首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In order to determine the nature of KDPG-aldolase negative mutations (described in a recent paper) we have studied revertants to wild type. The structure of restored KDPG-aldolase in two revertants is very different with regard to wild type aldolase activity (modified thermosensibility, Km and VM). These restored aldolases like the wild type aldolase are under the control of the regulator gene (kdg R). The observation that one of these revertants maps in the eda locus demonstrates that this locus is the structural gene of KDPG-aldolase in E. coli K 12.  相似文献   

2.
Summary The UV-sensitivity of wild type Salmonella strains has been compared to that of wild type E. coli and its UV-sensitive mutants. Many wild type Salmonella strains are 4–5 times more sensitive than wild type E. coli and their inactivation curve is similar to that for E. coli with a mutation in the polA gene. Alkaline sucrose gradient centrifugation has shown a deficiency of these strains in normal excision repair of UV-damaged DNA. This deficiency is not a Salmonella genus feature because one strain as resistant as wild type E. coli was found. This resistant strain showed normal excision repair in alkaline sucrose gradient centrifugation experiments. The possible influence of plasmids and mutations in repair genes on the ability of Salmonella to repair UV-damaged DNA is discussed.  相似文献   

3.
Serratia grimesii are non‐pathogenic bacteria capable, however, to invade eukaryotic cells provided that they synthesize intracellular metalloprotease grimelysin (Bozhokina et al. [2011] Cell. Biol. Int. 35: 111–118). To elucidate how invasion of grimelysin containing bacteria depends on physiological state of host cells, we studied the effect of N‐acetylcysteine (NAC) on susceptibility of HeLa cells to invasion by the wild‐type S. grimesii and recombinant E. coli expressing grimelysin gene. Incubation of HeLa cells with 10 mM NAC resulted in changes of cell morphology and disassembly of actin cytoskeleton that were reversed when NAC was removed from the culture medium. Both in the presence of NAC and upon its removal, the entry of grimelysin producing bacteria increased by a factor of 1.5–2 and 3–3.5 for wild‐type S. grimesii and recombinant E. coli, respectively. This effect does not correlate with cytoskeleton rearrangements but may be due to the NAC‐induced up‐regulation of cell surface receptors playing a role in cell adhesion and cell–cell junctions. A twofold difference in the efficiency of S. grimesii and recombinant E. coli to enter the NAC‐treated cells suggests that the entry of the wild‐type and recombinant bacteria occurs via different receptors which activity is differently affected by NAC. J. Cell. Biochem. 114: 1568–1574, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
5.
大肠杆菌是导致新生儿细菌性脑膜炎最常见的革兰氏阴性致病菌.为探讨毒力岛基因ibeT在大肠杆菌K1株致病过程中的作用,构建了ibeT基因缺失的大肠杆菌K1株,细菌在细胞内存活试验结果显示,ibeT基因缺失抑制了大肠杆菌K1株在人脑微血管内皮细胞中的生长.利用激光共聚焦扫描显微镜观察到,在细菌侵袭进入人脑微血管内皮细胞后,与野生型相比,ibeT基因缺失突变株较多地滞留在溶酶体内;透射电镜结果进一步显示,ibeT基因缺失使大肠杆菌K1株逃逸ECV(含有大肠杆菌的囊泡)的能力发生了下降,继而使其在细胞浆内的复制减少.利用体外模拟的弱酸性环境,检测大肠杆菌菌体胞内的缓冲容量,发现ibeT基因缺失突变株菌体胞内的缓冲能力较野生型低.这些结果提示,在大肠杆菌K1株侵袭进入人脑微血管内皮细胞后,ibeT基因有利于大肠杆菌降解ECV膜,避免与溶酶体融合,进而促使大肠杆菌逃逸进入细胞浆并进行复制.  相似文献   

6.
Summary A novel type of tryptophan requiring mutants of Escherichia coli was isolated. The mutation maps between str and malA.These mutants, designated as trpS, have alterations in the regulation of the tryptophan operon. Neither derepression nor complete repression of the tryptophan biosynthetic enzymes was observed with this mutant. Dominance test shows that the trpS mutation is recessive to the wild type allele. TrpS mutant, therefore, is a type of super-repressed mutants distinct from i s mutant in the lactose system of E. coli.It was found that the tryptophanyl-tRNA synthetase is specified by the trpS gene. This indicates that the transfer mechanism of tryptophan is related to repression of the tryptophan operon.  相似文献   

7.
Escherichia coli O157 strains belonging to a distinct lineage and expressing different O‐antigen (Oag) lengths were isolated. Although the function of wzz in E. coli has not been adequately investigated, this gene is known to be associated with regulation of Oag length. Using E. coli O157:H7 ATCC43888 (wild‐type), several wzz mutants of E. coli O157, including a wzz deletion mutant, were generated and the relationship between the length of Oag modulated by the wzz gene and sensitivities to serum complement investigated. SDS–PAGE, immunoblot analyses and sensitivity tests to human serum complement were performed on these strains. The lengths of the O157‐antigen could be modulated by the wzz gene mutations and were classified into long, intermediate and short groups. The short chain mutant was more serum sensitive than the wild‐type strain and the other wzz mutants (P < 0.001). In conclusion, Oag chain length modulated by the wzz gene in E. coli O157 influences its sensitivities to serum complement. The present findings suggest that E. coli O157 strains with intermediate or long length Oag chains might show greater resistance to serum complement than those with short chains.  相似文献   

8.
Summary We have characterized a new mutation rpoD800 affecting the sigma gene of E. coli. Upon transfer to high temperature, a strain with the rpoD800 mutation ceases growth within 30 min. We find that this mutation renders sigma about 10-fold more thermolabile than the wild type sigma at 45°C in vitro. We have compared the temperature profile for inactivation of wild type and mutant sigma and find that the mutant inactivates at a temperature about 9° C lower than does the wild type.The chromosomal locus affected by rpoD800 is shown to be allelic to the locus affected by the spontaneous mutants ts285 and alt-1. All three mutations result in altered sigma and in altered growth at high temperature. We argue that the single locus affected is the structural gene for the sigma subunit of E. coli RNA polymerase.  相似文献   

9.
Overexpression of the IAGLU gene from maize (ZmIAAGLU) in Arabidopsis thaliana, under the control of the CaMV 35S promoter, inhibited root but not hypocotyl growth of seedlings in four different transgenic lines. Although hypocotyl growth of seedlings and inflorescence growth of mature plants was not affected, the leaves of mature plants were smaller and more curled as compared to wild-type and empty vector transformed plants. The rosette diameter in transgenic lines with higher ZmIAGLU expression was also smaller compared to the wild type. Free indole-3-acetic acid (IAA) levels in the transgenic plants were comparable to the wild type, even though a decrease in free IAA levels might be expected from overexpression of an IAA-conjugate–forming enzyme. IAA-glucose levels, however, were increased in transgenic lines compared to the wild type, indicating that the ZmIAGLU gene product is active in these plants. In addition, three different 35SZmIAGLU lines showed less inhibition of root growth when cultivated on increasing concentrations of IAA but not indole-3-butyric acid (IBA) and 2,4-dichlorophenoxyacetic acid (2,4-D). Feeding IAA to transgenic lines resulted in increased IAA-glucose synthesis, whereas the levels of IAA-aspartate and IAA-glutamine formed were reduced compared to the wild type. Our results show that IAA homeostasis can be altered by heterologous overexpression of a conjugate-forming gene from maize.  相似文献   

10.
The Escherichia coli (E. coli) prokaryotic expression system is widely used in the field of biology. The currently adopted processes for inducing cell wall rupture, in order to release the target protein, are complex and cumbersome. We developed an auto-inducible E. coli lysis system that is regulated by exogenous magnesium ion (Mg2+) concentration. This system is composed of a strictly Mg2+-regulated promoter Pmgt from the mgtB gene of Salmonella typhimurium, and the lysis genes from λ bacteriophage. Both the wild type and Sam7-mutant lysis genes were inducibly expressed in E. coli under Mg2+-depleted conditions. The former caused a rapid lysis, while the latter induced very mild lysis of the host strains. However, rapid lysis was observed when the latter was resuspended in Tris–EDTA buffer. Finally, the inducible lysis cassette containing wild type lysis gene was introduced into an expression plasmid expressing GFP gene and efficient lysis of the host E. coli strain and subsequent release of the target protein was achieved in Mg2+-depleted conditions. Collectively, the current study indicates that this novel inducible lysis system could have attractive applications in the field of protein expression and provides new insights for the development of bacterium-based vaccines.  相似文献   

11.
Summary Ribosomal protein S5 was isolated from wild type Bacillus subtilis ATCC 6633 and from a spectinomycin resistant mutant (BSPC 111) derived from spectinomycin sensitive to resistance is accomtrypsin and all the tryptic peptides were isolated by column- and paper-chromatography. By comparative amino acid analyses of the peptides, it was demonstrated that the S5 from the mutant differs from the wild type S5 by a replacement of one amino acid, namely lysine by isoleucine in the peptide T9. The results are compared with E. coli spectinomycin resistant mutants.  相似文献   

12.
Summary Based on homology analysis of the PQQ (pyrroloquinoline quinone) glucose dehydrogenase (PQQGDH) gene fromEscherichia coli andAcinetobacter calcoaceticus, Glu742 was substituted to Lys by site directed mutagenesis of theE. coli PQQGDH gene (gcd). The mutant enzyme, E742K showed higher tolerance towards EDTA inactivation than wild type PQQGDH. This is the first mutagenesis study of putative a PQQ binding site in PQQ enzyme.  相似文献   

13.
Summary DNA is more extensively degraded after it is damaged in recA mutants of E. coli than in wild type cells. All data presented here are consistent with the recA gene product, protein X, being an inhibitor of nalidixic acid induced degradation of the bulk DNA (but not of newly replicated DNA). Production of protein X also is correlated with appearance of various S.O.S. repair functions. Evidence was obtained by comparing the rates of protein X synthesis and solubilization of uniformly-labeled DNA in intact cells, incubated in the presence of nalidixic acid. A set of mutants at the lexA locus produced protein X at different rates and degraded their DNA at rates which were inversely correlated to their rates of protein X production. A low concentration of rifampicin quite specifically inhibited protein X production by wild type E. coli, and allowed more rapid DNA degradation. After the DNA was damaged by the incubation of cells in the presence of nalidixic acid, cells preloaded with protein X degraded their DNA more slowly. We propose that protein X could protect DNA against degradation by binding to singlestranded regions, thereby inhibiting nuclease action.  相似文献   

14.
Summary The wild type strain of Streptomyces glaucescens produces hydroxystreptomycin and has a natural resistance towards the streptomycin group aminoglycoside antibiotics. The inherent resistance is a genetically unstable character and mutant strains sensitive to streptomycins arise spontaneously at unusually high frequencies. The gene conferring streptomycin resistance was cloned and characterised as a streptomycin specific phosphotransferase. Hybridisation experiments show that the mutational event leading to sensitivity is due to large deletions, most likely on the chromosome, comprehending the structural gene coding for a streptomycin phosphotransferase and its flanking regions. Interspecific expression of the S. glaucescens phosphotransferase was found in Streptomyces lividans as well as in Escherichia coli.Abbreviations bp base pairs - EDTA ethylenediaminetetraacetic acid - kb kilobases' - TES n-tris(hydroxymethyl) methyl-2-aminoethane sulfonic acid  相似文献   

15.
Aims: To determine the presence of antibiotic‐resistant faecal Escherichia coli in populations of wild mammals in the Czech Republic and Slovakia. Methods and Results: Rectal swabs or faeces collected during 2006–2008 from wild mammals were spread on MacConkey agar and MacConkey agar containing 2 mg l?1 of cefotaxime. From plates with positive growth, one isolate was recovered and identified as E. coli. Susceptibility to 12 antibiotics was tested using the disk diffusion method. Resistance genes, class 1 and 2 integrons and gene cassettes were detected in resistant isolates by polymerase chain reaction (PCR). Extended‐spectrum beta‐lactamases (ESBL) were further characterized by DNA sequencing, macrorestriction profiling and determination of plasmid sizes. Plasmid DNA was subjected to EcoRV digestion, transferability by conjugation and incompatibility grouping by multiplex PCR. The prevalence of resistant isolates was 2% in small terrestrial mammals (rodents and insectivores, nE. coli = 242), 12% in wild ruminants and foxes (nE. coli = 42), while no resistant isolates were detected in brown bears (nE. coli = 16). In wild boars (Sus scrofa) (nE. coli = 290), the prevalence of resistant isolates was 6%. Class 1 and 2 integrons with various gene cassettes were recorded in resistant isolates. From wild boars, five (2%, nrectal smears = 293) multiresistant isolates producing ESBL were recovered: one isolate with blaCTX‐M‐1 + blaTEM‐1, three with blaCTX‐M‐1 and one with blaTEM‐52b. The blaCTX‐M‐1 genes were carried on approx. 90 kb IncI1 conjugative plasmids. Conclusions: Antibiotic‐resistant E. coli occured in populations of wild mammals in various prevalences. Significance and Impact of the Study: Wild mammals are reservoirs of antibiotic‐resistant E. coli including ESBL‐producing strains which were found in wild boars.  相似文献   

16.
Summary The periplasmic phosphate binding protein is a product of the phoS gene and is an essential component of the phosphate specific transport (PST) system, which mediates Pi uptake in Escherichia coli. The binding of Pi to periplasmic protein(s) and the kinetic parameters of Pi uptake were studied in phoT and pstB mutants of E. coli. These mutants are impaired in Pi uptake but have a periplasmic Pi-binding protein whose Pi-binding acpacity was estimated by the retention kinetics. The Pi-binding activity in two pstB mutants was found to be weaker as compared to phoT9 and the wild type. The K D values for Pi binding to periplasmic protein were determined by equilibrium dialysis. In the pstB mutants the K D value was found to be 9–31 times higher than the values obtained for the wild type and the phoT mutant. The apparent K m values for Pi uptake in one pstB mutant is 14.3 times higher than in the wild type. V max of the mutant is 8.3 times lower that of the wild type. The data indicate that pstB, an essential gene of the PST transport system, is promoting the binding capacity of the Pi-binding protein.Abbreviations AP alkaline phosphatase - Pi inorganic orthophosphate - Km kanamycin  相似文献   

17.
Two genetically relatedEscherichia coli strains were tested for the ATP pool and for the adenyl cyclase activity in the cell membrane fractions. TheEscherichia coli strain BS1with a high UV sensitivity showed a higher ATP level than the wild typeEscherichia coli B strain. The adenyl cyclase activity was found to be lower in the sensitive strain than in the wild typeEscherichia coli.  相似文献   

18.
Summary The isolation and characterization of two mutants of Escherichia coli K12 with an altered outer membrane protein c is described. The first mutant, strain CE1151, was isolated as a bacteriophage Mel resistant strain which contains normal levels of protein c. Mutant cells adsorbed the phage with a strongly decreased rate. Complexes of purified nonheat modified wild type protein c and wild type lipopolysaccharide inactivated phage Me1, indicating that these components are required for receptor activity for phage Me1. When wild type protein c was replaced by protein c of strain CE1151, the receptorcomplex was far less active, showing that protein c of strain CE1151 is altered. The second mutant produces a protein c with a decreased electrophoretic mobility, designated as protein c*. An altered apparent molecular weight was also observed for one or more fragments obtained after fragmentation of the mutant protein with cyanogen bromide, trypsin and chymotrypsin. Alteration of protein c was not accompanied by a detectable alteration in protein b or its fragments. Both mutations are located at minute 48 of the Escherichia coli K12 linkage map. The results strongly suggest that meoA is the structural gene for protein c.  相似文献   

19.
The effects of cell wall mutation on the oxygenation of linoleic acid (M.W. 280) by recombinant Escherichia coli expressing the CYP102A2 gene encoding self-sufficient P450 monooxygenase of Bacillus subtilis was investigated. After the CYP102A2 gene was heterologously expressed in E. coli W3110 and its isogenic lipopolysaccharide (LPS) structural mutant strains, their whole-cell biotransformation activities were compared. The mutants used in this study had previously been designated as MLK53, MLK1067, and MLK986. These strains carry one or two defined mutations in the secondary acyl fatty acids of the LPS lipid A constituent. The CYP102A2 gene was overexpressed in both wild type E. coli W3110 and its mutant strains, with the specific activity ranging from 1.7 to 2.1 U/mg protein. Interestingly, the whole-cell biotransformation activity of those recombinant biocatalysts differed significantly. Indeed, MLK986 possessing the tetraacylated LPS showed a higher oxygenation activity of linoleic acid than those in wild type or other mutant strains having hexa- or penta-acylated LPSs. These results suggest that the biotransformation efficiency of E. coli-based biocatalysts, especially for medium- to large-sized lipophilic organic substrates, can be enhanced via engineering their LPS, which is known to function as a formidable barrier for hydrophobic molecules.  相似文献   

20.
Aims: Compare specificity and sensitivity of quantitative PCR (qPCR) assays targeting single and multi‐copy gene regions of Escherichia coli. Methods and Results: A previously reported assay targeting the uidA gene (uidA405) was used as the basis for comparing the taxonomic specificity and sensitivity of qPCR assays targeting the rodA gene (rodA984) and two regions of the multi‐copy 23S ribosomal RNA gene (EC23S and EC23S857). Experimental analyses of 28 culture collection strains representing E. coli and 21 related non‐target species indicated that the uidA405 and rodA984 assays were both 100% specific for E. coli while the EC23S assay was only 29% specific. The EC23S857 assay was only 95% specific due to detection of E. fergusonii. The uidA405, rodA984, EC23S and EC23S857 assays were 85%, 85%, 100% and 86% sensitive, respectively, in detecting 175 presumptive E. coli culture isolates from fresh, marine and waste water samples. In analyses of DNA extracts from 32 fresh, marine and waste water samples, the rodA984, EC23S and EC23S857 assays detected mean densities of target sequences at ratios of approximately 1 : 1, 243 : 1 and 6 : 1 compared with the mean densities detected by the uidA405 assay. Conclusions: The EC23S assay was less specific for E. coli, whereas the rodA984 and EC23S857 assay taxonomic specificities and sensitivities were similar to those of the uidA405 gene assay. Significance and Impact: The EC23S857 assay has a lower limit of detection for E. coli cells than the uidA405 and rodA984 assays due to its multi‐copy gene target and therefore provides greater analytical sensitivity in monitoring for these faecal pollution indicators in environmental waters by qPCR methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号