首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We measured tidal volume (VT), chest wall dimensions, end-tidal PCO2, and respiratory muscle electromyograms as seated subjects were immersed in water. We studied nine spontaneously breathing subjects; five were uninformed. Raising the water to xiphoid level pushed the abdomen in and expanded the rib cage at end expiration. This increased the diaphragm's operating length, giving it a contractile advantage, and shortened the inspiratory intercostals, giving them a contractile disadvantage. Peak inspiratory activities of both muscle groups decreased; inspiratory time (TI), respiratory frequency (f), and VT were unchanged. The experiments thus demonstrated operational length compensation during immersion and further showed that inspiratory muscle activation is not adjusted locally, according to changes in each muscle's length, but rather that the response is global. Xiphoid-to-shoulder immersion was less easily interpreted, since both rib cage and abdomen were compressed, lengthening both inspiratory muscles. Our subjects continued to maintain VT, f, and TI. Peak inspiratory activities of both muscles were further reduced. We do not attribute the change in inspiratory muscle activation to altered chemical drive or to voluntary response. Rather, the response appears to be a mechanoreceptive reflex that employs afferent information from the lungs or diaphragm to adjust all inspiratory muscle activities.  相似文献   

2.
The purpose of the present study was to assess the effects of bronchoconstriction on respiratory changes in length of the costal diaphragm and the parasternal intercostal muscles. Ten dogs were anesthetized with pentobarbital sodium and tracheostomized. Respiratory changes in muscle length were measured using sonomicrometry, and electromyograms were recorded with bipolar fine-wire electrodes. Administration of histamine aerosols increased pulmonary resistance from 6.4 to 14.5 cmH2O X l-1 X s, caused reductions in inspiratory and expiratory times, and decreased tidal volume. The peak and rate of rise of respiratory muscle electromyogram (EMG) activity increased significantly after histamine administration. Despite these increases, bronchoconstriction reduced diaphragm inspiratory shortening in 9 of 10 dogs and reduced intercostal muscle inspiratory shortening in 7 of 10 animals. The decreases in respiratory muscle tidal shortening were less than the reductions in tidal volume. The mean velocity of diaphragm and intercostal muscle inspiratory shortening increased after histamine administration but to a smaller extent than the rate of rise of EMG activity. This resulted in significant reductions in the ratio of respiratory muscle velocity of shortening to the rate of rise of EMG activity after bronchoconstriction for both the costal diaphragm and the parasternal intercostal muscles. Bronchoconstriction changed muscle end-expiratory length in most animals, but for the group of animals this was statistically significant only for the diaphragm. These results suggest that impairments of diaphragm and parasternal intercostal inspiratory shortening occur after bronchoconstriction; the mechanisms involved include an increased load, a shortening of inspiratory time, and for the diaphragm possibly a reduction in resting length.  相似文献   

3.
The effect of a head-down tilt on the responses of the external respiration system and the functional capacity of the diaphragm and parasternal muscles were investigated in 11 healthy subjects. A 30-min head-down tilt posture (−30° relative to the horizontal) significantly increased the inspiratory time, decreased the respiration rate and the inspiratory and expiratory flow rates; and increased the airway resistance compared to these values in the vertical posture. There were no significant changes in tidal volume or minute ventilation. The electromyograms (EMGs) of the diaphragm and parasternal muscles showed that the constant values of tidal volume and minute ventilation during head-down tilt could be provided by an increase in the electric activity of the thoracic inspiratory muscles. It was established that the contribution of the thoracic inspiratory muscles increased, while the diaphragms’ contribution decreased, during patient, spontaneous breathing. The maximal inspiratory effort (Muller’s maneuver) during a head-down tilt evoked the opposite EMG-activity pattern: the contribution of inspiratory thoracic muscles was decreased and the diaphragm EMG activity was increased compared to the vertical posture. These results suggest that coordinated modulations in inspiratory muscle activity make it possible to preserve the functional reserve of human inspiratory muscles during a short-term head-down tilt.  相似文献   

4.
Influence of lung volume on oxygen cost of resistive breathing   总被引:2,自引:0,他引:2  
We examined the relationship between the O2 cost of breathing (VO2 resp) and lung volume at constant load, ventilation, work rate, and pressure-time product in five trained normal subjects breathing through an inspiratory resistance at functional residual capacity (FRC) and when lung volume (VL) was increased to 37 +/- 2% (mean +/- SE) of inspiratory capacity (high VL). High VL was maintained using continuous positive airway pressure of 9 +/- 2 cmH2O and with the subjects coached to relax during expiration to minimize respiratory muscle activity. Six paired runs were performed in each subject at constant tidal volume (0.62 +/- 0.2 liters), frequency (23 +/- 1 breaths/min), inspiratory flow rate (0.45 +/- 0.1 l/s), and inspiratory muscle pressure (45 +/- 2% of maximum static pressure at FRC). VO2 resp increased from 109 +/- 15 ml/min at FRC by 41 +/- 11% at high VL (P less than 0.05). Thus the efficiency of breathing at high VL (3.9 +/- 0.2%) was less than that at FRC (5.2 +/- 0.3%, P less than 0.01). The decrease in inspiratory muscle efficiency at high VL may be due to changes in mechanical coupling, in the pattern of recruitment of the respiratory muscles, or in the intrinsic properties of the inspiratory muscles at shorter length. When the work of breathing at high VL was normalized for the decrease in maximum inspiratory muscle pressure with VL, efficiency at high VL (5.2 +/- 0.3%) did not differ from that at FRC (P less than 0.7), suggesting that the fall in efficiency may have been related to the fall in inspiratory muscle strength. During acute hyperinflation the decreased efficiency contributes to the increased O2 cost of breathing and may contribute to the diminished inspiratory muscle endurance.  相似文献   

5.
We investigated the breathing patterns of 17 subjects anesthetized with enflurane before and after partial muscle paralysis produced by pancuronium bromide. In the face of significant muscle weakness produced by pancuronium, breathing patterns are characterized by decreases in both tidal volume and respiratory frequency. The decreased tidal volume corresponded to the decrease in occlusion pressure, indicating that the decreased tidal volume results solely from a decreased contractile force of the respiratory muscles. The decreased respiratory frequency was due to prolongation of both inspiratory and expiratory time without changing the ratio of the inspiratory time to the total breath time. Withdrawal of phasic vagal influence by airway occlusion before partial muscle paralysis revealed that an active Breuer-Hering inflation reflex was operative in only 8 of all 17 subjects. Since the contribution of the Breuer-Hering inflation reflex alone does not seem to account for the consistent decrease in respiratory frequency, some other mechanisms modulating respiratory frequency might be involved in the characteristic breathing patterns during partial muscle paralysis under enflurane anesthesia.  相似文献   

6.
A new method is described for measurement of inspiratory muscle endurance in humans that is based on isokinetic principles of muscle testing (i.e., measurement of maximum force during a constant velocity of shortening). Subjects inspired maximally while their lungs were inflated at a constant rate during each breath for 10 min. Inspiratory and expiratory time, flow rate, tidal volume, and end-tidal CO2 were maintained constant. In each subject, maximum inspiratory mouth pressure exponentially decayed over the first few minutes to an apparent sustainable value. Repeated tests in experienced subjects showed high reproducibility of sustainable pressure measurements. To determine the effects of flow, endurance tests were repeated in four subjects at flows of 0.75, 1.0, and 1.25 l/s, with a constant duty cycle. As flow increased, the maximum pressures that could be attained at rest and the maximum sustainable pressures decreased. At each flow, the sustainable pressure remained a constant fraction of the maximum pressure attainable at rest. We interpret the decay in mouth pressure during isoflow endurance tests to directly reflect the loss of net inspiratory muscle force available by maximum voluntary activation of the inspiratory pump.  相似文献   

7.
We evaluated an index of diaphragm efficiency (Eff(di)), diaphragm power output (Wdi) relative to electrical activation, in five healthy adults during tidal breathing at usual end-expiratory lung volume (EELV) and diaphragm length (L(di ee)) and at shorter L(di ee) during hyperinflation with expiratory positive airway pressure (EPAP). Measurements were repeated with an inspiratory threshold (7.5 cmH(2)O) plus resistive (6.5 cmH(2)O.l(-1).s) load. Wdi was the product of mean inspiratory transdiaphragmatic pressure (DeltaPdi(mean)), diaphragm volume displacement measured fluoroscopically, and 1/inspiratory duration (Ti(-1)). Diaphragm activation, measured with esophageal electrodes, was quantified by computing root-mean-square values (RMS(di)). With EPAP, 1) EELV increased [mean r(2) = 0.91 (SD 0.01)]; 2) in four subjects, L(di ee) decreased [mean r(2) = 0.85 (SD 0.07)] and mean Eff(di) decreased 34% per 10% decrease in L(di ee) (P < 0.001); and 3) in one subject, gastric pressure at EELV increased two- to threefold, L(di ee) was unchanged or increased, and Eff(di) increased at two of four levels of EPAP (P < or = 0.006, ANOVA). Inspiratory loading increased Wdi (P = 0.003) and RMS(di) (P = 0.004) with no change in Eff(di) (P = 0.63) or its relationship with L(di ee). Eff(di) was more accurate in defining changes in L(di ee) [(true positives + true negatives)/total = 0.78 (SD 0.13)] than DeltaPdi(mean).RMS(di)(-1), RMS(di), or DeltaPdi(mean).Ti (all <0.7, P < or = 0.05, without load). Thus Eff(di) was principally a function of L(di ee) independent of inspiratory loading, behavior consistent with muscle force-length-velocity properties. We conclude that Eff(di), measured during tidal breathing and in the absence of expiratory muscle activity at EELV, is a valid and accurate measure of diaphragm contractile function.  相似文献   

8.
Respiratory muscle length was measured with sonomicrometry to determine the relation between inspiratory flow and velocity of shortening of the external intercostal and diaphragm. Electromyographic (EMG) activity and tidal shortening of the costal and crural segments of the diaphragm and of the external intercostal were recorded during hyperoxic CO2 rebreathing in 12 anesthetized dogs. We observed a linear increase of EMG activity and peak tidal shortening of costal and crural diaphragm with alveolar CO2 partial pressure. For the external intercostal, no consistent pattern was found either in EMG activity or in tidal shortening. Mean inspiratory flow was linearly related to mean velocity of shortening of costal and crural diaphragm, with no difference between the two segments. Considerable shortening occurred in costal and crural diaphragm during inspiratory efforts against occlusion. We conclude that the relation between mean inspiratory flow and mean velocity of shortening of costal and crural diaphragm is linear and can be altered by an inspiratory load. There does not appear to be a relationship between inspiratory flow and velocity of shortening of external intercostals.  相似文献   

9.
Negative upper airway (UAW) pressure inhibits diaphragm inspiratory activity in animals, but there is no direct evidence of this reflex in humans. Also, little is known regarding reflex latency or effects of varying time of stimulation during the breathing cycle. We studied effects of UAW negative pressure on inspiratory airflow and respiratory timing in seven tracheostomized infants during quiet sleep with a face mask and syringe used to produce UAW suction without changing lower airway pressure. Suction trials lasted 2-3 s. During UAW suction, mean and peak inspiratory airflow as well as tidal volume was markedly reduced (16-68%) regardless of whether stimulation occurred in inspiration or expiration. Reflex latency was 42 +/- 3 ms. When suction was applied during inspiration or late expiration, the inspiration and the following expiration were shortened. In contrast, suction applied during midexpiration prolonged expiration and tended to prolong inspiration. The changes in flow, tidal volume, and timing indicate a marked inhibitory effect of UAW suction on thoracic inspiratory muscles. Such a reflex mechanism may function in preventing pharyngeal collapse by inspiratory suction pressure.  相似文献   

10.
Evidence of the Hering-Breuer reflex has been found in humans during anesthesia and sleep but not during wakefulness. Cortical influences, present during wakefulness, may mask the effects of this reflex in awake humans. We hypothesized that, if lung volume were increased in awake subjects unaware of the stimulus, vagal feedback would modulate breathing on a breath-to-breath basis. To test this hypothesis, we employed proportional assist ventilation in a pseudorandom sequence to unload the respiratory system above and below the perceptual threshold in 17 normal subjects. Tidal volume, integrated respiratory muscle pressure per breath, and inspiratory time were recorded. Both sub- and suprathreshold stimulation evoked a significant increase in tidal volume and inspiratory flow rate, but a significant decrease in inspiratory time was present only during the application of a subthreshold stimulus. We conclude that vagal feedback modulates respiratory timing on a breath-by-breath basis in awake humans, as long as there is no awareness of the stimulus.  相似文献   

11.
In nine anesthetized supine spontaneously breathing dogs, we compared moving average electromyograms (EMGs) of the costal diaphragm and the third parasternal intercostal muscles with their respective respiratory changes in length (measured by sonomicrometry). During resting O2 breathing the pattern of diaphragm and intercostal muscle inspiratory shortening paralleled the gradually incrementing pattern of their moving average EMGs. Progressive hypercapnia caused progressive increases in the amount and velocity of respiratory muscle inspiratory shortening. For both muscles there were linear relationships during the course of CO2 rebreathing between their peak moving average EMGs and total inspiratory shortening and between tidal volume and total inspiratory shortening. During single-breath airway occlusions, the electrical activity of both the diaphragm and intercostal muscles increased, but there were decreases in their tidal shortening. The extent of muscle shortening during occluded breaths was increased by hypercapnia, so that both muscles shortened more during occluded breaths under hypercapnic conditions (PCO2 up to 90 Torr) than during unoccluded breaths under normocapnic conditions. These results suggest that for the costal diaphragm and parasternal intercostal muscles there is a close relationship between their electrical and mechanical behavior during CO2 rebreathing, this relationship is substantially altered by occluding the airway for a single breath, and thoracic respiratory muscles do not contract quasi-isometrically during occluded breaths.  相似文献   

12.
The inspiratory efficiency of the diaphragm during unilateral and bilateral phrenic stimulation (UEPS and BEPS) with constant stimulus was studied in seven dogs from FRC to 120% TLC. Alveolar pressures (PAl) were recorded during relaxation, BEPS and UEPS at each lung volume in the closed respiratory system. From the PAl-lung volume curves, tidal volume (VT), and pressure developed by the diaphragm (Pmus) were derived. Results are summarized below. a) Hyperinflation impaired the inspiratory efficiency of the diaphragm which behaved as an expiratory muscle beyond the lung volume of 103.7% TLC (Vinef). b) The diaphragm during UEPS became expiratory at the same Vinef as during (BEPS. C) The VT-lung volume relationship was linear during BEPS, allowing simple quantitation of VT loss with hyperinflation and prediction of Vinef. d) With only one phrenic nerve stimulated, the functional loss is less pronounced in VT than in Pmus, as compared to BEPS, indicating that the respiratory system was more compliant during UEPS than BEPS. This compliance difference from UEPS to BEPS diminished with severe hyperinflation.  相似文献   

13.
In patients with diaphragm paralysis, ventilation to the basal lung zones is reduced, whereas in patients with paralysis of the rib cage muscles, ventilation to the upper lung zones in reduced. Inspiration produced by either rib cage muscle or diaphragm contraction alone, therefore, may result in mismatching of ventilation and perfusion and in gas-exchange impairment. To test this hypothesis, we assessed gas exchange in 11 anesthetized dogs during ventilation produced by either diaphragm or intercostal muscle contraction alone. Diaphragm activation was achieved by phrenic nerve stimulation. Intercostal muscle activation was accomplished by electrical stimulation by using electrodes positioned epidurally at the T(2) spinal cord level. Stimulation parameters were adjusted to provide a constant tidal volume and inspiratory flow rate. During diaphragm (D) and intercostal muscle breathing (IC), mean arterial Po(2) was 97.1 +/- 2.1 and 88.1 +/- 2.7 Torr, respectively (P < 0.01). Arterial Pco(2) was lower during D than during IC (32.6 +/- 1.4 and 36.6 +/- 1.8 Torr, respectively; P < 0.05). During IC, oxygen consumption was also higher than that during D (0.13 +/- 0.01 and 0.09 +/- 0.01 l/min, respectively; P < 0.05). The alveolar-arterial oxygen difference was 11.3 +/- 1.9 and 7.7 +/- 1.0 Torr (P < 0.01) during IC and D, respectively. These results indicate that diaphragm breathing is significantly more efficient than intercostal muscle breathing. However, despite marked differences in the pattern of inspiratory muscle contraction, the distribution of ventilation remains well matched to pulmonary perfusion resulting in preservation of normal gas exchange.  相似文献   

14.
Transdiaphragmatic pressure is a result of both tension in the muscles of the diaphragm and curvature of the muscles. As lung volume increases, the pressure-generating capability of the diaphragm decreases. Whether decrease in curvature contributes to the loss in transdiaphragmatic pressure and, if so, under what conditions it contributes are unknown. Here we report data on muscle length and curvature in the supine dog. Radiopaque markers were attached along muscle bundles in the midcostal region of the diaphragm in six beagle dogs of approximately 8 kg, and marker locations were obtained from biplanar images at functional residual capacity (FRC), during spontaneous inspiratory efforts against a closed airway at lung volumes from FRC to total lung capacity, and during bilateral maximal phrenic nerve stimulation at the same lung volumes. Muscle length and curvature were obtained from these data. During spontaneous inspiratory efforts, muscle shortened by 15-40% of length at FRC, but curvature remained unchanged. During phrenic nerve stimulation, muscle shortened by 30 to nearly 50%, and, for shortening exceeding 52%, curvature appeared to decrease sharply. We conclude that diaphragm curvature is nearly constant during spontaneous breathing maneuvers in normal animals. However, we speculate that it is possible, if lung compliance were increased and the chest wall and the diameter of the diaphragm ring of insertion were enlarged, as in the case of chronic obstructive pulmonary disease, that decrease in diaphragm curvature could contribute to loss of diaphragm function.  相似文献   

15.
Relative strengths of the chest wall muscles   总被引:1,自引:0,他引:1  
We hypothesized that during maximal respiratory efforts involving the simultaneous activation of two or more chest wall muscles (or muscle groups), differences in muscle strength require that the activity of the stronger muscle be submaximal to prevent changes in thoracoabdominal configuration. Furthermore we predicted that maximal respiratory pressures are limited by the strength of the weaker muscle involved. To test these hypotheses, we measured the pleural pressure, abdominal pressure (Pab), and transdiaphragmatic pressure (Pdi) generated during maximal inspiratory, open-glottis and closed-glottis expulsive, and combined inspiratory and expulsive maneuvers in four adults. We then determined the activation of the diaphragm and abdominal muscles during selected maximal respiratory maneuvers, using electromyography and phrenic nerve stimulation. In all subjects, the Pdi generated during maximal inspiratory efforts was significantly lower than the Pdi generated during open-glottis expulsive or combined efforts, suggesting that rib cage, not diaphragm, strength limits maximal inspiratory pressure. Similarly, at high lung volumes, the Pab generated during closed-glottis expulsive efforts was significantly greater than that generated during open-glottis efforts, suggesting that the latter pressure is limited by diaphragm, not abdominal muscle, strength. As predicted, diaphragm activation was submaximal during maximal inspiratory efforts, and abdominal muscle activation was submaximal during open-glottis expulsive efforts at midlung volume. Additionally, assisting the inspiratory muscles of the rib cage with negative body-surface pressure significantly increased maximal inspiratory pressure, whereas loading the rib cage muscles with rib cage compression decreased maximal inspiratory pressure. We conclude that activation of the chest wall muscles during static respiratory efforts is determined by the relative strengths and mechanical advantage of the muscles involved.  相似文献   

16.
The purpose of this study was to compare the influence of prolonged vibration of a hand muscle on the amplitude of the stretch reflex, motor unit discharge rate, and force fluctuations during steady, submaximal contractions. Thirty-two young adults performed 10 isometric contractions at a constant force (5.0 +/- 2.3% of maximal force) with the first dorsal interosseus muscle. Each contraction was held steady for 10 s, and then stretch reflexes were evoked. Subsequently, 20 subjects had vibration applied to the relaxed muscle for 30 min, and 12 subjects received no vibration. The muscle vibration induced a tonic vibration reflex. The intervention (vibration or no vibration) was followed by 2 sets of 10 constant-force contractions with applied stretches (After and Recovery trials). The mean electromyogram amplitude of the short-latency component of the stretch reflex increased by 33% during the After trials (P < 0.01) and by 38% during the Recovery trials (P < 0.01). The standard deviation of force during the steady contractions increased by 21% during the After trials (P < 0.05) and by 28% during the Recovery trials (P < 0.01). The discharge rate of motor units increased from 10.3 +/- 2.7 pulses/s (pps) before vibration to 12.2 +/- 3.1 pps (P < 0.01) during the After trials and to 11.9 +/- 2.6 pps during the Recovery trials (P < 0.01). There was no change in force fluctuations or stretch reflex magnitude for the subjects in the Control group. The results indicate that prolonged vibration increased the short-latency component of the stretch reflex, the discharge rate of motor units, and the fluctuations in force during contractions by a hand muscle. These adjustments were necessary to achieve the target force due to the vibration-induced decrease in the force capacity of the muscle.  相似文献   

17.
Breathing responses to small inspiratory threshold loads in humans.   总被引:1,自引:0,他引:1  
To investiage the effect of inspiratory threshold load (ITL) on breathing, all previous work studied loads that were much greater than would be encountered under pathophysiological conditions. We hypothesized that mild ITL from 2.5 to 20 cmH2O is sufficient to modify control and sensation of breathing. The study was performed in healthy subjects. The results demonstrated that with mild ITL 1) inspiratory difficulty sensation could be perceived at an ITL of 2.5 cmH2O; 2) tidal volume increased without change in breathing frequency, resulting in hyperpnea; and 3) although additional time was required for inspiratory pressure to attain the threshold before inspiratory flow was initiated, the total inspiratory muscle contraction time remained constant. This resulted in shortening of the available time for inspiratory flow, so that the tidal volume was maintained or increased by significant increase in mean inspiratory flow. On the basis of computer simulation, we conclude that the mild ITL is sufficient to increase breathing sensation and alter breathing control, presumably aiming at maintaining a certain level of ventilation but minimizing the energy consumption of the inspiratory muscles.  相似文献   

18.
In an attempt to understand the role of the parasternal intercostals in respiration, we measured the changes in length of these muscles during a variety of static and dynamic respiratory maneuvers. Studies were performed on 39 intercostal spaces from 10 anesthetized dogs, and changes in parasternal intercostal length were assessed with pairs of piezoelectric crystals (sonomicrometry). During static maneuvers (passive inflation-deflation, isovolume maneuvers, changes in body position), the parasternal intercostals shortened whenever the rib cage inflated, and they lengthened whenever the rib cage contracted. The changes in parasternal intercostal length, however, were much smaller than the changes in diaphragmatic length, averaging 9.2% of the resting length during inflation from residual volume to total lung capacity and 1.3% during tilting from supine to upright. During quiet breathing the parasternal intercostals always shortened during inspiration and lengthened during expiration. In the intact animals the inspiratory parasternal shortening was close to that seen for the same increase in lung volume during passive inflation and averaged 3.5%. After bilateral phrenicotomy, however, the parasternal intercostal shortening during inspiration markedly increased, whereas tidal volume diminished. These results indicate that 1) the parasternal intercostals in the dog are real agonists (as opposed to fixators) and actively contribute to expand the rib cage and the lung during quiet inspiration, 2) the relationship between lung volume and parasternal length is not unique but depends on the relative contribution of the various inspiratory muscles to tidal volume, and 3) the physiological range of operating length of the parasternal intercostals is considerably smaller than that of the diaphragm.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Recent evidence from several laboratories suggests that activation of afferents in the diaphragm can reflexly affect inspiratory muscle activation. This study determined whether afferents in the diaphragm contribute to compensatory changes in phrenic motor drive when the operating length of the diaphragm is suddenly increased. Experiments were performed in six closed-chest pentothal-anesthetized cats. Length changes were measured using a pair of piezoelectric crystals implanted in the left crural diaphragm. The crural electromyogram (EMGdi) was measured by electrodes fixed to each crystal. The animal was suspended in a spinal frame, and a Plexiglas tube was fitted around the cat's abdomen. A balloon placed inside the tube was inflated during the expiratory phase to produce a mean increase of 17% in diaphragm length at functional residual capacity. Ten trials were performed in succession under the following conditions: intact, after bilateral vagotomy, after spinal section at C7, and after cervical dorsal rhizotomy. Peak integrated EMGdi (integral of EMGdi) and neural inspiratory time (nTI) were measured for the last control inspiration and the first after inflation. There was a significant reduction in the peak integral of EMGdi when the length of the diaphragm was increased for all conditions except after rhizotomy. Although not measured, it is likely that the tension developed by the diaphragm was also increased during abdominal compression. Results suggest that afferents sensitive to changes in the operating length and/or tension in the diaphragm contribute to compensatory alterations in phrenic motor drive.  相似文献   

20.
We determined how close highly trained athletes [n = 8; maximal oxygen consumption (VO2max) = 73 +/- 1 ml.kg-1.min-1] came to their mechanical limits for generating expiratory airflow and inspiratory pleural pressure during maximal short-term exercise. Mechanical limits to expiratory flow were assessed at rest by measuring, over a range of lung volumes, the pleural pressures beyond which no further increases in flow rate are observed (Pmaxe). The capacity to generate inspiratory pressure (Pcapi) was also measured at rest over a range of lung volumes and flow rates. During progressive exercise, tidal pleural pressure-volume loops were measured and plotted relative to Pmaxe and Pcapi at the measured end-expiratory lung volume. During maximal exercise, expiratory flow limitation was reached over 27-76% of tidal volume, peak tidal inspiratory pressure reached an average of 89% of Pcapi, and end-inspiratory lung volume averaged 86% of total lung capacity. Mechanical limits to ventilation (VE) were generally reached coincident with the achievement of VO2max; the greater the ventilatory response, the greater was the degree of mechanical limitation. Mean arterial blood gases measured during maximal exercise showed a moderate hyperventilation (arterial PCO2 = 35.8 Torr, alveolar PO2 = 110 Torr), a widened alveolar-to-arterial gas pressure difference (32 Torr), and variable degrees of hypoxemia (arterial PO2 = 78 Torr, range 65-83 Torr). Increasing the stimulus to breathe during maximal exercise by inducing either hypercapnia (end-tidal PCO2 = 65 Torr) or hypoxemia (saturation = 75%) failed to increase VE, inspiratory pressure, or expiratory pressure. We conclude that during maximal exercise, highly trained individuals often reach the mechanical limits of the lung and respiratory muscle for producing alveolar ventilation. This level of ventilation is achieved at a considerable metabolic cost but with a mechanically optimal pattern of breathing and respiratory muscle recruitment and without sacrifice of a significant alveolar hyperventilation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号