bound rat DHOD and membrane-associated class 2 DHODs exemplified by the Escherichia coli DHOD has been investigated by GRID computations of the hydrophobic probes predicted to interact with the membrane.  相似文献   

20.
A novel secondary alcohol dehydrogenase has been isolated from Tritrichomonas foetus, the protozoan parasite which is responsible for bovine trichomonal abortion. The enzyme has been obtained in apparently homogeneous form after a 120-fold purification from cell homogenates, thus indicating that this activity constitutes an unusually high 1% of the total cytosolic protein. The native Mr = 115,000, determined by polyacrylamide gel electrophoresis. Mobility on sodium dodecyl sulfate gels suggests that the enzyme is composed of 6-8 subunits, identical as to molecular size (Mr = 17,000). The enzyme catalyzes the reversible oxidation of 2-propanol to acetone, using NADP+ (and not NAD+) as the redox-active co-substrate. Other small secondary alcohols, such as 2-butanol, 2- and 3-pentanol, cyclobutanol, and cyclopentanol are substrates, as are the corresponding ketones of these alcohols. Primary alcohols, such as ethanol and 1-propanol, are oxidized at rates less than 5% of that observed for 2-propanol. Product inhibition studies demonstrate an ordered kinetic mechanism, wherein the co-substrate (NADP+/NADPH) binds to the enzyme prior to binding of the substrate (alcohol/ketone).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号