首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. To further investigate the possible role of glucagon in appetite control, weaned rabbits were auto-immunized using a glucagon-bovine serum albumin conjugate (G-BSA). 2. At weekly intervals, the animals were weighed and blood samples collected and subsequently analysed for insulin, glucose and glucagon concentrations. Weekly food consumption was also recorded. 3. At the termination of the experimental period, each animal was subjected to a glucose tolerance test. Following this procedure, the animals were killed and the livers excised and frozen for subsequent glycogen determination. 4. No differences between the controls and auto-immunized group were found at any time for weekly weight gain, food intake, blood glucose or insulin concentrations. 5. Glucagon concentrations in the control group remain stable over the 7 week period; however, after the third week of the experiment, no glucagon could be detected in the blood of any of the auto-immunized animals. 6. The auto-immunized animals had significantly different glucose tolerance profiles and also had significantly more liver glycogen than the control group.  相似文献   

2.
Objectives: Obestatin has been initially characterized as a new peptide derived from the ghrelin precursor, which suppresses food intake and inhibits the orexigenic and prokinetic actions of ghrelin when injected peripherally or centrally in lean mice. However, reproducing these data remains controversial. Reasons for the disparity may be the use of different doses, routes, and animal models. We aimed to investigate the effects of peripheral and intracisternal (IC) injection of obestatin on feeding, gastric motility, and blood glucose in rats as well as in diet‐induced obese (DIO) mice. Research Methods and Procedures: Food intake and gastric emptying of a semi‐liquid caloric meal were measured after intraperitoneal (IP) injection of obestatin in rats and DIO mice. Gastric phasic motility and blood glucose were monitored in urethane‐anesthetized rats after IC or intravenous (IV) injection of obestatin. Results: Obestatin injected intraperitoneally at doses ranging from 0.1 to 3 mg/kg influenced neither acute food intake nor gastric emptying in rats. Obestatin injected intravenously at 0.3 or 3 mg/kg and IC at 7.5 or 30 µg/rat modified neither fasted gastric phasic motility nor blood glucose levels, while ghrelin (30 µg/kg, IV) increased and vagotomy suppressed gastric motility, and an oligosomatostatin analog (3 µg/rat, IC) decreased blood glucose. Obestatin, injected intraperitoneally (0.3 mg/kg) in DIO mice, did not alter feeding response to a fast, while urocortin 1 (10 µg/kg, IP) induced a 73.3% inhibition at 2 hours. Discussion: Our data demonstrate that peripheral administration of obestatin did not modify food intake in rats or obese mice or gastric motor function in rats.  相似文献   

3.
DeLong JP  Vasseur DA 《PloS one》2012,7(1):e30081
Classic ecological theory suggests that resource partitioning facilitates the coexistence of species by reducing inter-specific competition. A byproduct of this process is an increase in overall community function, because a greater spectrum of resources can be used. In contrast, coexistence facilitated by neutral mechanisms is not expected to increase function. We studied coexistence in laboratory microcosms of the bactivorous ciliates Paramecium aurelia and Colpidium striatum to understand the relationship between function and coexistence mechanism. We quantified population and community-level function (biomass and oxygen consumption), competitive interactions, and resource partitioning. The two ciliates partitioned their bacterial resource along a size axis, with the larger ciliate consuming larger bacteria than the smaller ciliate. Despite this, there was no gain in function at the community level for either biomass or oxygen consumption, and competitive effects were symmetrical within and between species. Because other potential coexistence mechanisms can be ruled out, it is likely that inter-specific interference competition diminished the expected gain in function generated by resource partitioning, leading to a system that appeared competitively neutral even when structured by niche partitioning. We also analyzed several previous studies where two species of protists coexisted and found that the two-species communities showed a broad range of biomass levels relative to the single-species states.  相似文献   

4.
The hypothalamic melanocortin system--the melanocortin receptor of type 4 (MC4R) and its ligands: α-melanin-stimulating hormone (α-MSH, agonist, inducing hypophagia), and agouti-related protein (AgRP, antagonist, inducing hyperphagia)--is considered to play a central role in the control of food intake. We tested its implication in the mediation of the hunger-curbing effects of protein-enriched diets (PED) in mice. Whereas there was a 20% decrease in food intake in mice fed on the PED, compared to mice fed on an isocaloric starch-enriched diet, there was a paradoxical decrease in expression of the hypothalamic proopiomelanocortin gene, precursor of α-MSH, and increase in expression of the gene encoding AgRP. The hypophagia effect of PED took place in mice with invalidation of either MC4R or POMC, and was even strengthened in mice with ablation of the AgRP-expressing neurons. These data strongly suggest that the hypothalamic melanocortin system does not mediate the hunger-curbing effects induced by changes in the macronutrient composition of food. Rather, the role of this system might be to defend the body against the variations in food intake generated by the nutritional environment.  相似文献   

5.
Previous studies indicate that administration of the metabolic inhibitor, 2,5-anhydro-D-mannitol (2,5-AM) or methyl palmoxirate (MP), induces feeding behavior in rats by lowering hepatic energy status. Combined treatment with these agents synergistically increases food intake. The present study was designed to investigate whether combined treatment also has a synergistic effect on hepatic energy status. Rats treated with both inhibitors increased feeding behavior compared with the controls, whereas those treated with 2, 5-AM or MP alone did not. Although 2,5-AM alone lowered hepatic ATP content regardless of MP treatment, only the combination resulted in decreases in hepatic ATP/ADP ratio and phosphorylation potential. MP treatment did not affect the uptake of 2,5-AM into liver. These results suggest that a reduction in hepatic energy status is the common triggering signal for eating behavior induced by 2,5-AM and MP and provide additional evidence for an integrated metabolic control of food intake.  相似文献   

6.
The neuropeptide ghrelin is a major signal for food intake in various species including humans. After exogenous ghrelin administration, food intake and body weight increase in rodents. In normal human subjects, ghrelin administration increases self-rated appetite and calorie intake and prompts the imagination of favorite meals. It is unclear so far whether ghrelin levels are affected by external cues such as sight of food. We investigated the influence of pictures showing food compared to neutral pictures on ghrelin levels in young normal male subjects (n = 8). The study consisted of two consecutive sessions with a one-week interval. During each session, blood for later analysis of plasma concentrations of ghrelin was collected between 08:15 and 13:00 every 15 min (between 10:30 and 11:30 every 10 min). Breakfast and lunch was provided at 08:30 and 12:00, respectively. Fifty pictures were presented from 10:30 to 10:45 showing neutral images during the first session and food contents during the second session. As expected, ghrelin levels increased before each meal independent of the picture contents. In addition, ghrelin levels during the 30-min interval following the presentation of pictures with food increased significantly compared to the 30-min interval before this presentation (area under the curve (AUC): 188 % vs. 158 %, P < 0.05). The difference in the increases between the two picture conditions was also significant (P < 0.05). Our findings suggest that sight of food elevates ghrelin levels in healthy volunteers.  相似文献   

7.
Obestatin is a 23-amino-acid peptide originally regarded as an anorexigenic factor. However, most of the subsequent studies failed to confirm the initially reported anorexigenic properties of obestatin. Obestatin is incapable of crossing the blood brain barrier (BBB), which may affect its biological function. Here, we report the physiological effects of obestatin in mice after intraperitoneal administration of obestatin conjugated to the cell-permeable peptide TAT, which is capable of delivering different types of proteins through the BBB. Acute peripheral administration of 1 μmol/kg of TAT-obestatin did not influence the 24 h cumulative food intake and body weight gain of mice that were fasted for 18 h. Fed mice were injected intraperitoneally with 100 nmol/kg of TAT-obestatin daily for 25 d. Compared with control groups, on day 3, the gain in body weight was significantly altered; on day 7, abdominal fat mass was remarkably reduced; however, on day 25, there was a surprisingly notable increase in abdominal and epididymal fat mass. In comparison with control groups, on day 25, the expression levels of adiponectin, ADD1, C/EBPα, PPARG and GLUT4 were significantly up-regulated in liver tissues; in white adipose tissue, the expression level of C/EBPα was significantly up-regulated, but adiponectin and GLUT4 were significantly down-regulated. In addition, GPR39, the suspected receptor of obestatin, was up-regulated in white adipose tissue on day 25. These findings suggest that TAT-obestatin might play a role in white adipose tissue metabolism, but its physiological effects on food intake and body weight gain regulation remain unclear.  相似文献   

8.
The control of food intake and satiety requires a coordinated interplay. Oral protein and duodenal fat inhibit food intake and induce satiety, but their interactive potential is unclear. Our aim was therefore to investigate the interactions between an oral protein preload and intraduodenal (ID) fat on food intake and satiety feelings. Twenty healthy male volunteers were studied in a randomized, double-blind, four-period crossover design. On each study day, subjects underwent one of the following treatments: 1) water preload plus ID saline perfusion, 2) water preload plus ID fat perfusion, 3) protein preload plus ID saline perfusion, or 4) protein preload plus ID fat perfusion. Subjects were free to eat and drink as much as they wished. An oral protein preload significantly reduced caloric intake (19%, P < 0.01). Simultaneous administration of an oral protein preload and ID fat did not result in a positive synergistic effect with respect to caloric consumption, rejecting the initial hypothesis that the two nutrients exert a positive synergistic effect on food intake. An oral protein preload but not ID fat altered the feelings of hunger and fullness. These data indicate that the satiety effect of an oral protein preload is not amplified by ID fat; indeed, the effect of a protein preload does not seem to be mediated by cholecystokinin, glucagon-like peptide-1, or peptide YY. Much more information is necessary to understand the basic physiological mechanisms that control food intake and satiety.  相似文献   

9.
1. Within the broad field of optimal foraging, it is increasingly acknowledged that animals often face digestive constraints rather than constraints on rates of food collection. This therefore calls for a formalization of how animals could optimize food absorption rates. 2. Here we generate predictions from a simple graphical optimal digestion model for foragers that aim to maximize their (true) metabolizable food intake over total time (i.e. including nonforaging bouts) under a digestive constraint. 3. The model predicts that such foragers should maintain a constant food retention time, even if gut length or food quality changes. For phenotypically flexible foragers, which are able to change the size of their digestive machinery, this means that an increase in gut length should go hand in hand with an increase in gross intake rate. It also means that better quality food should be digested more efficiently. 4. These latter two predictions are tested in a large avian long-distance migrant, the Bewick's swan (Cygnus columbianus bewickii), feeding on grasslands in its Dutch wintering quarters. 5. Throughout winter, free-ranging Bewick's swans, growing a longer gut and experiencing improved food quality, increased their gross intake rate (i.e. bite rate) and showed a higher digestive efficiency. These responses were in accordance with the model and suggest maintenance of a constant food retention time. 6. These changes doubled the birds' absorption rate. Had only food quality changed (and not gut length), then absorption rate would have increased by only 67%; absorption rate would have increased by only 17% had only gut length changed (and not food quality). 7. The prediction that gross intake rate should go up with gut length parallels the mechanism included in some proximate models of foraging that feeding motivation scales inversely to gut fullness. We plea for a tighter integration between ultimate and proximate foraging models.  相似文献   

10.
Melatonin plays a key role in the circadian timing system. At present, many other functions of melatonin are known. Question remains whether changes in endogenous melatonin may be associated with food intake. Hence, the levels of melatonin, C-peptide and glucose were followed during a daily regimen (16 hours) including standardized food intake using commercial kits. The diurnal profiles of the hormones and serum glucose were evaluated using ANOVA with Period and Subject as independent factors. Pearson's correlations and using a multiple stepwise backward regression model consisting of the time factor as a polynomial, and serum C-peptide and glucose assessed the correlations between melatonin and the remaining parameters. Our results showed a significant negative correlation between melatonin and C-peptide. The profile of melatonin was physiological, decreasing after wake-up, showing minor changes during the daytime and increasing in the evening. As documented, lesser alterations were indicated in the course of the melatonin daytime profile, which may reflect periodic food intake. Food intake is not the primary factor influencing the melatonin course. While previous studies have mostly considered the protective effect of melatonin in diabetic subjects, our study brought the results suggesting food intake as a factor contributing to daytime melatonin variation in humans. However, the physiological role of melatonin association with food intake in daytime remains in question and should be further investigated.  相似文献   

11.
Cholecystokinin (CCK) interacts with neural signals to induce satiety in several species, but the mechanisms are unclear. We therefore tested the hypothesis that alimentary CCK (CCK-A) receptors mediate the interaction of CCK with an appetizer on food intake in humans. CCK octapeptide (CCK-8, 0.75 microgram infused over 10 min) or saline (placebo) with concomitant infusions of saline (placebo) or loxiglumide, a specific CCK-A antagonist, was infused into 16 healthy men with use of a double-blind, four-period design. All subjects received a standard 400-ml appetizer (amounting to 154 kcal) but were free to eat and drink thereafter as much as they wished. The effect of these infusions on feelings of hunger and satiety and on food intake was quantified. CCK-8 induced a reduction in calorie intake (P < 0.05) compared with saline. Furthermore, a decrease in hunger feelings (P < 0.05, saline-CCK-8 vs. all other treatments) and an increase in fullness were observed. These effects were antagonized for hunger and fullness by loxiglumide. We conclude that CCK-8 interacts with an appetizer to modulate satiety in humans. These effects are mediated by CCK-A receptors.  相似文献   

12.
Polidori C  Luciani F  Fedeli A  Geary N  Massi M 《Peptides》2003,24(9):1441-1444
Leptin, a hormone secreted by the adipocytes and involved in feeding and energy balance control, has been proposed to modulate alcohol craving in mice and humans. This study evaluated whether leptin modulates alcohol intake in Marchigian Sardinian alcohol-preferring (msP) rats. Rats were offered 10% ethanol either 2h per day at the beginning of dark period of the 12:12h light/dark cycle, or 24h per day. Leptin was injected into the lateral ventricle (LV), the third ventricle (3V), or intraperitoneally (IP) once a day, 1h before the onset of the dark period. Neither acute nor chronic (9 days) leptin injections (1 or 8microg per rat) into the LV or 3V modified ethanol intake in male msP rats, offered ethanol 2h per day. Chronic LV injection of leptin (8 or 32 microg per rat in male rats and 8 or 16 microg per rat in female rats for 7 days), or chronic IP injections of leptin (1mg/kg in male rats for 5 days) failed to modify the intake of ethanol, offered 24h per day. Finally, chronic LV leptin injections (8 or 32 microg per rat for 12 days) did not modify ethanol intake in male msP rats, adapted to ad libitum access to ethanol and then tested after a 6-day period of ethanol deprivation. In contrast, in most of these conditions leptin significantly reduced food intake. These data do not support a role for leptin in alcohol intake, preference, or craving in msP rats.  相似文献   

13.
Amygdala plays a critical role in the regulation of emotional behavior and food intake. Neuropeptides are short chains of amino acids secreted by neurons as intercellular messengers, which regulate different functions such as emotion, food intake, learning and memory. In this review, we summarize the recent progress on the regulation of food intake by amygadala, which is mediated by those neuropeptides known to be critical in the regulation of this process.  相似文献   

14.
We previously showed that peptides containing leptin sequences 1-33 or 61-90 are taken up by the rat brain. We now report the effects of these peptides on food intake and body weight in mature rats. Peptides were infused intravenously for 4weeks, using Alzet minipumps. Dosages were 20μg/kg/day in experiment I, and 60μg/kg/day in experiment 2. In experiment 1, female rats receiving peptides 1-33 and 61-90 each underwent an approximate doubling of the weight gain of control rats. These peptides also increased food intake in female rats. Peptide 15-32, which has a lesser degree of brain uptake, gave a smaller weight gain. Peptide 83-108, which is not taken up by the brain, had no effect on weight gain or food intake. Similar results were obtained in experiment 2. In male rats, however, none of the peptides caused significant changes in food intake or body weight. This was at least partly due to the fact that all male rats underwent vigorous weight increases. We conclude that peptides 1-33 and 61-90 acted as leptin antagonists, stimulating food intake and body weight increases, at least in female rats. These peptides may lead to clinical applications in conditions such as anorexia and cachexia.  相似文献   

15.
James F. Flood  John E. Morley   《Peptides》1991,12(6):1329-1332
Neuropeptide Y (NPY), administered intracerebroventricularly, is a potent orexigenic agent. To determine if NPY-induced eating represented an increase in motivation to eat (e.g., hunger) rather than pathological or stimulus-bound eating, we determined its effect on eating in three paradigms, including lever press, appetitive passive avoidance and quinine-adulterated milk. NPY-injected mice consumed more milk when required to work for it in a lever press apparatus and tolerated shock to the tongue for drinking milk. Increasing the dose of NPY also allowed mice to overcome a taste aversion for quinine-adulterated milk. Overall, these studies support the hypothesis that NPY causes a specific increase in the motivation to eat, rather than nonspecific or stimulus-bound behavior.  相似文献   

16.
The biogeochemical properties of soils drive ecosystem function and vegetation dynamics, and hence soil restoration after mining should aim to reinstate the soil properties and hydrological dynamics of remnant ecosystems. The aim of this study is to assess soil structure in two vegetation types in an arid ecosystem, and to understand how these soil properties compare to a reconstructed soil profile after mining. In an arid ecosystem in southeast Australia, soil samples were collected at five depths (to 105 cm) from remnant woodland and shrubland sites, and sites either disturbed or totally reconstructed after mining. We assessed soil physico‐chemical properties and microbial activity. Soils in the remnant arid ecosystem had coarse‐textured topsoils that overlay clay horizons, which allows water to infiltrate and avoid evaporation, but also slows drainage to deeper horizons. Conversely, reconstructed soils had high sand content at subsoil horizons and high bulk density and compaction at surface layers (0–20 cm). Reconstructed soils had topsoils with higher pH and electrical conductivity. The reconstructed soils did not show increased microbial activity with time since restoration. Overall, the reconstructed soil horizons were not organized in a way that allowed rainfall infiltration and water storage, as is imperative to arid‐zone ecosystem function. Future restoration efforts in arid ecosystems should focus on increasing sand content of soils near the surface, to reduce evaporative water loss and improve soil quality and plant health.  相似文献   

17.
Feeding and sleep are highly conserved,interconnected behaviors essential for survival.Starvation has been shown to potently suppress sleep across species;however,whether satiety promotes sleep is still unclear.Here we use the fruit fly,Drosophila melanogaster,as a model organism to address the interaction between feeding and sleep.We first monitored the sleep of flies that had been starved for 24 h and found that sleep amount increased in the first 4 h after flies were given food.Increased sleep after starvation was due to an increase in sleep bout number and average sleep bout length.Mutants of translin or adipokinetic hormone,which fail to suppress sleep during starvation,still exhibited a sleep increase after starvation,suggesting that sleep increase after starvation is not a consequence of sleep loss during starvation.We also found that feeding activity and food consumption were higher in the first 10-30 min after starvation.Restricting food consumption in starved flies to 30 min was sufficient to increase sleep for 1 h.Although flies ingested a comparable amount of food at differing sucrose concentrations,sleep increase after starvation on a lower sucrose concentration was undetectable.Taken together,our results suggest that increased food intake after starvation enhances sleep and reveals a novel relationship between feeding and sleep.  相似文献   

18.
Five methods for the assessment of antioxidant capacity [whole plasma conjugated diene formation, low-density lipoprotein oxidation susceptibility, ferric-reducing ability of plasma, oxygen radical absorbance capacity and perchloric-acid-treated oxygen radical absorbance capacity (PCA-ORAC)] were used in a randomized, double blind, crossover study to determine the acute postprandial antioxidant protection imparted by the isoflavone component of soy. On separate days, 16 subjects consumed one of three isocaloric shakes containing 25 g of protein in the form of soy, with 107 mg of total aglycone units of isoflavones, soy with trace isoflavones (<4 mg) or total milk protein. Blood was collected at baseline, 4 h, 6 h and 8 h after consumption. Antioxidant capacity, serum isoflavone levels, fat-soluble antioxidants and plasma vitamin C levels were evaluated. Repeated measures analysis of variance showed no significant differences (P=.05) within treatments over time in four of five antioxidant capacity measurements. Significant differences over time between the soy with trace isoflavones and the total milk protein group were observed using the PCA-ORAC assay. It can be concluded that, on an acute basis, a significant increase in serum antioxidant capacity is not detectable following consumption of soy protein.  相似文献   

19.
Obestatin (OB(1-23) is a 23 amino acid peptide encoded on the preproghrelin gene, originally reported to have metabolic actions related to food intake, gastric emptying and body weight. The biological instability of OB(1-23) has recently been highlighted by studies demonstrating its rapid enzymatic cleavage in a number of biological matrices. We assessed the stability of both OB(1-23) and an N-terminally PEGylated analog (PEG-OB(1-23)) before conducting chronic in vivo studies. Peptides were incubated in rat liver homogenate and degradation monitored by LC-MS. PEG-OB(1-23) was approximately 3-times more stable than OB(1-23). Following a 14 day infusion of Sprague-Dawley rats with 50 nmol/kg/day of OB(1-23) or a N-terminally PEGylated analog (PEG-OB(1-23)), we found no changes in food/fluid intake, body weight and plasma glucose or cholesterol between groups. Furthermore, morphometric liver, muscle and white adipose tissue (WAT) weights and tissue triglyceride concentrations remained unaltered between groups. However, with stabilized PEG-OB(1-23) we observed a 40% reduction in plasma triglycerides. These findings indicate that PEG-OB(1-23) is an OB(1-23) analog with significantly enhanced stability and suggest that obestatin could play a role in modulating physiological lipid metabolism, although it does not appear to be involved in regulation of food/fluid intake, body weight or fat deposition.  相似文献   

20.
Objective: To study the role of ghrelin as a hunger signal during energy restriction and to test the hypothesis that changes in fasting leptin concentrations during energy restriction are associated with changes in fasting ghrelin concentrations. Research Methods and Procedures: Thirty‐five healthy, lean men (23 ± 3 years of age; BMI: 22.3 ± 1.6 kg/m2) participated in a controlled intervention study. Fasting ghrelin and leptin concentrations were measured before and after 2 days of 62% energy restriction and after a 2‐day period of ad libitum food intake. Energy intake during the latter period was assessed. Results: On average, ghrelin concentrations did not change (0.05 μg/liter; 95% confidence interval, ?0.03; 0.12) during energy restriction. Changes in ghrelin concentration during energy restriction were not associated with energy intake during the ad libitum period (r = 0.07; not significant). Ad libitum energy intake was, however, associated with the change in ghrelin concentrations during the same period (r = ?0.34; p = 0.05). Ghrelin and leptin concentrations were not associated. In addition, the ratio of percentage changes in ghrelin and leptin during energy restriction was not correlated with ad libitum food intake after energy restriction (r = ?0.26; p = 0.14). Discussion: Fasting ghrelin concentrations did not rise after a 2‐day energy restriction regimen. Moreover, changes in ghrelin concentrations during energy restriction were not associated with subsequent ad libitum food intake, suggesting that fasting ghrelin does not act as a hunger signal to the brain. The data did not support our hypothesis that leptin suppresses ghrelin levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号