首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 472 毫秒
1.
We used DNA sequencing and gel blot surveys to assess the integrity of the chloroplast gene infA, which codes for translation initiation factor 1, in >300 diverse angiosperms. Whereas most angiosperms appear to contain an intact chloroplast infA gene, the gene has repeatedly become defunct in approximately 24 separate lineages of angiosperms, including almost all rosid species. In four species in which chloroplast infA is defunct, transferred and expressed copies of the gene were found in the nucleus, complete with putative chloroplast transit peptide sequences. The transit peptide sequences of the nuclear infA genes from soybean and Arabidopsis were shown to be functional by their ability to target green fluorescent protein to chloroplasts in vivo. Phylogenetic analysis of infA sequences and assessment of transit peptide homology indicate that the four nuclear infA genes are probably derived from four independent gene transfers from chloroplast to nuclear DNA during angiosperm evolution. Considering this and the many separate losses of infA from chloroplast DNA, the gene has probably been transferred many more times, making infA by far the most mobile chloroplast gene known in plants.  相似文献   

2.
The root of the angiosperm tree has not yet been established. Major morphological and molecular differences between angiosperms and other seed plants have introduced ambiguities and possibly spurious results. Because it is unlikely that extant species more closely related to angiosperms will be discovered, and because relevant fossils will almost certainly not yield molecular data, the use of duplicate genes for rooting purposes may provide the best hope of a solution. Simultaneous analysis of the genes resulting from a gene duplication event along the branch subtending angiosperms would yield an unrooted network, wherein two congruent gene trees should be connected by a single branch. In these circumstances the best rooted species tree is the one that corresponds to the two gene trees when the network is rooted along the connecting branch. In general, this approach can be viewed as choosing among rooted species trees by minimizing hypothesized events such as gene duplication, gene loss, lineage sorting, and lateral transfer. Of those gene families that are potentially relevant to the angiosperm problem, phytochrome genes warrant special attention. Phylogenetic analysis of a sample of complete phytochrome (PHY) sequences implies that an initial duplication event preceded (or occurred early within) the radiation of seed plants and that each of the two resulting copies duplicated again. In one of these cases, leading to thePHYAandPHYClineages, duplication appears to have occurred before the diversification of angiosperms. Duplicate gene trees are congruent in these broad analyses, but the sample of sequences is too limited to provide much insight into the rooting question. Preliminary analyses of partialPHYAandPHYCsequences from several presumably basal angiosperm lineages are promising, but more data are needed to critically evaluate the power of these genes to resolve the angiosperm radiation.  相似文献   

3.
We have determined the complete chloroplast genome sequences of four early-diverging lineages of angiosperms, Buxus (Buxaceae), Chloranthus (Chloranthaceae), Dioscorea (Dioscoreaceae), and Illicium (Schisandraceae), to examine the organization and evolution of plastid genomes and to estimate phylogenetic relationships among angiosperms. For the most part, the organization of these plastid genomes is quite similar to the ancestral angiosperm plastid genome with a few notable exceptions. Dioscorea has lost one protein-coding gene, rps16; this gene loss has also happened independently in four other land plant lineages, liverworts, conifers, Populus, and legumes. There has also been a small expansion of the inverted repeat (IR) in Dioscorea that has duplicated trnH-GUG. This event has also occurred multiple times in angiosperms, including in monocots, and in the two basal angiosperms Nuphar and Drimys. The Illicium chloroplast genome is unusual by having a 10 kb contraction of the IR. The four taxa sequenced represent key groups in resolving phylogenetic relationships among angiosperms. Illicium is one of the basal angiosperms in the Austrobaileyales, Chloranthus (Chloranthales) remains unplaced in angiosperm classifications, and Buxus and Dioscorea are early-diverging eudicots and monocots, respectively. We have used sequences for 61 shared protein-coding genes from these four genomes and combined them with sequences from 35 other genomes to estimate phylogenetic relationships using parsimony, likelihood, and Bayesian methods. There is strong congruence among the trees generated by the three methods, and most nodes have high levels of support. The results indicate that Amborella alone is sister to the remaining angiosperms; the Nymphaeales represent the next-diverging clade followed by Illicium; Chloranthus is sister to the magnoliids and together this group is sister to a large clade that includes eudicots and monocots; and Dioscorea represents an early-diverging lineage of monocots just internal to Acorus.  相似文献   

4.
While there has been strong support for Amborella and Nymphaeales (water lilies) as branching from basal-most nodes in the angiosperm phylogeny, this hypothesis has recently been challenged by phylogenetic analyses of 61 protein-coding genes extracted from the chloroplast genome sequences of Amborella, Nymphaea, and 12 other available land plant chloroplast genomes. These character-rich analyses placed the monocots, represented by three grasses (Poaceae), as sister to all other extant angiosperm lineages. We have extracted protein-coding regions from draft sequences for six additional chloroplast genomes to test whether this surprising result could be an artifact of long-branch attraction due to limited taxon sampling. The added taxa include three monocots (Acorus, Yucca, and Typha), a water lily (Nuphar), a ranunculid (Ranunculus), and a gymnosperm (Ginkgo). Phylogenetic analyses of the expanded DNA and protein data sets together with microstructural characters (indels) provided unambiguous support for Amborella and the Nymphaeales as branching from the basal-most nodes in the angiosperm phylogeny. However, their relative positions proved to be dependent on the method of analysis, with parsimony favoring Amborella as sister to all other angiosperms and maximum likelihood (ML) and neighbor-joining methods favoring an Amborella + Nymphaeales clade as sister. The ML phylogeny supported the later hypothesis, but the likelihood for the former hypothesis was not significantly different. Parametric bootstrap analysis, single-gene phylogenies, estimated divergence dates, and conflicting indel characters all help to illuminate the nature of the conflict in resolution of the most basal nodes in the angiosperm phylogeny. Molecular dating analyses provided median age estimates of 161 MYA for the most recent common ancestor (MRCA) of all extant angiosperms and 145 MYA for the MRCA of monocots, magnoliids, and eudicots. Whereas long sequences reduce variance in branch lengths and molecular dating estimates, the impact of improved taxon sampling on the rooting of the angiosperm phylogeny together with the results of parametric bootstrap analyses demonstrate how long-branch attraction might mislead genome-scale phylogenetic analyses.  相似文献   

5.
An angiosperm phylogeny was reconstructed in a maximum likelihood analysis of sequences of four mitochondrial genes, atpl, matR, had5, and rps3, from 380 species that represent 376 genera and 296 families of seed plants. It is largely congruent with the phylogeny of angiosperms reconstructed from chloroplast genes atpB, matK, and rbcL, and nuclear 18S rDNA. The basalmost lineage consists of Amborella and Nymphaeales (including Hydatellaceae). Austrobaileyales follow this clade and are sister to the mesangiosperms, which include Chloranthaceae, Ceratophyllum, magnoliids, monocots, and eudicots. With the exception of Chloranthaceae being sister to Ceratophyllum, relationships among these five lineages are not well supported. In eudicots, Ranunculales, Sabiales, Proteales, Trochodendrales, Buxales, Gunnerales, Saxifragales, Vitales, Berberidopsidales, and Dilleniales form a basal grade of lines that diverged before the diversification of rosids and asterids. Within rosids, the COM (Celastrales-Oxalidales-Malpighiales) clade is sister to malvids (or rosid Ⅱ), instead of to the nitrogen-fixing clade as found in all previous large-scale molecular analyses of angiosperms. Santalales and Caryophyllales are members of an expanded asterid clade. This study shows that the mitochondrial genes are informative markers for resolving relationships among genera, families, or higher rank taxa across angiosperms. The low substitution rates and low homoplasy levels of the mitochondrial genes relative to the chloroplast genes, as found in this study, make them particularly useful for reconstructing ancient phylogenetic relationships. A mitochondrial gene-based angiosperm phylogeny provides an independent and essential reference for comparison with hypotheses of angiosperm phylogeny based on chloroplast genes, nuclear genes, and non-molecular data to reconstruct the underlying organismal phylogeny.  相似文献   

6.
We developed PCR primers against highly conserved regions of the rRNA operon located within the inverted repeat of the chloroplast genome and used these to amplify the region spanning from the 3' terminus of the 23S rRNA gene to the 5' terminus of the 5S rRNA gene. The sequence of this roughly 500-bp region, which includes the 4.5S rRNA gene and two chloroplast intergenic transcribed spacer regions (cpITS2 and cpITS3), was determined from 20 angiosperms, 7 gymnosperms, and 16 ferns (21,700 bp). Sequences for the large subunit of ribulose bisphosphate carboxylase/oxygenase (rbcL) from the same or confamilial genera were analyzed in both separate and combined data sets. Due to the low substitution rate in the inverted repeat region, noncoding sequences in the cpITS region are not saturated with substitutions, in contrast to synonymous sites in rbcL, which are shown to evolve roughly six times faster than noncoding cpITS sequences. Several length polymorphisms with very clear phylogenetic distributions were detected in the data set. Results of phylogenetic analyses provide very strong bootstrap support for monophyly of both spermatophytes and angiosperms. No support for a sister group relationship between Gnetales and angiosperms in either cpITS or rbcL data was found. Rather, weak bootstrap support for monophyly of gymnosperms studied and for a basal position for the aquatic angiosperm Nymphaea among angiosperms studied was observed. Noncoding sequences from the inverted repeat region of chloroplast DNA appear suitable for study of land plant evolution.   相似文献   

7.
It is widely appreciated that noisy, highly variable data can impede phylogeney reconstruction. Researchers have for a long time omitted problematic data from phylogenetic analyses, such as the third-codon positions and variable regions. In the analyses of the phylogenetic relations of the angiosperms; however, inclusion of complete gene sequences into genomic-scale alignments has become a common practice. Here we demonstrate that this practice can be misleading. We show that support of the basal-most position of Amborella trichopoda among the angiosperms in the chloroplast genomic data is based only on a tiny subset (< 1% of the total alignment length) of the most variable positions in alignment, exhibiting mean maximum likelihood (ML) distance among the angiosperm operational taxonomic units (OTUs) approximately 36 substitutions/site. Exclusion of these positions leads to disappearance of the basal Amborella branch. Likewise, the recently reported sister-group relationship of Ceratophyllum to the eudicots is based on the presence of 2% of the most variable positions in the genomic alignment, exhibiting, on average, 20 substitutions/site in comparison among the angiosperm OTUs. These observations highlight a need for excluding a certain proportion of saturated positions in alignment from phylogenomic analyses.  相似文献   

8.
9.
 Based on PCR technologies, we have isolated three genomic cinnamyl alcohol dehydrogenase (CAD) clones from Norway spruce, Picea abies (L.) Karst., revealing about 99% identity within their protein coding regions. All clones contain five introns with an identity of 97–100% for intervening sequences II, III and IV, whereas intron V sequences revealed only 87–89% identity. Intron I sequences share an identity of 85–98% among all three clones. Intron IV is only present in Norway spruce and not found in published genomic CAD sequences of angiosperms. Tandem repeats between 24 and 49 bp were discovered within intervening sequences I and V. Southern hybridization of seedling DNA and PCR-based intron analyses using diploid leaf buds and haploid megagametophytes indicate the existence of a small CAD gene family within the spruce genome, consisting of at least two loci. Evolutionary analyses of CAD encoding sequences using distance matrix- and parsimony-based methods revealed that CADs from angiosperms form a clade distinct from those of gymnosperms. Confirmed by maximal bootstrap values of 100%, a gene duplication gave rise to two different groups of angiospermous CADs and this duplication may have occurred in an early stage of angiosperm radiation, certainly before the separation of the Dilleniidae and Rosidae lineages. Phylogenetic investigations suggest angiosperm CAD II sequences to have evolved more rapidly than angiosperm CAD I genes. On the other hand, CAD gene evolution appears to be significantly slower in conifers than in angiosperms. Received: 27 February 1998 / Accepted: 22 April 1998  相似文献   

10.
Summary Complete or partial nucleotide sequences of five different rRNA species, coded by nuclear (18S, 5.8S, and 5S) or chloroplast genomes (5S, 4.5S) from a number of seed plants were determined. Based on the sequence data, the phylogenetic dendrograms were built by two methods, maximum parsimony and compatibility. The topologies of the trees for different rRNA species are not fully congruent, but they share some common features. It may be concluded that both gymnosperms and angiosperms are monophyletic groups. The data obtained suggest that the divergence of all the main groups of extant gymnosperms occurred after the branching off of the angiosperm lineage. As the time of divergence of at least some of these gymnosperm taxa is traceable back to the early Carboniferous, it may be concluded that the genealogical splitting of gymnosperm and angiosperm lineages occurred before this event, at least 360 million years ago, i.e., much earlier than the first angiosperm fossils were dated. Ancestral forms of angiosperms ought to be searched for among Progymnospermopsida. Genealogical relationships among gymnosperm taxa cannot be deduced unambiguously on the basis of rRNA data. The only inference may be that the taxon Gnetopsida is an artificial one, andGnetum andEphedra belong to quite different lineages of gymnosperms. As to the phylogenetic position of the two Angiospermae classes, extant monocotyledons seem to be a paraphyletic group located near the root of the angiosperm branch; it emerged at the earliest stages of angiosperm evolution. We may conclude that either monocotyledonous characters arose independently more than once in different groups of ancient Magnoliales or that monocotyledonous forms rather than dicotyledonous Magnoliales were the earliest angiosperms. Judging by the rRNA trees, Magnoliales are the most ancient group among dicotyledons. The most ancient lineage among monocotyledons leads to modern Liliaceae.  相似文献   

11.
M C Shih  P Heinrich  H M Goodman 《Gene》1991,104(2):133-138
Both cDNA and genomic clones for the nuclear genes encoding chloroplast (cp) (gapA and gapB) and cytosolic (gapC) glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Arabidopsis thaliana have been isolated and characterized. Genomic Southern-blot analyses indicate that there is only one copy of each gapA, gapB and gapC gene in A. thaliana. Comparison of the deduced amino acid (aa) sequences shows that the A and B subunits are highly similar (80% positional aa identity), while there is less similarity between the cp and cytosolic subunits (45% aa identity). These relationships are consistent with the idea that the cp and cytosolic GAPDHs evolved from different lineages, as suggested in our previous study of tobacco GAPDHs [Shih et al., Cell 47 (1986) 73-80]. In addition, the chromosomal locations for the three gap genes were determined by restriction fragment length polymorphism mapping; the three gap genes are not closely linked, gapA (55.8 cM) and gapC (0.0 cM) are on chromosome 3, and gapB (51.3 cM) is on chromosome 1.  相似文献   

12.
Chloroplast genome information helps improve the phylogenetic resolution and can act as organelle-scale barcodes in recently radiated plant groups. Previously we reported that nine universal primer pairs could amplify angiosperm whole chloroplast genomes by long-range polymerase chain reaction and using next-generation sequencing. Although these primers show high universality and efficiency for sequencing whole chloroplast genomes in angiosperms, they did not fully resolve the following two issues surrounding sequencing angiosperm chloroplast genomes: (i) approximately 30% of angiosperms cannot be amplified successfully; and (ii) only fresh leaves can be applied. In this study, we designed another set of 15 universal primer pairs for amplifying angiosperm whole chloroplast genomes to complement the original nine primer pairs. Furthermore, we designed a primer pair for nuclear ribosomal DNAs (nrDNAs). To validate the functionality of the primers, we tested 44 species with silica gel-dried leaves and 15 species with fresh leaves that have been shown to not be amplified with the original nine primer pairs. The result showed that, in 65.9% and 88.6% of the 44 species with silica gel-dried leaves, the whole chloroplast genome and nrDNAs could be amplified, respectively. In addition, all 15 fresh leaf samples could have the whole chloroplast genome successfully amplified. The nrDNAs comprise partial sequences of 18S and 26S, along with the complete sequence of 5.8S and the internal transcribed spacers ITS1 and ITS2. The mean size of nrDNA was 5800 bp. This study shows that the 15 universal primer set is an indispensable tool for amplifying whole chloroplast genomes in angiosperms, and these are an important supplement to the nine reported primer pairs.  相似文献   

13.
Angiosperm phylogeny based on matK sequence information   总被引:2,自引:0,他引:2  
Plastid matK gene sequences for 374 genera representing all angiosperm orders and 12 genera of gymnosperms were analyzed using parsimony (MP) and Bayesian inference (BI) approaches. Traditionally, slowly evolving genomic regions have been preferred for deep-level phylogenetic inference in angiosperms. The matK gene evolves approximately three times faster than the widely used plastid genes rbcL and atpB. The MP and BI trees are highly congruent. The robustness of the strict consensus tree supercedes all individual gene analyses and is comparable only to multigene-based phylogenies. Of the 385 nodes resolved, 79% are supported by high jackknife values, averaging 88%. Amborella is sister to the remaining angiosperms, followed by a grade of Nymphaeaceae and Austrobaileyales. Bayesian inference resolves Amborella + Nymphaeaceae as sister to the rest, but with weak (0.42) posterior probability. The MP analysis shows a trichotomy sister to the Austrobaileyales representing eumagnoliids, monocots + Chloranthales, and Ceratophyllum + eudicots. The matK gene produces the highest internal support yet for basal eudicots and, within core eudicots, resolves a crown group comprising Berberidopsidaceae/Aextoxicaceae, Santalales, and Caryophyllales + asterids. Moreover, matK sequences provide good resolution within many angiosperm orders. Combined analyses of matK and other rapidly evolving DNA regions with available multigene data sets have strong potential to enhance resolution and internal support in deep level angiosperm phylogenetics and provide additional insights into angiosperm evolution.  相似文献   

14.
The early diversification of angiosperms is thought to have been a rapid process, which may complicate phylogenetic analyses of early angiosperm relationships. Plastid and nuclear phylogenomic studies have raised several conflicting hypotheses regarding overall angiosperm phylogeny, but mitochondrial genomes have been largely ignored as a relevant source of information. Here we sequenced mitochondrial genomes from 18 angiosperms to fill taxon-sampling gaps in Austrobaileyales, magnoliids, Chloranthales, Ceratophyllales, and major lineages of eudicots and monocots. We assembled a data matrix of 38 mitochondrial genes from 107 taxa to assess how well mitochondrial genomic data address current uncertainties in angiosperm relationships. Although we recovered conflicting phylogenies based on different data sets and analytical methods, we also observed congruence regarding deep relationships of several major angiosperm lineages: Chloranthales were always inferred to be the sister group of Ceratophyllales, Austrobaileyales to mesangiosperms, and the unplaced Dilleniales was consistently resolved as the sister to superasterids. Substitutional saturation, GC compositional heterogeneity, and codon-usage bias are possible reasons for the noise/conflict that may impact phylogenetic reconstruction; and angiosperm mitochondrial genes may not be substantially affected by these factors. The third codon positions of the mitochondrial genes appear to contain more parsimony-informative sites than the first and second codon positions, and therefore produced better resolved phylogenetic relationships with generally strong support. The relationships among these major lineages remain incompletely resolved, perhaps as a result of the rapidity of early radiations. Nevertheless, data from mitochondrial genomes provide additional evidence and alternative hypotheses for exploring the early evolution and diversification of the angiosperms.  相似文献   

15.
Five groups of basal angiosperms, Amborella, Nymphaeales, Illiciales, Trimeniaceae, and Austrobaileya (ANITA), were identified in several recent studies as representing a series of the earliest-diverging lineages of the angiosperm phylogeny. All of these studies except one employed a multigene analysis approach and used gymnosperms as the outgroup to determine the ingroup topology. The high level of divergence between gymnosperms and angiosperms, however, has long been implicated in the difficulty of reconstructing relationships at the base of angiosperm phylogeny using DNA sequences, for fear of long-branch attraction (LBA). In this study, we replaced the gymnosperm sequences from the five-gene matrix (mitochondrial atp1 and matR, plastid atpB and rbcL, and nuclear 18S rDNA) used in our earlier study with four categories of divergent sequences--random sequences with equal base frequencies or equally AT- and GC-rich contents, homopolymers and heteropolymers, misaligned gymnosperm sequences, and aligned lycopod and bryophyte sequences--to evaluate whether the gymnosperms were an appropriate outgroup to angiosperms in our earlier study that identified the ANITA rooting. All 24 analyses performed rooted the angiosperm phylogeny at either Acorus or Alisma (or Alisma-Triglochin-Potamogeton in one case due to use of a slightly different alignment) and placed the monocots as a basal grade, producing genuine LBA results. These analyses demonstrate that the identification of ANITA as the basalmost extant angiosperms was based on historical signals preserved in the gymnosperm sequences and that the gymnosperms were an appropriate outgroup with which to root the angiosperm phylogeny in the multigene sequence analysis. This strategy of evaluating the appropriateness of an outgroup using artificial sequences and a series of outgroups with increments of divergence levels can be applied to investigations of phylogenetic patterns at the bases of other major clades, such as land plants, animals, and eukaryotes.  相似文献   

16.
Chloroplast genomes supply indispensable information that helps improve the phylogenetic resolution and even as organelle‐scale barcodes. Next‐generation sequencing technologies have helped promote sequencing of complete chloroplast genomes, but compared with the number of angiosperms, relatively few chloroplast genomes have been sequenced. There are two major reasons for the paucity of completely sequenced chloroplast genomes: (i) massive amounts of fresh leaves are needed for chloroplast sequencing and (ii) there are considerable gaps in the sequenced chloroplast genomes of many plants because of the difficulty of isolating high‐quality chloroplast DNA, preventing complete chloroplast genomes from being assembled. To overcome these obstacles, all known angiosperm chloroplast genomes available to date were analysed, and then we designed nine universal primer pairs corresponding to the highly conserved regions. Using these primers, angiosperm whole chloroplast genomes can be amplified using long‐range PCR and sequenced using next‐generation sequencing methods. The primers showed high universality, which was tested using 24 species representing major clades of angiosperms. To validate the functionality of the primers, eight species representing major groups of angiosperms, that is, early‐diverging angiosperms, magnoliids, monocots, Saxifragales, fabids, malvids and asterids, were sequenced and assembled their complete chloroplast genomes. In our trials, only 100 mg of fresh leaves was used. The results show that the universal primer set provided an easy, effective and feasible approach for sequencing whole chloroplast genomes in angiosperms. The designed universal primer pairs provide a possibility to accelerate genome‐scale data acquisition and will therefore magnify the phylogenetic resolution and species identification in angiosperms.  相似文献   

17.

Background  

The Vitaceae (grape) is an economically important family of angiosperms whose phylogenetic placement is currently unresolved. Recent phylogenetic analyses based on one to several genes have suggested several alternative placements of this family, including sister to Caryophyllales, asterids, Saxifragales, Dilleniaceae or to rest of rosids, though support for these different results has been weak. There has been a recent interest in using complete chloroplast genome sequences for resolving phylogenetic relationships among angiosperms. These studies have clarified relationships among several major lineages but they have also emphasized the importance of taxon sampling and the effects of different phylogenetic methods for obtaining accurate phylogenies. We sequenced the complete chloroplast genome of Vitis vinifera and used these data to assess relationships among 27 angiosperms, including nine taxa of rosids.  相似文献   

18.
BACKGROUND AND AIMS: Expansins are plant cell wall loosening proteins important in a variety of physiological processes. They comprise a large superfamily of genes consisting of four families (EXPA, EXPB, EXLA and EXLB) whose evolutionary relationships have been well characterized in angiosperms, but not in basal land plants. This work attempts to connect the expansin superfamily in bryophytes with the evolutionary history of this superfamily in angiosperms. METHODS: The expansin superfamily in Physcomitrella patens has been assembled from the Physcomitrella sequencing project data generated by the Joint Genome Institute and compared with angiosperm expansin superfamilies. Phylogenetic, motif, intron and distance analyses have been used for this purpose. KEY RESULTS: A gene superfamily is revealed that contains similar numbers of genes as found in arabidopsis, but lacking EXLA or EXLB genes. This similarity in gene numbers exists even though expansin evolution in Physcomitrella diverged from the angiosperm line approx. 400 million years ago. Phylogenetic analyses suggest that there were a minimum of two EXPA genes and one EXPB gene in the last common ancestor of angiosperms and Physcomitrella. Motif analysis seems to suggest that EXPA protein function is similar in bryophytes and angiosperms, but that EXPB function may be altered. CONCLUSIONS: The EXPA genes of Physcomitrella are likely to have maintained the same biochemical function as angiosperm expansins despite their independent evolutionary history. Changes seen at normally conserved residues in the Physcomitrella EXPB family suggest a possible change in function as one mode of evolution in this family.  相似文献   

19.
Polyploidy and angiosperm diversification   总被引:2,自引:0,他引:2  
Polyploidy has long been recognized as a major force in angiosperm evolution. Recent genomic investigations not only indicate that polyploidy is ubiquitous among angiosperms, but also suggest several ancient genome-doubling events. These include ancient whole genome duplication (WGD) events in basal angiosperm lineages, as well as a proposed paleohexaploid event that may have occurred close to the eudicot divergence. However, there is currently no evidence for WGD in Amborella, the putative sister species to other extant angiosperms. The question is no longer "What proportion of angiosperms are polyploid?", but "How many episodes of polyploidy characterize any given lineage?" New algorithms provide promise that ancestral genomes can be reconstructed for deep divergences (e.g., it may be possible to reconstruct the ancestral eudicot or even the ancestral angiosperm genome). Comparisons of diversification rates suggest that genome doubling may have led to a dramatic increase in species richness in several angiosperm lineages, including Poaceae, Solanaceae, Fabaceae, and Brassicaceae. However, additional genomic studies are needed to pinpoint the exact phylogenetic placement of the ancient polyploidy events within these lineages and to determine when novel genes resulting from polyploidy have enabled adaptive radiations.  相似文献   

20.
Kramer EM  Jaramillo MA  Di Stilio VS 《Genetics》2004,166(2):1011-1023
Members of the AGAMOUS (AG) subfamily of MIKC-type MADS-box genes appear to control the development of reproductive organs in both gymnosperms and angiosperms. To understand the evolution of this subfamily in the flowering plants, we have identified 26 new AG-like genes from 15 diverse angiosperm species. Phylogenetic analyses of these genes within a large data set of AG-like sequences show that ancient gene duplications were critical in shaping the evolution of the subfamily. Before the radiation of extant angiosperms, one event produced the ovule-specific D lineage and the well-characterized C lineage, whose members typically promote stamen and carpel identity as well as floral meristem determinacy. Subsequent duplications in the C lineage resulted in independent instances of paralog subfunctionalization and maintained functional redundancy. Most notably, the functional homologs AG from Arabidopsis and PLENA (PLE) from Antirrhinum are shown to be representatives of separate paralogous lineages rather than simple genetic orthologs. The multiple subfunctionalization events that have occurred in this subfamily highlight the potential for gene duplication to lead to dissociation among genetic modules, thereby allowing an increase in morphological diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号