首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The combined stresses of moderate heat shock (45 degrees C) and analog-induced glucose deprivation constitute a lethal stress for Neurospora crassa. We found that this cell death requires fatty acid synthesis and the cofactor biotin. In the absence of the cofactor, the stressed cells are particularly sensitive to exogenous ceramide, which is lethal at low concentrations. When we extracted endogenous sphingolipids, we found that unique ceramides were induced (i) by the inhibitory glucose analog 2-deoxyglucose and (ii) by combined heat shock and 2-deoxyglucose. We determined that the former is a 2-deoxyglucose-modified ceramide. By structural analysis, we identified the latter, induced by dual stress, as C(18)(OH)-phytoceramide. We also identified C(24)(OH)-phytoceramide as a constitutive ceramide that continues to be produced during the combined stresses. The unusual C(18)(OH)-phytoceramide is not made by germinating asexual spores subjected to the same heat and carbon stress. Since these spores, unlike growing cells, do not die from the stresses, this suggests a possible connection between synthesis of the dual-stress-induced ceramide and cell death. This connection is supported by the finding that a (dihydro)ceramide synthase inhibitor, australifungin, renders cells resistant to death from these stresses. The OS-2 mitogen-activated protein kinase, homologous to mammalian p38, may be involved in the cell death signaling pathway. Strains lacking OS-2 survived the combined stresses better than the wild type, and phosphorylated OS-2 increased in wild-type cells in response to heat shock and combined heat and carbon stress.  相似文献   

2.
Psychological stress leads to sympathetically mediated increases in body temperature. Brown adipose tissue (BAT) is often thought to be the main organ to produce heat in response to sympathetic activation. However, we have previously shown that the hyperthermia evoked by conditioned fear in rats is not the result of thermogenesis in the interscapular area of the back, where the largest deposit of BAT is found. Stress-induced hyperthermia is widely used as an anxiety indicator in mice. We thus sought to verify if this response can be attributed to BAT thermogenesis. Eight C57BL/6 mice were shaved in the interscapular and lumbar back areas prior to testing. Animals received injections of 20 mg/kg dl-propranolol or saline and were placed in either an open field or 4 °C enclosure for 30 min. Infrared thermographic images were taken each minute to record interscapular, lumbar and tail skin temperatures. Propranolol reduced the stress-induced hyperthermia observed during open field exposure (p<0.01), as indicated by the lumbar back skin temperature. Nevertheless, the difference between interscapular and lumbar skin temperatures remained constant, suggesting that this hyperthermia was not caused by BAT thermogenesis. There was no observable effect of propranolol on behavior, as animals remained active throughout the test. In contrast, the difference between interscapular and lumbar back skin temperature was increased by 2 °C during cold exposure. This increase was abolished after propranolol (p<0.001), indicating BAT thermogenesis during this challenge. Hence, just as rats exposed to conditioned fear, mice exposed to an open field display a stress-induced hyperthermia that is not caused by BAT thermogenesis.  相似文献   

3.
Reovirus-induced apoptosis is mediated by TRAIL   总被引:20,自引:0,他引:20       下载免费PDF全文
Members of the tumor necrosis factor (TNF) receptor superfamily and their activating ligands transmit apoptotic signals in a variety of systems. We now show that the binding of TNF-related, apoptosis-inducing ligand (TRAIL) to its cellular receptors DR5 (TRAILR2) and DR4 (TRAILR1) mediates reovirus-induced apoptosis. Anti-TRAIL antibody and soluble TRAIL receptors block reovirus-induced apoptosis by preventing TRAIL-receptor binding. In addition, reovirus induces both TRAIL release and an increase in the expression of DR5 and DR4 in infected cells. Reovirus-induced apoptosis is also blocked following inhibition of the death receptor-associated, apoptosis-inducing molecules FADD (for FAS-associated death domain) and caspase 8. We propose that reovirus infection promotes apoptosis via the expression of DR5 and the release of TRAIL from infected cells. Virus-induced regulation of the TRAIL apoptotic pathway defines a novel mechanism for virus-induced apoptosis.  相似文献   

4.
Neutral sphingomyelinase (nSMase) activation in response to environmental stress or inflammatory cytokine stimuli generates the second messenger ceramide, which mediates the stress-induced apoptosis. However, the signaling pathways and activation mechanism underlying this process have yet to be elucidated. Here we show that the phosphorylation of nSMase1 (sphingomyelin phosphodiesterase 2, SMPD2) by c-Jun N-terminal kinase (JNK) signaling stimulates ceramide generation and apoptosis and provide evidence for a signaling mechanism that integrates stress- and cytokine-activated apoptosis in vertebrate cells. An nSMase1 was identified as a JNK substrate, and the phosphorylation site responsible for its effects on stress and cytokine induction was Ser-270. In zebrafish cells, the substitution of Ser-270 for alanine blocked the phosphorylation and activation of nSMase1, whereas the substitution of Ser-270 for negatively charged glutamic acid mimicked the effect of phosphorylation. The JNK inhibitor SP600125 blocked the phosphorylation and activation of nSMase1, which in turn blocked ceramide signaling and apoptosis. A variety of stress conditions, including heat shock, UV exposure, hydrogen peroxide treatment, and anti-Fas antibody stimulation, led to the phosphorylation of nSMase1, activated nSMase1, and induced ceramide generation and apoptosis in zebrafish embryonic ZE and human Jurkat T cells. In addition, the depletion of MAPK8/9 or SMPD2 by RNAi knockdown decreased ceramide generation and stress- and cytokine-induced apoptosis in Jurkat cells. Therefore the phosphorylation of nSMase1 is a pivotal step in JNK signaling, which leads to ceramide generation and apoptosis under stress conditions and in response to cytokine stimulation. nSMase1 has a common central role in ceramide signaling during the stress and cytokine responses and apoptosis.The sphingomyelin pathway is initiated by the hydrolysis of sphingomyelin to generate the second messenger ceramide.1 Sphingomyelin hydrolysis is a major pathway for stress-induced ceramide generation. Neutral sphingomyelinase (nSMase) is activated by a variety of environmental stress conditions, such as heat shock,1, 2, 3 oxidative stress (hydrogen peroxide (H2O2), oxidized lipoproteins),1 ultraviolet (UV) radiation,1 chemotherapeutic agents,4 and β-amyloid peptides.5, 6 Cytokines, including tumor necrosis factor (TNF)-α,7, 8, 9 interleukin (IL)-1β,10 Fas ligand,11 and their associated proteins, also trigger the activation of nSMase.12 Membrane-bound Mg2+-dependent nSMase is considered to be a strong candidate for mediating the effects of stress and inflammatory cytokines on ceramide.3Among the four vertebrate nSMases, nSMase1 (SMPD2) was the first to be cloned and is localized in the endoplasmic reticulum (ER) and Golgi apparatus.13 Several studies have focused on the potential signaling roles of nSMase1, and some reports have suggested that nSMase1 is important for ceramide generation in response to stress.5, 6, 14, 15 In addition, nSMase1 is responsible for heat-induced apoptosis in zebrafish embryonic cultured (ZE) cells, and a loss-of-function study showed a reduction in ceramide generation, caspase-3 activation, and apoptosis in zebrafish embryos.16 However, nSMase1-knockout mice showed no lipid storage diseases or abnormalities in sphingomyelin metabolism.17 Therefore, the molecular mechanisms by which nSMase1 is activated have yet to be elucidated.Environmental stress and inflammatory cytokines1, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27 stimulate stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK) signaling, which involves the sequential activation of members of the mitogen-activated protein kinase (MAPK) family, including MAPK/ERK kinase kinase (MEKK)1/MAPK kinase (MKK)4, and/or SAPK/ERK kinase (SEK)1/MKK7, JNK, and c-jun. Both the JNK and sphingomyelin signaling pathways coordinately mediate the induction of apoptosis.1 However, possible crosstalk between the JNK and sphingomyelin signaling pathways has not yet been characterized. Previously, we used SDS-PAGE to determine that nSMase1 polypeptides migrated at higher molecular masses,16 suggesting that the sphingomyelin signaling pathway might cause the production of a chemically modified phosphorylated nSMase1, which is stimulated under stressed conditions in ZE cells.16 Here, we demonstrate that JNK signaling results in the phosphorylation of Ser-270 of nSMase1, which initiates ceramide generation and apoptosis. We also provide evidence for a signaling mechanism that integrates cytokine- and stress-activated apoptosis in vertebrate cells. We studied stress-induced ceramide generation in two cell types: ZE cells and human leukemia Jurkat T-lymphoid cells. Stress-induced apoptosis has been investigated in these systems previously.16, 28  相似文献   

5.
6.
Apoptosis-inducing agents have been reported to cause rapid shedding of tumor necrosis factor receptor 1 (TNFR1) in endothelial cells (EC). Oxidized LDL (oxLDL) has also been known to induce apoptosis of EC and to inhibit proliferation of EC. In the present study, we show that oxLDL also causes shedding of TNFR1 in EC and that EC transfected with soluble TNFR1 (sTNFR1 ), which is an extracellular domain of TNFR1, can antagonize the toxicity induced by oxLDL. These results suggest that transfection with the sTNFR1 gene plays a protective role against the injury of EC induced by oxLDL. We speculate therefore that sTNFR1 can be a new strategy for treatment of atherogenesis possibly by preventing shedding of TNFR1.  相似文献   

7.
8.
The effects of pirenzepine (in a dose of 25.0 mg X kg-1) and atropine (2.5 mg X kg-1) were studied on the development of gastric ulceration produced by pylorus ligation, polymyxin B and absolute ethanol, as well as on the gastric secretory responses and plasma level of noradrenaline. It was found that: (1) pirenzepine significantly decreased the development of ulcer formation produced by pylorus ligation, polymyxin B and absolute ethanol without any antisecretory response; (2) atropine inhibited gastric acid secretion, but no effect was obtained on ulcus produced by pylorus ligation, polymyxin B and absolute ethanol; (3) the plasma level of noradrenaline could be decreased by atropine and pirenzepine, although the difference did not reach statistical significance. It has been concluded that catecholamines are not involved in the gastric cytoprotective mechanism of pirenzepine.  相似文献   

9.
The ceramide synthase (CerS) enzymes are key regulators of ceramide homeostasis. CerS1 is central to regulating C18 ceramide which has been shown to be important in cancer and the response to chemotherapeutic drugs. Previous work indicated that some drugs induced a novel and specific translocation of CerS1 from the endoplasmic reticulum to the Golgi apparatus. We now show that diverse stresses such as UV light, DTT, as well as drugs with different mechanisms of action induce CerS1 translocation. The stresses cause a specific cleavage of the CerS1 enzyme, and the cleavage is dependent on the action of the proteasome. Inhibition of proteasome function inhibits stress-induced CerS1 translocation, indicating that this proteolytic cleavage precedes the translocation. Modulation of protein kinase C activity shows that it plays a central role in regulating CerS1 translocation. Analysis of the C-terminus of the CerS1 protein shows that several KxKxx motifs are not involved in regulating stress induced translocation. The study suggests that diverse stresses initiate responses through different signaling pathways, which ultimately converge to regulate CerS1 localization. The data provide an increasingly detailed understanding of the regulation of this important enzyme in normal and stressed cells and support the idea that it is uniquely regulated with respect to the other CerS enzymes.  相似文献   

10.
Thymocytes were reported to undergo apoptosis in the presence of extracellular ATP through the activation of the purinergic receptors P2 X 1R, P2 X 7R or both. We investigated the identity of the P2 X R and the signaling pathways involved in ATP-mediated apoptosis. Apoptosis elicited by ATP was prevented by inhibition of P2 X 7R, or in thymocytes bearing a mutated P2 X 7R, and reproduced with a P2 X 7R agonist, but not with a P2 X 1R agonist. Stimulation of thymocytes with either ATP or a P2 X 7R agonist was found to stimulate a late de novo ceramide synthesis and mitochondrial alterations. Inhibition of either processes attenuated apoptosis. Interestingly, stimulation with either ATP or a P2 X 1R agonist induced an early ceramide accumulation and a weak caspases-3/7 activation that did not lead to apoptosis. In conclusion, de novo ceramide generation and mitochondrial alterations, both resulting from P2 X 7R activation, were implicated in ATP-induced thymocyte apoptosis.  相似文献   

11.
12.
The mechanism of glucocorticoid-induced internucleosomal DNA cleavage and cytolysis of lymphatic cells is not known. Recent data (Compton, M.M., and Cidlowski, J.A. (1987) J. Biol. Chem. 262, 8288-8292) suggested that in vivo treatment of rat thymocytes with glucocorticoids induces a nucleolytic "lysis gene" product(s) responsible for lymphocytolysis. In this paper, the possibility that lymphocytolysis may result from glucocorticoid-induced nuclease(s) was examined. Using the rat thymocytes as a model system, we have shown by electrophoretic, enzymatic, and amino acid sequence analysis that the putative glucocorticoid-induced nucleases identified recently by Compton and Cidlowski are in fact H1, H1(0), and core histones, and their gross appearance is not the result of new histone protein synthesis, but a result of the release of histone-containing nucleosomes during chromatin breakdown. Evidence presented here shows that the putative induced nuclease activity is an artifact of the assay system employed. Because our data do not support induction of a glucocorticoid-induced nuclease(s), we examined the possibility that DNA cleavage might be induced by activation of a constitutive endogenous endonuclease. We have shown that it is possible to produce characteristic internucleosomal DNA cleavage of rat thymocytes, merely by incubating intact nuclei from untreated adrenalectomized rat thymocytes with Ca2+ and Mg2+ for a short period of time. However, in glucocorticoid-sensitive human CEM-C7 lymphocytes activation of internucleosomal DNA cleavage was independent of calcium uptake. We conclude that glucocorticoid induction of internucleosomal DNA fragmentation does not necessarily require expression of a new nuclease(s), but is the result of the activation of a constitutive endogenous endonuclease(s). Also, our data suggest that the mechanism which controls activation of internucleosomal DNA cleavage in rat thymocytes differs from that which operates in CEM-C7 lymphocytes.  相似文献   

13.
14.
We have exposed mouse thymocytes and P-815 mastocytoma cells to four different conditions reported to cause apoptosis: 1) incubation in the absence of mitogenic factors; 2) incubation in the presence of dexamethasone; 3) stimulation with external ATP; 4) treatment with high concentrations of the K+ ionophore valinomycin. These treatments caused DNA fragmentation to a varying extent in the two cell types. High stringency hybridization with a cDNA probe specific to a mitochondrial DNA sequence revealed that during apoptosis induced by lack of mitogenic factors, dexamethasone, or extracellular ATP, mitochondrial DNA was not fragmented. On the contrary, valinomycin caused extensive degradation of mitochondrial DNA. These results support the notion that DNA fragmentation during apoptosis is a specific nuclear event and suggest that other agents, such as valinomycin, may act less selectively.  相似文献   

15.
Ceramide transfer protein (CERT) functions in the transfer of ceramide from the endoplasmic reticulum (ER) to the Golgi. In this study, we show that CERT is an essential gene for mouse development and embryonic survival and, quite strikingly, is critical for mitochondrial integrity. CERT mutant embryos accumulate ceramide in the ER but also mislocalize ceramide to the mitochondria, compromising their function. Cells in mutant embryos show abnormal dilation of the ER and degenerating mitochondria. These subcellular changes manifest as heart defects and cause severely compromised cardiac function and embryonic death around embryonic day 11.5. In spite of ceramide accumulation, CERT mutant mice do not die as a result of enhanced apoptosis. Instead, cell proliferation is impaired, and expression levels of cell cycle–associated proteins are altered. Individual cells survive, perhaps because cell survival mechanisms are activated. Thus, global compromise of ER and mitochondrial integrity caused by ceramide accumulation in CERT mutant mice primarily affects organogenesis rather than causing cell death via apoptotic pathways.  相似文献   

16.
Chromogranin A is up-regulated in the senile plaques of Alzheimer's brain and is a novel activator of microglia, transforming them to a neurotoxic phenotype. Treatment of primary cultures of rat brain microglia or the murine N9 microglial cell line with chromogranin A resulted in nitric oxide production, which triggered microglial apoptosis. Exposure of microglia to chromogranin A resulted in a fall in mitochondrial membrane potential. Mitochondrial depolarisation and apoptosis were reduced significantly by cyclosporin A, but not by the calcineurin inhibitor FK506. Cytochrome c did not translocate from the mitochondria to the cytosol, but its expression became significantly enhanced within the mitochondria. Inhibition of caspase 1 attenuated chromogranin A-induced microglial apoptosis, but did not prevent mitochondrial depolarisation, indicating that apoptosis occurred downstream of mitochondrial depolarisation. Conversely, staurosporine-induced microglial apoptosis led to mitochondrial cytochrome c release, but not caspase 1 activation. Our findings provide insight into the pathways controlling activation-triggered microglial apoptosis and may point to routes for the modulation of microglial evoked neurotoxicity.  相似文献   

17.
K Saha  P H Yuen    P K Wong 《Journal of virology》1994,68(4):2735-2740
ts1, a mutant of Moloney murine leukemia virus, causes neurologic disorders and acute immunodeficiency associated with the destruction of thymocytes and helper T cells. In this study, we examined whether apoptosis was involved in ts1-induced killings of T cells. Neonatal mice were inoculated with ts1, and 20 to 23 days postinoculation, when cytopathic effects on T cells normally appear, thymocytes and splenic lymphocytes were isolated and examined. Our results showed that several features of apoptosis were present in ts1-infected thymocytes and splenic lymphocytes. Apoptotic fragmented DNA, condensation of the chromatin, and enhanced cell death after stimulation with mitogens which was preventable with protein synthesis inhibitors, all of which are common features of apoptotic cell death, were observed in ts1-infected cells. Several other viruses, including human immunodeficiency virus, have been shown to cause apoptotic death of T cells. Here we show for the first time that a murine retrovirus which also induces immunodeficiency can cause apoptotic T-cell death. Future studies with this murine retrovirus may provide important results to help us better understand the mechanisms of retrovirus-induced apoptosis of T cells.  相似文献   

18.
Bone unloading results in osteocyte apoptosis, which attracts osteoclasts leading to bone loss. Loading of bone drives fluid flow over osteocytes which respond by releasing signaling molecules, like nitric oxide (NO), that inhibit osteocyte apoptosis and alter osteoblast and osteoclast activity thereby preventing bone loss. However, which apoptosis-related genes are modulated by loading is unknown. We studied apoptosis-related gene expression in response to pulsating fluid flow (PFF) in osteocytes, osteoblasts, and fibroblasts, and whether this is mediated by loading-induced NO production. PFF (0.7 ± 0.3 Pa, 5 Hz, 1 h) upregulated Bcl-2 and downregulated caspase-3 expression in osteocytes. l-NAME attenuated this effect. In osteocytes PFF did not affect p53 and c-Jun, but l-NAME upregulated c-Jun expression. In osteoblasts and fibroblasts PFF upregulated c-Jun, but not Bcl-2, caspase-3, and p53 expression. This suggests that PFF inhibits osteocyte apoptosis via alterations in Bcl-2 and caspase-3 gene expression, which is at least partially regulated by NO.  相似文献   

19.
20.
We have investigated the effect of a high concentration (750 nM) of synthetic amidated rat amylin on unstimulated somatostatin and insulin secretion as well as on the response of these hormones to arginine. Amylin consistently reduced insulin output but it did not significantly modify somatostatin release. These findings indicate that the inhibitory effect of amylin on insulin secretion is not mediated by a D-cell paracrine effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号