首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BAP31 is a 28-kDa integral membrane protein of the endoplasmic reticulum whose cytosolic domain contains two identical caspase recognition sites (AAVD.G) that are preferentially cleaved by initiator caspases, including caspase 8. Cleavage of BAP31 during apoptosis generates a p20 fragment that remains integrated in the membrane and, when expressed ectopically, is a potent inducer of cell death. To examine the consequences of maintaining the structural integrity of BAP31 during apoptosis, the caspase recognition aspartate residues were mutated to alanine residues, and Fas-mediated activation of caspase 8 and cell death were examined in human KB epithelial cells stably expressing the caspase-resistant mutant crBAP31. crBAP31 only modestly slowed the time course for activation of caspases, as assayed by the processing of procaspases 8 and 3 and the measurement of total DEVDase activity. As a result, cleavage of the caspase targets poly(ADP-ribosyl) polymerase and endogenous BAP31, as well as the redistribution of phosphatidylserine and fragmentation of DNA, was observed. In contrast, cytoplasmic membrane blebbing and fragmentation and apoptotic redistribution of actin were strongly inhibited, cell morphology was retained near normal, and the irreversible loss of cell growth potential following removal of the Fas stimulus was delayed. Of note, crBAP31-expressing cells also resisted Fas-mediated release of cytochrome c from mitochondria, and the mitochondrial electrochemical potential was only partly reduced. These results argue that BAP31 cleavage is important for manifesting cytoplasmic apoptotic events associated with membrane fragmentation and reveal an unexpected cross talk between mitochondria and the endoplasmic reticulum during Fas-mediated apoptosis in vivo.  相似文献   

2.
BAP31, a resident integral protein of the endoplasmic reticulum membrane, regulates the export of other integral membrane proteins to the downstream secretory pathway. Here we show that cell surface expression of the tetraspanins CD9 and CD81 is compromised in mouse cells from which the Bap31 gene has been deleted. CD9 and CD81 facilitate the function of multiprotein complexes at the plasma membrane, including integrins. Of note, BAP31 does not appear to influence the egress of alpha5beta1 or alpha(v)beta3 integrins to the cell surface, but in Bap31-null mouse cells, these integrins are not able to maintain cellular adhesion to the extracellular matrix in the presence of reduced serum. Consequently, Bap31-null cells are sensitive to serum starvation-induced apoptosis. Reconstitution of wild-type BAP31 into these Bap31-null cells restores integrin-mediated cell attachment and cell survival after serum stress, whereas interference with the functions of CD9, alpha5beta1, or alpha(v)beta3 by antagonizing antibodies makes BAP31 cells act similar to Bap31-null cells in these respects. Finally, in human KB epithelial cells protected from apoptosis by BCL-2, the caspase-8 cleavage product, p20 BAP31, inhibits egress of tetraspanin and integrin-mediated cell attachment. Thus, p20 BAP31 can operate upstream of BCL-2 in living cells to influence cell surface properties due to its effects on protein egress from the endoplasmic reticulum.  相似文献   

3.
Stimulation of cell surface death receptors activates caspase-8, which targets a limited number of substrates including BAP31, an integral membrane protein of the endoplasmic reticulum (ER). Recently, we reported that a caspase-resistant BAP31 mutant inhibited several features of Fas-induced apoptosis, including the release of cytochrome c (cyt.c) from mitochondria (Nguyen, M., D.G. Breckenridge, A. Ducret, and G.C. Shore. 2000. Mol. Cell. Biol. 20:6731-6740), implicating ER-mitochondria crosstalk in this pathway. Here, we report that the p20 caspase cleavage fragment of BAP31 can direct pro-apoptotic signals between the ER and mitochondria. Adenoviral expression of p20 caused an early release of Ca2+ from the ER, concomitant uptake of Ca2+ into mitochondria, and mitochondrial recruitment of Drp1, a dynamin-related protein that mediates scission of the outer mitochondrial membrane, resulting in dramatic fragmentation and fission of the mitochondrial network. Inhibition of Drp1 or ER-mitochondrial Ca2+ signaling prevented p20-induced fission of mitochondria. p20 strongly sensitized mitochondria to caspase-8-induced cyt.c release, whereas prolonged expression of p20 on its own ultimately induced caspase activation and apoptosis through the mitochondrial apoptosome stress pathway. Therefore, caspase-8 cleavage of BAP31 at the ER stimulates Ca2+-dependent mitochondrial fission, enhancing the release of cyt.c in response to this initiator caspase.  相似文献   

4.
BAP31 is a 28-kDa integral membrane protein of the endoplasmic reticulum whose cytosolic domain contains two caspase recognition sites that are preferentially cleaved by initiator caspases, such as caspase-8. Recently, we reported that the caspase-resistant BAP31 inhibited Fas-mediated apoptotic membrane fragmentation and the release of cytochrome c from mitochondria in KB epithelial cells (Nguyen M., Breckenridge G., Ducret A & Shore G. (2000) Mol. Cell. Biol.20, 6731-6740). We describe here the characterization by capillary liquid chromatography microelectrospray tandem MS of a BAP31 immunocomplex isolated from a HepG2 cell lysate in the absence of a death signal. We show that BAP31 specifically associates with nonmuscle myosin heavy chain B and nonmuscle gamma-actin, two components of the cytoskeleton actomyosin complex. Collectively, these data confirm that BAP31, in addition to its potential role as a chaperone, may play a fundamental role in the structural organization of the cytoplasm. Here we also show that Fas stimulation of apoptosis releases BAP31 associations with these motor proteins, a step that may contribute to extranuclear events, such as membrane remodelling, during the execution phase of apoptosis.  相似文献   

5.
Caspase-8 stably inserts into the mitochondrial outer membrane during extrinsic apoptosis. Inhibition of caspase-8 enrichment on the mitochondria impairs caspase-8 activation and prevents apoptosis. However, the function of active caspase-8 on the mitochondrial membrane remains unknown. In this study, we have identified a native complex containing caspase-8 and BID on the mitochondrial membrane, and showed that death receptor activation by Fas or tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induced the cleavage of BID (tBID formation) within this complex. tBID then shifted to separate mitochondria-associated complexes that contained other BCL-2 family members, such as BAK and BCL-X(L). We report that cells stabilize active caspase-8 on the mitochondria in order to specifically target mitochondria-associated BID, and that BID cleavage on the mitochondria is essential for caspase-8-induced cytochrome c release. Our findings indicate that during extrinsic apoptosis, caspase-8 can specifically target BID where it is mostly needed, on the surface of mitochondria.  相似文献   

6.
The proapoptotic activity of BID seems to solely depend upon its cleavage to truncated tBID. Here we demonstrate that expression of a caspase-8 non-cleavable (nc) BID-D59A mutant or expression of wild type (wt) BID induces apoptosis in Bid -/-, caspase-8 -/-, and wt primary MEFs. Western blot analysis indicated that no cleavage products appeared in cells expressing ncBID. ncBID was as effective as wtBID in inducing cytochrome c release, caspase activation, and apoptosis. ncBID and wtBID (nc/wtBID) were much less effective than tBID in localizing to mitochondria and in inducing cytochrome c release, but only slightly less effective in inducing apoptosis. Studies with Apaf-1- and caspase-9-deficient primary MEFs indicated that both proteins were essential for nc/wtBID and for tBID-induced apoptosis. Most importantly, expression of non-apoptotic levels of either ncBID or wtBID in Bid -/- MEFs induced a similar and significant enhancement in apoptosis in response to a variety of death signals, which was accompanied by enhanced localization of BID to mitochondria and cytochrome c release. Thus, these results implicate full-length BID as an active player in the mitochondria during apoptosis.  相似文献   

7.
BID, a pro-apoptotic Bcl-2 family member, promotes cytochrome c release during apoptosis initiated by CD95L or TNF. Activation of caspase-8 in the latter pathways results in cleavage of BID, translocation of activated BID to mitochondria, followed by redistribution of cytochrome c to the cytosol. However, it is unclear whether BID participates in cytochrome c release in other (non-death receptor) cell death pathways. Here, we show that BID is cleaved in response to multiple death-inducing stimuli (staurosporine, UV radiation, cycloheximide, etoposide). However BID cleavage in these contexts was blocked by Bcl-2, suggesting that proteolysis of BID occurred distal to cytochrome c release. Furthermore, addition of cytochrome c to Jurkat post-nuclear extracts triggered breakdown of BID at Asp-59 which was catalysed by caspase-3 rather than caspase-8. We provide evidence that caspase-3 catalysed cleavage of BID represents a feedback loop for the amplification of mitochondrial cytochrome c release during cytotoxic drug and UV radiation-induced apoptosis.  相似文献   

8.
Human BAP31 was cleaved at both of its two identical caspase cleavage sites in two previously reported models of apoptosis. We show here that only the most carboxy-terminal site is cleaved during apoptosis induced in HeLa cells by tunicamycin, tumor necrosis factor and cycloheximide, or staurosporine. Similar results were obtained in HL-60 cells using Fas/APO-1 antibodies, or cycloheximide. This limited cleavage, which is inhibited by several caspase inhibitors, removes eight amino acids from human BAP31 including the KKXX coat protein I binding motif. Ectopic expression of the resulting cleavage product induces redistribution of mannosidase II from the Golgi and prevents endoplasmic reticulum to Golgi transport of virus glycoproteins.  相似文献   

9.
Li J  Xia X  Ke Y  Nie H  Smith MA  Zhu X 《Biochimica et biophysica acta》2007,1770(8):1169-1180
Trichosanthin (TCS), a traditional Chinese medicine, exerts antitumor activities by inducing apoptosis in many different tumor cell lines. However, the mechanisms remain obscure. The present study focused on various caspase pathways that may be involved in TCS-induced apoptosis in leukemia HL-60 cells. Key caspases in both intrinsic and extrinsic pathways including caspase-8, -9 and -3 were activated upon TCS treatment. Additionally, TCS treatment induced upregulation of BiP and CHOP and also activated caspase-4, which for the first time strongly supported the involvement of endoplasmic reticulum stress pathway in TCS-induced apoptosis. Interestingly, although caspase-8 was activated, Fas/Fas ligand pathway was not involved as evidenced by a lack of induction of Fas or Fas ligand and a lack of inhibitory effect of anti-Fas blocking antibody on TCS-induced apoptosis. Instead, caspase-8 was activated in a caspase-9 and -4 dependent manner. The involvement of mitochondria was demonstrated by the reduction of mitochondrial membrane potential and release of cytochrome c and Smac besides the activation of caspase-9. Further investigation confirmed that caspase-3 was the major executioner caspase downstream to caspase-9, -4 and -8. Taken together, our results suggested that TCS-induced apoptosis in HL-60 cells was mainly mediated by mitochondrial and ER stress signaling pathways via caspase-3.  相似文献   

10.
We have recently reported that Ginsenoside Rh2 (G-Rh2) induces the activation of two initiator caspases, caspase-8 and caspase-9 in human cancer cells. However, the molecular mechanism of its death-inducing function remains unclear. Here we show that G-Rh2 stimulated the activation of both caspase-8 and caspase-9 simultaneously in HeLa cells. Under G-Rh2 treatment, membrane death receptors Fas and TNFR1 are remarkably upregulated. However, the induced expression of Fas but not TNFR1 was contributed to the apoptosis process. Moreover, significant increases in Fas expression and caspase-8 activity temporally coincided with an increase in p53 expression in p53-nonmutated HeLa and SK-HEP-1 cells upon G-Rh2 treatment. In contrast, Fas expression and caspase-8 activity remained constant with G-Rh2 treatment in p53-mutated SW480 and PC-3 cells. In addition, siRNA-mediated knockdown of p53 diminished G-Rh2-induced Fas expression and caspase-8 activation. These results indicated that G-Rh2-triggered extrinsic apoptosis relies on p53-mediated Fas over-expression. In the intrinsic apoptotic pathway, G-Rh2 induced strong and immediate translocation of cytosolic BAK and BAX to the mitochondria, mitochondrial cytochrome c release, and subsequent caspase-9 activation both in HeLa and in SW480 cells. p53-mediated Fas expression and subsequent downstream caspase-8 activation as well as p53-independent caspase-9 activation all contribute to the activation of the downstream effector caspase-3/-7, leading to tumor cell death. Taken together, we suggest that G-Rh2 induces cancer cell apoptosis in a multi-path manner and is therefore a promising candidate for antitumor drug development.  相似文献   

11.
Flavopiridol (FP), an inhibitor of cyclin dependent kinases 1, 2 and 4, potently induced apoptosis in U937 human monoblastic leukemia cells. This process was accompanied by characteristic morphological changes, inner mitochondrial membrane permeability transition, release of cytochrome c, processing of procaspases, and generation of reactive oxygen species. Significantly, the general caspase inhibitor Boc-FMK did not block the release of cytochrome c, whereas it did block cleavage of BID and the loss of Deltapsi(m). Neither FP-induced apoptosis nor cytochrome c release was inhibited by the pharmacological caspase-8 inhibitor IETD-FMK or endogenous expression of viral caspase-8 inhibitor CrmA. Finally, FP-mediated apoptosis, but not cytochrome c release, was partially blocked by the free radical scavenger LNAC. Collectively, these findings indicate that FP induces apoptosis in U937 cells via the release of cytochrome c from the mitochondria and independently of activation of procaspase-8.  相似文献   

12.
tBID Homooligomerizes in the mitochondrial membrane to induce apoptosis.   总被引:9,自引:0,他引:9  
Activation of the tumor necrosis factor R1/Fas receptor results in the cleavage of cytosolic BID to truncated tBID. tBID translocates to the mitochondria to induce the oligomerization of BAX or BAK, resulting in the release of cytochrome c (Cyt c). Here we demonstrate that in tumor necrosis factor alpha-activated FL5.12 cells, tBID becomes part of a 45-kDa cross-linkable mitochondrial complex that does not include BAX or BAK. Using fluorescence resonance energy transfer analysis and co-immunoprecipitation, we demonstrate that tBID-tBID interactions occur in the mitochondria of living cells. Cross-linking experiments using a tBID-GST chimera indicated that tBID forms homotrimers in the mitochondrial membrane. To test the functional consequence of tBID oligomerization, we expressed a chimeric FKBP-tBID molecule. Enforced dimerization of FKBP-tBID by the bivalent ligand FK1012 resulted in Cyt c release, caspase activation, and apoptosis. Surprisingly, enforced dimerization of tBID did not result in the dimerization of either BAX or BAK. Moreover, a tBID BH3 mutant (G94E), which does not interact with or induce the dimerization of either BAX or BAK, formed the 45-kDa complex and induced both Cyt c release and apoptosis. Thus, tBID oligomerization may represent an alternative mechanism for inducing mitochondrial dysfunction and apoptosis.  相似文献   

13.
Microsomal cytochrome P450 2C2 is an integral endoplasmic reticulum (ER) membrane protein that is directly retained in the ER and excluded from transport vesicles. We have used bimolecular fluorescence complementation and co-immunoprecipitation to show that a ubiquitous ER membrane protein (BAP31) interacts with P450 2C2 in transfected COS-1 cells. A chimera containing only the N-terminal signal anchor of P450 2C1 (P450 2C1-(1-29)) also interacted with BAP31, which is consistent with interaction of the two proteins via their transmembrane domains. Down-regulation of BAP31 expression with small interfering RNA resulted in redistribution of green fluorescent protein-tagged P450 2C2 or P450 2C1-(1-29) from the ER into the nuclear membrane and compact perinuclear compartment structures as well as the cell surface in a small fraction of the cells. In Bap31-null embryonic stem cells, a significant fraction of P450 2C2 or P450 2C1-(1-29) was detected at the cell surface and nuclear envelope, but was redistributed to the ER by expression of BAP31. The expression level of P450 2C2 was significantly increased in COS-1 cells with repressed levels of BAP31. Formation of the pro-apoptotic p20 fragment of BAP31 was detected in transfected COS-1 cells expressing P450 2C2, and annexin V staining was consistent with the activation of an apoptotic pathway in these cells. Down-regulation of BAP31 with small interfering RNA partially reversed the apoptosis. These results suggest that interaction of P450 2C2 with BAP31 is important for its ER retention and expression level and that BAP31 may be involved in the regulation of apoptosis induced by the ER overload response to increased expression of P450.  相似文献   

14.
The TNF-R1 like receptor Fas is highly expressed on the plasma membrane of hepatocytes and plays an essential role in liver homeostasis. We recently showed that in collagen-cultured primary mouse hepatocytes, Fas stimulation triggers apoptosis via the so-called type I extrinsic signaling pathway. Central to this pathway is the direct caspase-8-mediated cleavage and activation of caspase-3 as compared to the type II pathway which first requires caspase-8-mediated Bid cleavage to trigger mitochondrial cytochrome c release for caspase-3 activation. Mathematical modeling can be used to understand complex signaling systems such as crosstalks and feedback or feedforward loops. A previously published model predicted a positive feedback loop between active caspases-3 and -8 in both type I and type II FasL signaling in lymphocytes and Hela cells, respectively. Here we experimentally tested this hypothesis in our hepatocytic type I Fas signaling pathway by using wild-type and XIAP-deficient primary hepatocytes and two recently characterized, selective caspase-3/-7 inhibitors (AB06 and AB13). Caspase-3/-7 activity assays and quantitative western blotting confirmed that fully processed, active p17 caspase-3 feeds back on caspase-8 by cleaving its partially processed p43 form into the fully processed p18 species. Our data do not discriminate if p18 positively or negatively influences FasL-induced apoptosis or is responsible for non-apoptotic aspects of FasL signaling. However, we found that caspase-3 also feeds back on Bid and degrades its own inhibitor XIAP, both events that may enhance caspase-3 activity and apoptosis. Thus, potent, selective caspase-3 inhibitors are useful tools to understand complex signaling circuitries in apoptosis.  相似文献   

15.
Apoptosis can be induced by various stimuli such as the ligands of death receptors, chemotherapeutic drugs and irradiation. It is generally believed that chemotherapeutic drugs induce mitochondrial damage, cytochrome c release and activation of caspase-9, leading to apoptosis. Here, we found that an isoprenoid antibiotic, 4-O-methyl ascochlorin, significantly induces typical apoptotic events in Jurkat cells including the degradation of poly (ADP-ribose) polymerase, DNA fragmentation, activation of caspase-3, -9 and -8, and cytochrome c release from mitochondria. Similar to Fas stimulation, 4-O-methyl ascochlorin but not staurosporine, cycloheximide and actinomycin D, induced apoptosis in SKW6.4 cells, in which apoptosis is strongly dependent on death-inducing signaling-complex. Bcl-2 overexpression in Jurkat cells completely suppressed the apoptosis, but procaspase-9 processing was partially induced. A caspase-8 inhibitor, IETD-fmk, effectively suppressed poly (ADP-ribose) polymerase cleavage and cytochrome c release. However, 4-O-methyl ascochlorin induced apoptosis in Jurkat cells deficient of caspase-8 or Fas-associated death domain protein. These results suggest that 4-O-methyl ascochlorin induces apoptosis through the mechanism distinct from conventional apoptosis inducers.  相似文献   

16.
Most intrinsic death signals converge into the activation of pro-apoptotic BCL-2 family members BAX and BAK at the mitochondria, resulting in the release of cytochrome c and apoptosome activation. Chronic endoplasmic reticulum (ER) stress leads to apoptosis through the upregulation of a subset of pro-apoptotic BH3-only proteins, activating BAX and BAK at the mitochondria. Here we provide evidence indicating that the full resistance of BAX and BAK double deficient (DKO) cells to ER stress is reverted by stimulation in combination with mild serum withdrawal. Cell death under these conditions was characterized by the appearance of classical apoptosis markers, caspase-9 activation, release of cytochrome c, and was inhibited by knocking down caspase-9, but insensitive to BCL-X(L) overexpression. Similarly, the resistance of BIM and PUMA double deficient cells to ER stress was reverted by mild serum withdrawal. Surprisingly, BAX/BAK-independent cell death did not require Cyclophilin D (CypD) expression, an important regulator of the mitochondrial permeability transition pore. Our results suggest the existence of an alternative intrinsic apoptosis pathway emerging from a cross talk between the ER and the mitochondria.  相似文献   

17.
A20 was originally characterized as a TNF-inducible gene in human umbilical vein endothelial cells. As an NF-kappaB target gene, A20 is also induced in many other cell types by a wide range of stimuli. Expression of A20 has been shown to protect from TNF-induced apoptosis and also functions via a negative-feedback loop to block NF-kappaB activation induced by TNF and other stimuli. To date, there are no reports on whether A20 can protect OxLDL-induced apoptosis in macrophages. For the first time we report that A20 expression blocks OxLDL-mediated cell toxicity and apoptosis. OxLDL induced the expression of Fas and FasL, and the subsequent caspase-8 cleavage and treatment with a neutralizing ZB4 anti-Fas antibody blocked apoptosis induced by OxLDL. Expression of dominant negative FADD efficiently prevented OxLDL-induced apoptosis and caspase-8 activation. A20 expression significantly attenuated the increased expression of Fas and FasL, and Fas-mediated apoptosis. These findings suggest that A20-mediated protection from OxLDL may occur at the level of Fas/FADD-caspase-8 and be FasL dependent. Treatment of RAW264.7 cells with OxLDL induces a series of time-dependent events, including the release of cytochrome c, Smac and Omi from the mitochondria to the cytosol, activation of caspase-9, -6, -2, and -3, which are blocked by A20 expression. No cleaved form of Bid was detected, even treatment with OxLDL for 48 h. Expression of dominant negative FADD also efficiently prevented OxLDL-induced the above apoptotic events. The release of cyto c, Smac and Omi from mitochondria to cytosol, activated by OxLDL treatment, and the activation of caspase-9 may not be a downstream event of caspase-8-mediated Bid cleavage. Therefore, the protective effect of A20 on mitochondrial apoptotic pathway activated by OxLDL may be dependent on FADD. A20 expression reversed OxLDL-mediated G(0)/G(1) stage arrest by maintaining the expression of cyclin B1, cyclin D1, and cyclin E, and p21 and p73. Thus, A20 expression blocks OxLDL-mediated apoptosis in murine RAW264.7 macrophages through disrupting Fas/FasL-dependent activation of caspase-8 and the mitochondria pathway.  相似文献   

18.
The cellular response to p53 activation varies greatly in a stimulus- and cell type-specific manner. Dissecting the molecular mechanisms defining these cell fate choices will assist the development of effective p53-based cancer therapies and also illuminate fundamental processes by which gene networks control cellular behaviour. Using an experimental system wherein stimulus-specific p53 responses are elicited by non-genotoxic versus genotoxic agents, we discovered a novel mechanism that determines whether cells undergo proliferation arrest or cell death. Strikingly, we observe that key mediators of cell-cycle arrest (p21, 14-3-3σ) and apoptosis (PUMA, BAX) are equally activated regardless of outcome. In fact, arresting cells display strong translocation of PUMA and BAX to the mitochondria, yet fail to release cytochrome C or activate caspases. Surprisingly, the key differential events in apoptotic cells are p53-dependent activation of the DR4 death receptor pathway, caspase 8-mediated cleavage of BID, and BID-dependent activation of poised BAX at the mitochondria. These results reveal a previously unappreciated role for DR4 and the extrinsic apoptotic pathway in cell fate choice following p53 activation.  相似文献   

19.
We find that the prostate cancer cell lines ALVA-31, PC-3, and DU 145 are highly sensitive to apoptosis induced by TRAIL (tumor-necrosis factor-related apoptosis-inducing ligand), while the cell lines TSU-Pr1 and JCA-1 are moderately sensitive, and the LNCaP cell line is resistant. LNCaP cells lack active lipid phosphatase PTEN, a negative regulator of the phosphatidylinositol (PI) 3-kinase/Akt pathway, and demonstrate a high constitutive Akt activity. Inhibition of PI 3-kinase using wortmannin and LY-294002 suppressed constitutive Akt activity and sensitized LNCaP cells to TRAIL. Treatment of LNCaP cells with TRAIL alone induced cleavage of the caspase 8 and XIAP proteins. However, processing of BID, mitochondrial release of cytochrome c, activation of caspases 7 and 9, and apoptosis did not occur unless TRAIL was combined with either wortmannin, LY-294002, or cycloheximide. Blocking cytochrome c release by Bcl-2 overexpression rendered LNCaP cells resistant to TRAIL plus wortmannin treatment but did not affect caspase 8 or BID processing. This indicates that in these cells mitochondria are required for the propagation rather than the initiation of the apoptotic cascade. Infection of LNCaP cells with an adenovirus expressing a constitutively active Akt reversed the ability of wortmannin to potentiate TRAIL-induced BID cleavage. Thus, the PI 3-kinase-dependent blockage of TRAIL-induced apoptosis in LNCaP cells appears to be mediated by Akt through the inhibition of BID cleavage.  相似文献   

20.
Interleukin-11 (IL-11) displays epithelial cytoprotective effects during intestinal injury. Antiapoptotic effects of IL-11 have been described, yet mechanisms remain unclear. Fas/CD95 death receptor signaling is upregulated in ulcerative colitis, leading to mucosal breakdown. We hypothesized that IL-11 inhibits Fas ligand (FasL)-mediated apoptosis in intestinal epithelia. Cell death was monitored in IEC-18 cells by microscopy, caspase and poly(ADP-ribose) polymerase cleavage, mitochondrial release of cytochrome c, and abundance of cytoplasmic oligonucleosomal DNA. RT-PCR was used to monitor Fas, cIAP1, cIAP2, XIAP, cFLIP, survivin, and Bcl-2 family members. Fas membrane expression was detected by immunoblot. Inhibitors of JAK2, phosphatidylinositol 3-kinase (PI3-kinase), Akt 1, MEK1 and MEK2, and p38 MAPK were used to delineate IL-11's antiapoptotic mechanisms. IL-11 did not alter Fas expression. Pretreatment with IL-11 for 24 h before FasL reduced cytoplasmic oligonucleosomal DNA by 63.2%. IL-11 also attenuated caspase-3, caspase-9, and poly(ADP-ribose) polymerase cleavage without affecting expression of activated caspase-8 p20 or cytochrome c release. IL-11 did not affect mRNA expression of the candidate antiapoptotic genes. The MEK1 and MEK2 inhibitors U-0126 and PD-98059 significantly attenuated the protection of IL-11 against caspase-3 and caspase-9 cleavage and cytoplasmic oligonucleosomal DNA accumulation. Although Akt inhibition reversed IL-11-mediated effects on caspase cleavage, it did not reverse the protective effects of IL-11 by DNA ELISA. We conclude that IL-11-dependent MEK1 and MEK2 signaling inhibits FasL-induced apoptosis. The lack of reversal of the IL-11 effect on DNA cleavage by Akt inhibition, despite antagonism of caspase cleavage, suggests that IL-11 inhibits caspase-independent cell death signaling by FasL in a MEK-dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号