首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fas antigen is a receptor that triggers apoptosis when bound by Fas ligand (FasL). A role for Fas antigen in follicular atresia was studied in follicles obtained during the first wave of follicular development during the bovine estrous cycle (estrus is Day 0). Granulosa and theca cells were isolated from healthy dominant follicles and the two largest atretic subordinate follicles on Day 5, atretic dominant follicles on Days 10-12, and preovulatory follicles on Day 1. Fas antigen mRNA levels were highest in granulosa cells from subordinate as compared to other follicles, and lowest in theca cells from healthy Day 5 dominant as compared to other follicles. FasL alone had no effect on viability of granulosa or theca cells but became cytotoxic in the presence of interferon-gamma (IFN). IFN has been shown to induce responsiveness to Fas antigen-mediated apoptosis in other cell types. In the presence of IFN, killing of granulosa cells by FasL was greater in subordinate compared to healthy dominant follicles on Day 5, did not differ between healthy and atretic dominant follicles, and was similar in theca among all follicles. Granulosa cells from preovulatory follicles, which had been exposed to the LH surge in vivo, were completely resistant to FasL-induced killing. In summary, Fas antigen expression, and responsiveness to Fas antigen-mediated apoptosis, vary during follicular development.  相似文献   

2.
3.
It was hypothesized that growth divergence of dominant and subordinate follicles during Wave 1 and growth termination of the dominant follicle would be associated with changes in the number of gonadotropin receptors on granulosa cells and estradiol in follicular fluid. To test this hypothesis, follicular development of 16 Holstein heifers was monitored by ultrasound, and follicles were collected on Days 2,4,6 and 10 (Day 0 = ovulation). Dominant follicles were compared across days, whereas dominant and largest subordinate follicles were compared on Days 2 and 4 only. The numbers of LH and FSH receptors on the granulosa cells of dominant follicles did not differ significantly over Days 2, 4, 6 and 10. In contrast, concentrations of estradiol in follicular fluid decreased (P < 0.05) from Days 2 to 10 (373 +/- 150 to 42 +/- 12 ng/ml) and concentrations of progesterone in follicular fluid increased (P < 0.05) from Days 2 to 10 (12.2 +/- 2.3 to 24.4 +/- 4.8 ng/ml). Correspondingly, the ratio of estradiol:progesterone in the dominant follicles decreased (P < 0.05) from Days 2 to 10. Comparisons between dominant and subordinate follicles indicated greater (P < 0.05) estradiol concentrations in the dominant follicle on Day 2, but the number of gonadotropin receptors was not different until Day 4. Thus, differences in concentrations of follicular fluid estradiol, but not numbers of granulosa cell gonadotropin receptors, were associated with the early growth divergence of dominant and subordinate follicles (Day 2) and the eventual growth termination of the dominant follicle (Day 10). Late divergence (Day 4) was associated with higher gonadotropin receptor numbers and follicular estradiol concentrations in the dominant than in the subordinate follicles. These results indicate that an increase in estradiol productivity of the selected dominant follicle occurred before an increase in the number of gonadotropin receptors.  相似文献   

4.
In the mammalian ovary, the microvasculature in the thecal layer of follicles is associated with follicular development. Apelin and its receptor, APJ, are expressed in the tissues and organs which include the vasculature. The aims of the present study were to examine the mRNA expression of apelin and the APJ receptor in granulosa cells and theca tissue of bovine follicles and the effects of steroid hormone and gonadotrophins on the expression of these genes in cultured granulosa cells and theca cells. The expression of apelin mRNA was not found in the granulosa cells of bovine follicles. The expression of the APJ gene was increased in granulosa cells of estrogen-inactive dominant follicles. The expression of apelin mRNA increased in theca tissues of estrogen-inactive dominant follicles. APJ expression in theca tissues increased with follicle growth. Progesterone stimulated the expression of APJ mRNA in the cultured granulosa cells. FSH stimulated the expression of APJ mRNA in the cultured granulosa cells. LH induced the expression of apelin and APJ receptor mRNAs in cultured theca cells. Taken together, our data indicate that the APJ receptor in granulosa cells and both apelin and the APJ receptor in theca tissues are expressed in bovine ovary, that APJ in granulosa cells may be involved in the appearance of the cell apoptosis, and that LH stimulates the expression of apelin and APJ genes in theca cells.  相似文献   

5.
The mechanism by which one or more dominant ovarian follicles continue development while other subordinate follicles regress is not known. The mitogen activated protein kinases (MAPKs) are a group of kinases that are activated by hormonal factors and form a cascade of processes that regulate cell growth, division and differentiation. The aim of the present experiment was to characterise the presence of the MAPKs, Erk 1/Erk 2 and Akt in healthy dominant follicles and regressing subordinate follicles. Following in vivo monitoring of ovarian follicle development, three ewes were ovariectomised and the follicular fluid and follicle wall (theca and granulosa cells) saved from the dominant and largest subordinate follicle. The dissected diameter and follicular fluid oestradiol concentration of the dominant follicle was larger (P<0.01) than the largest subordinate follicle (6.5+/-0.0mm and 41.3+/-4.9ng/ml versus 4.7+/-0.3mm and 0.6+/-0.4ng/ml). Western blot analyses showed that there was more Akt (202.7+/-6.4 versus 59.6+/-32.7 units; P<0.05) and Erk 1/Erk 2 (104.5+/-10.6 versus 0.3+/-0.2 units; P<0.01) present in follicle wall samples from the dominant compared to the largest subordinate follicles. Phosphorylated forms of Akt and Erk 1/Erk 2 were detected in samples from dominant but not subordinate follicles. We suggest that signal transduction pathways involving Akt and Erk 1/Erk 2 may play an important role in determining the outcome of ovarian follicle growth and development in sheep.  相似文献   

6.
Development of follicular cysts is a frequent ovarian dysfunction in cattle. Functional changes that precede cyst formation are unknown, but a role for anti-Müllerian hormone (AMH) in the development of follicular cysts has been suggested in humans. This study aimed to characterize intrafollicular steroids and AMH during follicular growth in a strain of beef cows exhibiting a high incidence of occurrence of follicular cysts. Normal follicular growth and cyst development were assessed by ovarian ultrasonography scanning during the 8 days before slaughtering. Experimental regression of cysts was followed by rapid growth of follicles that reached the size of cysts within 3-5 days. These young cysts exhibited higher intrafollicular concentrations of testosterone, estradiol-17beta, and progesterone than large early dominant follicles did in normal ovaries, but they exhibited similar concentrations of AMH. Later-stage cysts were characterized by hypertrophy of theca interna cells, high intrafollicular progesterone concentration, and high steroidogenic acute regulatory protein mRNA expression in granulosa cells. Progesterone and AMH concentrations in the largest follicles (> or =10 mm) and cysts were negatively correlated (r = -0.45, P < 0.01). Smaller follicles (<10 mm) exhibited higher intrafollicular testosterone and estradiol-17beta concentrations in ovaries with cysts compared to normal ovaries. During follicular growth, AMH concentration dropped in follicles larger than 5 mm in diameter and in a similar way in ovaries with and without cysts. In conclusion, enhanced growth and steroidogenesis in antral follicles <10 mm preceded cyst formation in cow ovaries. Intrafollicular AMH was not a marker of cystic development in the cow, but low AMH concentrations in cysts were associated with luteinization.  相似文献   

7.
The bovine dominant follicle (DF) model was used to identify molecular mechanisms potentially involved in initial growth of DF during the low FSH milieu of ovarian follicular waves. Follicular fluid and RNA from granulosa and theca cells were harvested from 10 individual DF obtained between 2 and 5.5 days after emergence of the first follicular wave of the estrous cycle. Follicular fluid was subjected to RIA to determine estradiol (E) and progesterone (P) concentrations and RNA to cDNA microarray analysis and (or) quantitative real-time PCR. Results showed that DF growth was associated with a decrease in intrafollicular E:P ratio and in mRNA for the FSH receptor, estrogen receptor 2 (ER beta), inhibin alpha, activin A receptor type I, and a proliferation (cyclin D2) and two proapoptotic factors (apoptosis regulatory protein Siva, Fas [TNFRSF6]-associated via death domain) in granulosa cells. In contrast, mRNAs for the LH receptor in granulosa cells and for two antiapoptotic factors (TGFB1-induced antiapoptotic factor 1, LAG1 longevity assurance homolog 4 [Saccharomyces cerevisiae]) and one proapoptotic factor (tumor necrosis factor [ligand] superfamily, member 8) were increased in theca cells. We conclude that the bovine DF provides a unique model to identify novel genes potentially involved in survival and apoptosis of follicular cells and, importantly, to determine the FSH-, estradiol-, and LH-target genes regulating its growth and function. Results provide new molecular evidence for the hypothesis that DF experience a reduction in FSH dependence but acquire increased LH dependence as they grow during the low FSH milieu of follicular waves.  相似文献   

8.
9.
The cellular form of the prion protein (PrP(C)) has been detected in many tissues including reproductive tissues. While its function is unclear, it has been suggested to act as a receptor for an unidentified ligand and/or as an antioxidant agent. We tested the hypothesis that PrP(C) is differentially expressed in dominant, growing, compared to subordinate bovine ovarian follicles. Using both microarray analysis and quantitative real-time PCR, the level of prion protein mRNA (Prnp) in both theca and granulosa cells was measured. We found that levels of Prnp were significantly higher in the theca cells of dominant compared to subordinate follicles but similar among granulosa cells from different follicles. This difference was apparent immediately after selection of the dominant follicle and continued to the dominance stage of the follicle wave. Levels of the protein for PrP(C) were also higher (P < 0.05) in theca cells of dominant compared to subordinate follicles. In conclusion, elevated PrP(C) was associated with ovarian follicle growth and development and we suggest that it may play a role in the success of follicle development.  相似文献   

10.
11.
12.
We have investigated the possible role of theca and granulosa cell interaction in the control of the hormone-producing activity and growth of granulosa and theca cells during bovine ovarian follicular development, using a coculture system in which granulosa and theca cells were grown on opposite sides of a collagen membrane. When follicular cells were isolated from small follicles (3-5 mm), theca cells reduced estradiol, progesterone, and inhibin production by granulosa cells to 14 +/- 5%, 64 +/- 6%, and 27 +/- 4%, respectively, of the production by granulosa cells cultured alone. On the other hand, when the cells were isolated from large follicles (15-18 mm), theca cells increased these levels to 253 +/- 34%, 156 +/- 24%, and 287 +/- 45%, respectively. Theca cells did not affect the growth of granulosa cells. Androstenedione production by theca cells was augmented by granulosa cells to 861 +/- 190% (in small follicles) and 1298 +/- 414% (in large follicles), respectively. The growth of theca cells was also augmented by granulosa cells (small follicle, 210 +/- 43%, and large follicle, 194 +/- 24%, respectively). These results indicate that theca cells secrete factor(s) inhibiting the differentiation of immature while promoting that of matured granulosa cells; they also suggest that granulosa cells secrete factor(s) promoting both the differentiation and growth of theca cells throughout the follicular maturation process.  相似文献   

13.
Differentiation of dominant versus subordinate follicles in cattle   总被引:2,自引:0,他引:2  
Selection of a dominant follicle, capable of ovulating, from among a cohort of similarly sized follicles is a critical transition in follicular development. The mechanisms that regulate the selection of a species-specific number of dominant follicles for ovulation are not well understood. Cattle provide a very useful animal model for studies on follicular selection and dominance. During the bovine estrous cycle, two or three sequential waves of follicular development occur, each producing a dominant follicle capable of ovulating if luteal regression occurs. Follicles are large enough to allow analysis of multiple endpoints within a single follicle, and follicular development and regression can be followed via ultrasonographic imaging. Characteristics of recruited and selected follicles, obtained at various times during the first follicular wave, have been determined in some studies, whereas dominant and subordinate follicles have been compared around the time of selection in others. As follicular recruitment proceeds, mRNA for P450 aromatase increases. By the time of morphological selection, the dominant follicle has much higher concentrations of estradiol in follicular fluid, and its granulosa cells produce more estradiol in vitro than cells from subordinate follicles. Shortly after selection, dominant follicles have higher levels of mRNAs for gonadotropin receptors and steroidogenic enzymes. It has been hypothesized that granulosa cells of the selected follicle acquire LH receptors (LHr) to allow them to increase aromatization in response to LH, as well as FSH. However, LH does not appear to stimulate estradiol production by bovine granulosa cells, and the role of LHr acquisition remains to be determined. Recent evidence suggests a key role for changes in the intrafollicular insulin-like growth factor (IGF) system in selection of the dominant follicle. When follicular fluid was sampled in vivo before morphological selection, the lowest concentration of IGF binding protein-4 (IGFBP-4) was more predictive of future dominance than size or estradiol concentration. Consistent with this finding, dominant follicles acquire an FSH-induced IGFBP-4 protease activity. Thus, a decrease in IGFBP-4, which would make more IGF available to interact with its receptors and synergize with FSH to promote follicular growth and aromatization, appears to be a critical determinant of follicular selection for dominance.  相似文献   

14.
A surgical procedure to aspirate follicular fluid concurrently from individual follicles from the same heifer was validated and used to determine if intrafollicular amounts of estradiol, progesterone, inhibins, activin-A, follistatins, and insulin-like growth factor binding proteins (IGFBP) differed for the future dominant compared with subordinate follicles during selection of the first wave dominant follicle. Heifers were subjected to surgery and aspiration of follicular fluid from the two or three largest follicles on Day 3 of the estrous cycle (approximately 1.5 days after emergence). Ultrasound was used to determine the fate of each aspirated follicle after surgery. At aspiration, diameter of the future dominant and largest subordinate follicle was similar in heifers. However, estradiol was higher, whereas IGFBP-4 was lower in the future dominant compared with the largest or next largest subordinate follicles. Also, the future dominant follicle in most cohorts had the highest estradiol and lowest IGFBP-4 compared with future subordinate follicles. We concluded that: IGFBP-4 and estradiol may have key roles in determining the physiological fate of follicles during selection of the first wave dominant follicle in heifers, and that both are reliable markers to predict which follicle in a growing cohort of 5- to 8.5-mm follicles becomes dominant.  相似文献   

15.
The expression patterns of steroidogenic enzymes in ovarian antral follicles at various stages of growth in a follicular wave have not been reported for sheep. Ovaries were collected from ewes (n=4-5 per group) when the largest follicle(s) of the first wave of the cycle, as determined by ultrasonography, reached (i) 3 mm, (ii) 4 mm, (iii) > or =5 mm in diameter or when there was a single (iv) preovulatory follicle in the last wave of the cycle, 12h after estrus detection. The expression pattern of steroidogenic enzymes was quantified using immunohistochemistry and grey-scale densitometry. The expression of CYP19 in the granulosa and 3beta-HSD and CYP17 in the theca increased (P<0.01) progressively from 3 to > or =5 mm follicles in the first wave of the cycle and was lower (P<0.01) in the preovulatory follicle compared to > or =5 mm follicles. However, the expression of 3beta-HSD in the granulosa increased (P<0.05) from 3 to > or =5 mm follicles and was maintained (P<0.05) at a high level in the preovulatory follicles. The amount of CYP19 in the granulosa of the growing follicles correlated positively (r=0.5; P<0.03) with the concurrent serum estradiol concentrations. We concluded that the expression pattern of steroidogenic enzymes in theca and granulosa of follicles growing in each wave in the ewe, paralleled with serum estradiol concentrations, with the exception that concentrations of 3beta-HSD in granulosa increased continuously from follicles 3mm in diameter to the preovulatory follicle.  相似文献   

16.
17.
Dietary restriction in growing cattle and severe negative energy balance in lactating cows have been associated with altered gonadotropin secretion, reduced follicle diameter, reduced circulating oestradiol concentrations and anovulation. Therefore, we hypothesised that acute dietary restriction would influence the fate and function of the dominant follicle by altering the expression for genes regulating gonadotrophin and IGF response in ovarian follicles. Newly selected dominant follicles were collected 7-8 days after prostaglandin F(2α) (PGF) administration from heifers (n=25) that were individually fed a diet supplying 1.2 maintenance (M; control, n=8) or 0.4 M (restricted, n=17) for a total duration of 18-19 days. Heifers within 0.4 M were ovulatory (n=11) or anovulatory (n=6) depending on whether the dominant follicle present at PGF ovulated or became atretic following luteolysis. Control animals were all ovulatory. Acute dietary restriction decreased IGF-I (P<0.001) and insulin (P<0.05) in circulation; oestradiol (P<0.01) and IGF-I (P<0.01) in follicular fluid; and mRNA for FSHR (P<0.01) in granulosa cells but increased mRNA for IGFBP2 (P<0.05) in theca cells of the newly selected dominant follicle. However, this only led to anovulation when dietary restriction also decreased mRNA for CYP19A1 (P<0.05), IGF2 (P<0.01) and IGF1R (P<0.05) in granulosa cells and LHCGR (P<0.05) in theca cells of follicles collected from heifers fed 0.4 M. These results suggest that the catabolic environment induced by dietary restriction may ultimately cause anovulation by reducing oestradiol synthesis, FSH-responsiveness and IGF signaling in granulosa, and LH-responsiveness in theca cells of dominant follicles.  相似文献   

18.
Y Takeo  J Kohno  M Hokano 《Acta anatomica》1986,127(3):161-170
The relation between sex hormone levels in blood and ultrastructural changes of ovarian follicles was examined in persistent-estrous rats exposed to continuous illumination (LL) for 100 days. Plasma LH showed a tonic level secretory pattern, and circulating estradiol and estrone concentrations were relatively high, while both levels of FSH and progesterone were low. Various stages of growing and degenerating follicles were observed in the ovary of the LL-exposed rats. The early stage of antral follicle did not seem to possess the ability of steroidogenesis. Theca cells around mature antral follicles contained prominent Golgi apparatuses, plenty of smooth endoplasmic reticulum (ER), abundant free ribosomes and many round-mitochondria. A few newly formed lipid droplets were seen in some of theca cells. Granulosa cells contained much distended rough ER, well-developed mitochondria, several lipid droplets and microfilaments. The theca cells of abnormal follicles with hyperplastic and infolded layers of granulosa cells contained many lipid droplets. However, the development of the smooth ER became hindered with increasing lipid droplets in the theca cell. On the other hand, granulosa cells of abnormal follicles contained greater numbers of lipid droplets than those of antral mature follicles, and were equipped with well-developed cytoplasmic organelles as were those of mature antral follicles. Theca interna cells of abnormal follicles may be more involved in the secretion of androgen, which has already been accumulated in the lipid droplets, than the cells involved in the active synthesis of the hormone, while the granulosa cells may convert its androgen to estrogen. The present findings suggest that both follicles of mature and abnormal types in the LL-exposed rat retain enough capacity of estradiol production and participate in the continued elevation of circulating estradiol, probably resulting in the stimulation of the theca cells by the tonic level of LH and of the granulosa cells by the levels of FSH, which are lower than the basal values during the normal 4-day estrous cycle.  相似文献   

19.
Resistin is an adipokine that has not been extensively studied in cattle but is produced by adipocytes in greater amounts in lactating versus non-lactating cattle. Seven experiments were conducted to determine the effect of resistin on proliferation, steroidogenesis, and gene expression of theca and granulosa cells from small (1-5mm) and/or large (8-22 mm) cattle follicles. Resistin had no effect on IGF-I-induced proliferation of large-follicle theca cells or small-follicle granulosa cells, but decreased IGF-I-induced proliferation of large-follicle granulosa cells. Resistin weakly stimulated FSH plus IGF-I-induced estradiol production by large-follicle granulosa cells, but had no effect on IGF-I- or insulin-induced progesterone and androstenedione production by theca cells or progesterone production by granulosa cells of large follicles. In small-follicle granulosa cells, resistin attenuated the stimulatory effect of IGF-I on progesterone and estradiol production of small-follicle granulosa cells. RT-PCR measuring abundance of side-chain cleavage enzyme (CYP11A1), aromatase (CYP19A1), FSH receptor (FSHR) and LH receptor (LHCGR) mRNA in large- and small-follicle granulosa cells indicated that resistin reduced the stimulatory effect of IGF-I on CPY11A1 mRNA abundance in large-follicle granulosa cells but had no effect on CYP19A1, FSHR or LHCGR mRNA abundance in large- or small-follicle granulosa cells. Resistin had no effect on CYP11A1, CYP17A1 or LHCGR mRNA abundance in theca cells. These results indicate that resistin preferentially inhibits steroidogenesis of undifferentiated (small follicle) granulosa cells and inhibits proliferation of differentiated (large follicle) granulosa cells, indicating that the ovarian response to resistin is altered during follicular development.  相似文献   

20.
Spatiotemporal expression, endocrine regulation, and activation of epidermal growth factor receptor (EGFR) in the hamster ovary were evaluated by immunofluorescence and in situ hybridization localization. Whereas granulosa cells (GC) of primordial through large preantral (stage 6, 7-8 layers GC) follicles had low immunoreactivity, granulosa cells of antral follicles, theca, and interstitial cells had intense EGFR immunoreactivity. EGFR expression in GC of primordial and small preantral follicles increased progressively from estrous through proestrous, but a significant increase occurred in mural GC of antral follicles following the gonadotropin surge. Interstitial cells around small preantral follicles had strong immunofluorescence, and the intensity increased significantly in fully differentiated thecal cells. Distinct EGFR protein was localized in the nucleus of the oocytes and granulosa cells. FSH significantly stimulated EGFR expression in the GC, especially the mural GC, theca, and interstitial cells in hypophysectomized hamster. Estrogen stimulated EGFR expression in preantral GC as well as in interstitial cells. Progesterone and hCG effect was limited to theca and interstitial cells. EGFR expression correlated well with EGFR activation following endogenous or exogenous gonadotropin exposure. Receptor mRNA expression closely followed the protein expression, with increased mRNA expression in mural GC of antral follicles. These results suggest that low levels of EGF signal as a consequence of low levels of receptors in preantral GC may be critical for cell proliferation, but higher receptor density may evoke increased signal intensity due to activation of other intracellular signal pathways, which activate cellular processes related to granulosa, theca, and interstitial cell differentiation. The spatiotemporal cell type and follicle stage-specific expression of receptor mRNA and protein and EGFR activation is critically regulated by gonadotropins and ovarian steroids, primarily estradiol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号