共查询到20条相似文献,搜索用时 0 毫秒
1.
Peribronchial pressure in excised dog lungs 总被引:1,自引:0,他引:1
2.
3.
4.
5.
Trapped air in ventilated excised rat lungs 总被引:1,自引:0,他引:1
6.
7.
8.
9.
10.
When airways constrict, the surrounding parenchyma undergoesstretch and distortion. Because of the mechanical interdependence between airways and parenchyma, the material properties of the parenchyma are important factors that modulate the degree ofbronchoconstriction. The purpose of this study was to investigate theeffect of changes in transpulmonary pressure (Ptp) and inducedconstriction on parenchymal bulk (k)and shear (µ) moduli. In excised rat lungs, pressure was measured atthe airway opening, and pressure-volume curves were obtained byimposing step decreases in volume with a calibrated syringe from totallung inflation. Calculation was made ofk during small-volume oscillations (1 Hz). Absolute lung volume at 0 cmH2O Ptp was obtained bysaline displacement. To calculate µ, a lung-indentation test wasperformed. The lung surface was deformed with a cylindrical punch(diameter = 0.45 cm) in 0.25-mm increments, and the force required toeffect this displacement was measured by a weight balance. Measurementsof k and µ were obtained at 4 and 10 cmH2O Ptp, and again at 4 cmH2O Ptp, after delivery ofmethacholine aerosol (100 mg/ml) into the trachea. Values ofk and µ in rat lungs were similar tothose reported in other species. In addition, k and µ were dependent on Ptp. Afterinduced constriction, k and µ increased significantly. That k and µ can increase after induced constriction has important implicationsvis a vis the factors modulating airway narrowing. 相似文献
11.
Temperature and surface forces in excised rabbit lungs 总被引:1,自引:0,他引:1
12.
Pathogenesis of hemodynamic pulmonary edema in excised dog lungs 总被引:1,自引:0,他引:1
13.
Production mechanism of crackles in excised normal canine lungs 总被引:1,自引:0,他引:1
M Munakata Y Homma M Matsuzaki H Ogasawara K Tanimura H Kusaka Y Kawakami 《Journal of applied physiology》1986,61(3):1120-1125
Lung crackles may be produced by the opening of small airways or by the sudden expansion of alveoli. We studied the generation of crackles in excised canine lobes ventilated in an airtight box. Total airflow, transairway pressure (Pta), transpulmonary pressure (Ptp), and crackles were recorded simultaneously. Crackles were produced only during inflation and had high-peak frequencies (738 +/- 194 Hz, mean +/- SD). During inflation, crackles were produced from 111 +/- 83 ms (mean +/- SD) prior to the negative peak of Pta, presumably when small airways began to open. When end-expiratory Ptp was set constant between 15 and 20 cmH2O and end-expiratory Ptp was gradually reduced from 5 cmH2O to -15 or -20 cmH2O in a breath-by-breath manner, crackles were produced in the cycles in which end-expiratory Ptp fell below -1 to 1 cmH2O. This pressure was consistent with previously known airway closing pressures. When end-expiratory Ptp was set constant at -10 cmH2O and end inspiratory Ptp was gradually increased from -5 to 15 or 20 cmH2O, crackles were produced in inspiratory phase in which end-inspiratory Ptp exceeded 4-6 cmH2O. This pressure was consistent with previously known airway opening pressures. These results indicate that crackles in excised normal dog lungs are produced by opening of peripheral airways and are not generated by the sudden inflation of groups of alveoli. 相似文献
14.
15.
Prediction of maximal expiratory flow in excised human lungs 总被引:2,自引:0,他引:2
16.
17.
18.
19.
Flow limitation during forced expiration in excised human lungs 总被引:1,自引:0,他引:1
G W Silvers J C Maisel T L Petty G F Filley R S Mitchell 《Journal of applied physiology》1974,36(6):737-744
20.
The acute effects of cigarette smoke or drug inhalation on collateral conductance (Gcoll) were studied in freshly excised dog lobes held at fixed volumes. A double-lumen catheter was wedged into a segmental bronchus, and air, smoke, or aerosol flowed into the blocked segment at a constant pressure of 2 cmH2O. A capsule glued over a small area of perforated pleura of the segment was used to measure alveolar pressure; the capsule could also be used to measure small airway flow (Vcap) through the segment. Gcoll was almost linearly dependent on lung volume, rising about fivefold between 20 and 100% inflation (30 cmH2O). During smoke inhalation Gcoll began decreasing almost immediately, roughly halving with the first cigarette and falling to about 20% after two cigarettes. Similar proportions were obtained at other lung volumes. Pulmonary conductance (oscillator) in the remainder of the lobe decreased only modestly to 78% of control after two cigarettes. In lobes exposed to 4.5% CO2 after air Gcoll rose 25-50%, but Vcap increased only 5-10%. However, acetylcholine chloride aerosol reduced both flows by similar ratios. Isoproterenol did not prevent or reverse smoke-induced collateral constriction but did reverse the effects of acetylcholine on both pathways. These results suggest that in excised lungs aerosols acted on larger segmental airways in series with collateral channels and with peripheral airways, whereas CO2 and particularly cigarette smoke provoked more marked effects on the most distal smooth muscle. 相似文献