首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of the present study was to determine if BHV-1 is able to replicate within in vitro produced embryos and to investigate the degree to which the zona pellucida (ZP) is able to protect in vitro produced embryos against infection with BHV-1. Both ZP-intact and ZP-free matured oocytes, zygotes (1 d post insemination; 1dpi), 8-cell stage embryos (3 dpi), morulae (6 dpi) were incubated for 1 h in 1 ml of MEM containing 10(7.7) TCID(50)/ml BHV-1 (Cooper strain). Three titers (10(5.7), 10(6.7) and 10(7.7) TCID(50)/ml) of the Cooper strain were used for incubation of hatched blastocysts (9 dpi). Bovine embryonic lung cells (BEL) on microcarriers were inoculated following the same protocol as for the embryos. At 0, 12, 24, 36 and 48 h post inoculation (hpi), groups of embryos and BEL cells were collected for virus titration and for the determination of the percentage of viral antigen positive cells by immunofluorescence. For the 3 developmental stages in ZP-free embryos, similar maximal intracellular virus progeny titers were obtained at 24 to 48 hpi ranging from 10(1.32) to 10(1.43) TCID(50)/ 100 embryonic cells. The intracellular virus titer in the BEL cells peaked at 10(3.08) TCID(50)/ 100 BEL cells. The percentage of cells which expressed viral antigens was 13% in ZP-free hatched blastocysts, 17% in ZP-free morulae and 100% in BEL cells. In ZP-intact embryos, no replication of BHV-1 was detected. These results clearly show that only after removal of the zona pellucida, BHV-1 is able to replicate within the in vitro produced embryos, with only a subset of embryonic cells being fully susceptible.  相似文献   

2.
Frozen-thawed bovine semen, experimentally infected with bovine herpesvirus-1 (BHV-1) at levels of 10(3) TCID(50)/ml and 10(4) TCID(50)/ml, was treated with a 0.3% trypsin solution to determine the effect of trypsin on the virus and on fertilization using superovulated animals. Virus was not isolated from any trypsin-treated samples using a cell culture assay system. Nor did two calves develop antibodies to BHV-1 following inoculation with trypsin-treated semen pooled from six bulls. Nonsurgical flushing of eight heifers inseminated with trypsin-treated frozen-thawed semen yielded 28 transferable-quality embryos.  相似文献   

3.
In previous experiments, zona pellucida (ZP)-intact in vitro-produced (IVP) embryos incubated for 1 hr with 10(6.3) TCID(50)/ml bovine herpes virus-1 (BHV-1), 10(5.3) TCID(50)/ml cytopathic (CP) bovine viral diarrhea virus (BVDV) or 10(5.3) TCID(50)/ml noncytopathic (NCP) BVDV showed no signs of virus replication or embryonic degeneration. The aims of the present study were to investigate whether a prolonged presence (24 hr or 8 days) of 10(6.3) TCID(50)/ml BHV-1 or 10(5.3) TCID(50)/ml BVDV in an in vitro embryo production system affected the rate of cleavage and embryonic development of ZP-intact embryos, and to point out eventual causes of adverse effects. When virus was present in each step of an IVP system, significantly lower rates of cleavage and blastocyst formation of virus-exposed embryos were observed, in comparison with control embryos (P < 0.01). When embryos were only exposed to virus during the in vitro fertilization (IVF), the rates of cleavage and blastocyst formation were significantly affected. The introduction of BHV-1 or BVDV during in vitro maturation (IVM) or in vitro culture (IVC) resulted only in significantly lower rates of blastocyst (P < 0.01). In all experiments, virus replication was not detected in the embryonic cells. On the other hand, virus replication was clearly demonstrated in oviductal cells in the co-culture system, resulting in a degeneration of these cells. In an additional experiment, synthetic oviduct fluid (SOF) without somatic cells was used as an alternative culture system. Even when SOF-embryos were exposed to 10(6.3) TCID(50)/ml BHV-1 or 10(5.3) TCID(50)/ml CP, and NCP BVDV, the rates of blastocyst formation of the BHV-1-, CP-, and NCP BVDV-exposed embryos were not different from the unexposed control embryos, 23%, 24%, and 24%, respectively, vs. 27%. Taken together, it can be concluded that the virus-induced adverse effects on embryonic development in conventional co-cultures were due to changes in the embryonic environment caused by infection of oviductal cells.  相似文献   

4.
The aim of our study was to examine whether: (1) the exposure of bovine embryos to the BHV-1 virus in vitro can compromise their further development and alter the ultrastructural morphology of cellular organelles; (2) whether the zona pellucida (ZP) can be a barrier protecting embryos against infection; and (3) whether washing with trypsin after viral exposure can prevent virus penetration inside the embryo and subsequent virus-induced damages. The embryos were recovered from superovulated Holstein-Friesian donor cows on day 6 of the estrous cycle. Only compact morulas or early blastocysts were selected for experiments with virus incubation. We used the embryos either with intact ZP (either with or without trypsin washing) or embryos in which the ZP barrier was avoided by using the microinjection of a BHV-1 suspension under the ZP. ZP-intact embryos (n = 153) were exposed to BHV-1 at 10(6.16) TCID(50)/ml for 60 min, then washed in trypsin according to IETS guidelines and postincubated in synthetic oviduct fluid (SOF) medium for 48 h. Some of the embryos (n = 36) were microinjected with 20 pl of BHV-1 suspension under the ZP, the embryos were washed in SOF medium and cultured for 48 h. Embryo development was evaluated by morphological inspection, the presence of viral particles was determined both immunocytochemically, using fluorescent anti-IBR-FITC conjugate and by transmission electron microscopy (TEM) on the basis of the ultrastructure of the cellular organelles. It was found that BHV-1 exposure impairs embryo development to higher preimplantation stages independent of the presence of the ZP or the trypsin treatment step, as most of the embryos were arrested at the morula stage when compared with the control. Immunofluorescence analysis confirmed the presence of BHV-1 particles in about 75% of embryos that were passed through the trypsin treatment and in all the BHV-1-microinjected embryos. Ultrastructural analysis, using TEM, revealed the presence of virus-like particles inside the BHV-1-exposed embryos, where the trypsin washing step was omitted. Conversely, in trypsin-treated BHV-1-exposed embryos, TEM detected only the envelope-free virus-like particles adhered to pores of the ZP. The embryos that were microinjected with BHV-1 suspension showed the presence of BHV-1 particles, as well as ultrastructural alterations in cell organelles. Taken together these findings may suggest that BHV-1 infection compromises preimplantation development of bovine embryos in vitro and therefore the ZP may not be enough on its own to prevent virus-induced damage, unless it is not accompanied with trypsin washing.  相似文献   

5.
Hematoporphyrin (HP), hematoporphyrin derivative (HPD), and thiopyronine (TP) are photosensitive agents (PSA) that have a germicidal effect when they are activated by light: helium neon laser (He Ne ) light (HP, HPD), white light (HP, HPD), and yellow-green light (TP). Experiments were conducted with appropriate controls to determine the effect of photosensitive agents a) for inactivating bovine herpesvirus-1 (BHV-1; titre 10(6) TCID(50) /ml) and bovine viral diarrhea virus (BVDV; titre 10(6) TCID(50) /ml); b) for disinfecting Day-7, zona pellucida-intact (ZP-I) bovine embryos that had been exposed to BHV-1 (titre 10(6) TCID(50) /ml) or BVDV (titre 10(6) TCID(50) /ml); and c) on the in vitro development of embryos. Exposure to HP, HPD and TP followed by light irradiation inactivated BHV-1 and BVDV. Embryos exposed to BHV-I were disinfected by HP or HPD (5 mug/ml) in combination with He Ne light, or by HP or HPD (10 mug/ml) in combination with white light. Embryos exposed to BVDV were disinfected by HPD (5 and 10 mug/ml) followed by He Ne or white light irradiation. Exposure of embryos to light alone or to light and HP or HPD had no detrimental effect on their in vitro development; however, exposure of embryos to TP (5 mug/ml) followed by irradiation caused embryonic degeneration. Exposure of embryos to 5 mug of HPD followed by He Ne light, or 10 mug/ml of HP or HPD, followed by white light, is simple methods of disinfecting them of BHV-I and BVDV.  相似文献   

6.
《Theriogenology》2014,81(9):1104-1108
This study deals with the potential for the introduction of infectious agents through the use of animal-derived products. The efficacy of a recombinant bovine trypsin (RBTr) as a replacement for porcine pancreatic trypsin and a disinfectant for bovine herpesvirus-1 (BHV-1)–infected embryos was investigated according to the sanitary guidelines of the International Embryo Transfer Society. Treatment of in vivo and in vitro fertilized embryos contaminated with BHV-1 (105 TCID50/mL) in the presence of RBTr (525 U/mL) for 120 s, effectively removed the infectious virus compared with untreated and washed embryos (P < 0.05). Transfer of in vivo fertilized and disinfected embryos to BHV-1 seronegative recipients (n = 24) resulted in 14 pregnancies and 11 calves born free of BHV-1. In contrast, transfer of unwashed or undisinfected embryos to four recipients resulted in seroconversion and no pregnancies at term. It was concluded that the use of RBTr could be considered as an alternative method of rendering embryos free of BHV-1 and thus reduce the potential risk of disease transmission to embryo recipients and offspring.  相似文献   

7.
The first experiment involved in vitro exposure of clean embryos to bluetongue virus (BTV) while three subsequent experiments involved the collection of embryos from BTV-infected donor ewes and their transfer to disease-free recipients. In Experiment I, 22 embryos/ova were exposed to BTV type 11 (BTV-11) for 1 h, washed 10 times in PBS and assayed in pairs for BTV. All 11 samples were positive for BTV in the 11-d-old embryonated chicken egg (ECE) assay system and 5/11 samples were positive in baby hamster kidney-21 (BHK-21) cells. In Experiment II, 5 donors were infected with BTV type 10 (BTV-10). All embryos were washed 10 times prior to assay or transfer. Thirty-three embryos/ova were assayed in groups of 2 or 3 and none yielded virus in ECE. Two BTV-seronegative recipients each received 6 embryos and a total of 3 lambs free of BTV antibodies were delivered. In Experiments III and IV, a total of 9 donors were infected with BTV-11. All embryos were washed 10 times prior to assay or transfer. Seventy-four embryos/ova were assayed in groups of 2 or 3 and none yielded virus in ECE, while for each experiment, 6 embryos were transferred into 2 BTV-seronegative recipients. The four recipients and their 3 lambs and 2 aborted fetuses were also seronegative for BTV.  相似文献   

8.
The present study investigated the presence and location of fluorescent microspheres having the size of mouse hepatitis virus (MHV) and of mouse minute virus (MMV) in the zona pellucida (ZP) of in vivo-produced murine embryos, the transmission of these viruses by embryos during embryo transfer, and the time of seroconversion of recipients and pups. To this end, fertilized oocytes and morulae were exposed to different concentrations of MMVp for 16 h, while 2-cell embryos and blastocysts were coincubated for 1 h. In addition, morulae were exposed to MHV-A59 for 16 h. One group of embryos was washed, and the remaining embryos remained unwashed before embryo transfer. Serological analyses were performed by means of ELISA to detect antibodies to MHV or MMV in recipients and in progeny on Days 14, 21, 28, 42, and 63 and on Days 42, 63, 84, 112, 133, and 154, respectively, after embryo transfer. Coincubation with a minimum of 10(5)/ml of fluorescent microspheres showed that particles with a diameter of 20 nm but not 100 nm crossed the ZP of murine blastocysts. Washing generally led to a 10-fold to 100-fold reduction of MMVp. Washed MMV-exposed but not MHV-exposed embryos led to the production of antibodies independent of embryonic stage and time of virus exposure. Recipients receiving embryos exposed to a minimum of 10(7) mean tissue culture infective dose (TCID(50))/ml of MHV-A59 and 10(2) TCID(50)/ml of MMVp seroconverted by Day 42 after embryo transfer. The results indicate that MMV but not MHV can be transmitted to recipients even after washing embryos 10 times before embryo transfer.  相似文献   

9.
Susceptibility of pig embryos to porcine circovirus type 2 infection   总被引:1,自引:0,他引:1  
The aim of the present study was to determine if porcine circovirus type 2 (PCV2) is able to infect embryonic cells of in vivo produced porcine embryos with and without zona pellucida (ZP). ZP-intact and ZP-free morulae (6-day post-insemination) and early blastocysts (7-day post-insemination), and hatched blastocysts (8-day post-insemination) were exposed to 10(5.0) TCID50 PCV2 per ml (strain 1121, fifth passage PK15). At 48 h post-incubation, the percentage of infected embryos and the percentage of viral antigen-positive cells per embryo were determined by indirect immunofluorescence (IF). Significantly different percentages of infected embryos were detected: 15% for ZP-free morulae, 50% for ZP-free early blastocysts and 100% for hatched blastocysts. The percentage of cells that expressed viral antigens was similar for the three stages of development. PCV2 exposure did not affect the in vitro development of the embryos during the 48 h study period. All ZP-intact embryos remained negative for viral antigens. In an additional experiment the diameter of the channels in the porcine ZP was determined. After incubation of early blastocysts with fluorescent microspheres of three different sizes, beads with a diameter of 20 nm and beads with a diameter of 26 nm crossed the zona whereas beads with a diameter of 200 nm did not. In conclusion, it can be stated that PCV2 is able to replicate in in vivo produced ZP-free morulae and blastocysts and that the susceptibility increases during development. The ZP forms a barrier to PCV2 infection, but based on the size of the channels in the ZP the possibility that PCV2 particles cross the ZP cannot be excluded.  相似文献   

10.
In previous studies, bovine viral diarrhea virus (BVDV) remained associated with IVF embryos after viral exposure and washing. However, uterine tubal cells (UTC) were not infected when exposed embryos were washed and individually co-cultured with them. The objective of this study was to evaluate quantity and infectivity of embryo-associated virus and antiviral influence of a blastocyst as possible explanations for failure to infect the UTC in vitro. Morulae and blastocysts were produced in vitro and washed. A portion of the embryos were incubated for 2 h in medium containing 10(6) to 10(8) cell culture infective doses (50%, CCID50) of a genotype I, noncytopathic BVDV per milliliter and then washed again. Virus isolation was attempted on sonicated negative (virus unexposed) and positive (virus exposed) control embryo groups after washing. The influence of quantity and infectivity of embryo-associated virus was evaluated by transferring exposed, washed embryo groups (2, 5, and 10 embryos/group) or sonicate fluid of exposed, washed, sonicated embryo groups (2, 5, and 10 embryos/group) to cultures containing bovine UTC in IVC medium that was free of BVDV neutralizing activity. The antiviral influence of an embryo was evaluated by adding 1 to 10(5) CCID50 of BVDV to UTC in the presence or absence of a single unexposed blastocyst in IVC medium. After 2 d in co-culture, the UTC, IVC medium and washed embryos (when present) were tested separately for the presence of BVDV using virus isolation. Virus was isolated from sonicate fluids of all positive but no negative controls. Virus was not isolated from any UTC following 2 d of culture with virally exposed groups of intact embryos. However, virus was isolated from UTC cultured with sonicate fluids from some groups of 5 (60%) and 10 (40%) embryos. Infective virus also remained associated with some groups of 2 (20%), 5 (40%) and 10 (60%) intact embryos after 48 h of post-exposure culture. Finally, primary cultures of UTC were more susceptible to infection with BVDV in the absence of a blastocyst (P = 0.01). Results indicate that insufficient quantity and reduced infectivity of embryo-associated virus as well as an antiviral influence of intact IVF blastocysts may all contribute to failure of embryo-associated virus to infect UTC in vitro.  相似文献   

11.
The aim of this study was to investigate whether cells of early goat embryos isolated from in vivo-fertilized goats interact with the caprine arthritis-encephalitis virus (CAEV) in vitro and whether the embryonic zona pellucida (ZP) protects early embryo cells from CAEV infection. ZP-free and ZP-intact 8-16 cell embryos were inoculated for 2 h with CAEVat the 10(4) tissue culture infectious dose 50 (TCID50)/ml. Infected embryos were incubated for 72 h over feeder monolayer containing caprine oviduct epithelial cells (COECs) and CAEV indicator goat synovial membrane (GSM) cells. Noninoculated ZP-free and ZP-intact embryos were submitted to similar treatments and used as controls. Six days postinoculation, infectious virus assay of the wash fluids of inoculated early goat embryos showed typical CAEV-induced cytopathic effects (CPE) on indicator GSM monolayers, with fluids of the first two washes only. The mixed cell monolayer (COEC + GSM) used as feeder cells for CAEV inoculated ZP-free embryos showed CPE. In contrast, none of the feeder monolayers, used for culture of CAEV inoculated ZP-intact embryos or the noninoculated controls, developed any CPE. CAEV exposure apparently did not interfere with development of ZP-free embryos in vitro during the 72 h study period when compared with untreated controls (34.6 and 36% blastocysts, respectively, P > 0.05). From these results one can conclude that the transmission of infectious molecularly cloned CAEV-pBSCA (plasmid binding site CAEV) by embryonic cells from in vivo-produced embryos at the 8-16 cell stages is possible with ZP-free embryos. The absence of interactions between ZP-intact embryos and CAEV in vitro suggests that the ZP is an efficient protective embryo barrier.  相似文献   

12.
The objective of this study was to determine whether the 10 wash cycles proposed by the International Embryo Transfer Society (IETS) for bovine embryos efficiently decontaminated equine embryos exposed to equine herpes virus 1 (EHV-1) in vitro. Donor mares and stallions were individually screened and shown to be negative for the virus by PCR detection of EHV-1 DNA in blood leukocytes, semen, and uterine lavages in which embryos were recovered. Twenty embryos were recovered and randomly assigned to one of two groups: 10 embryos were exposed for 24h to infectious EHV-1 at 10(6)TCID(50)/ml, and 10 embryos were used as negative controls. Exposed embryos were washed in accordance with IETS recommendations for ruminant and porcine embryos, before being incubated for 24 h with semiconfluent rabbit kidney (RK13) cells to detect any cytopathic effects (CPE), and finally tested for the presence of EHV-1 viral DNA by PCR. The embryo washing media were also assayed for the virus on RK 13 cells and by PCR. Control embryos were neither exposed to the virus nor washed. EHV-1 was not found in the control embryos, or in the last five washes of the exposed embryos. However, the virus was detected in 7/10 of the embryos exposed to EHV-1 for 24h, as well as in the first five washes of the embryos. The gradual disappearance of EHV-1 from the 10 successive wash solutions from the exposed embryos and the detection of viral DNA in 7/10 washed embryos by PCR, demonstrated that the washing procedure was unable to remove EHV-1 and suggested that EHV-1 could be attached to the acellular layer surrounding embryos (zona pellucida or capsule) or had penetrated the embryo.  相似文献   

13.
To determine the best developmental stage of donor embryos for yielding the highest number of clones per embryo, we compared the efficiencies of nuclear transfer when using blastomeres from morulae or morulae at cavitation, or when using inner-cell-mass cells of blastocysts as nuclear donors. This comparison was done both on in vivo-derived and in vitro-produced donor embryos. In experiment 1, with in vivo-derived donor embryos, nuclei from morulae at cavitation supported the development of nuclear transfer embryos to the blastocyst stage (36%) at a rate similar to that of nuclei from morulae (27%), blastomeres from morulae at cavitation being superior (P < 0.05) to inner-cell-mass cells from blastocysts (21%). The number of blastocysts per donor embryo was significantly (P < 0.05) higher when using nuclei from morulae at cavitation (15.7 ± 4.1) rather than nuclei from morulae (9.8 ± 5.5) or blastocysts (6.3 ± 3.3). With in vitro-produced donor embryos (experiment 2), nuclei from morulae yielded slightly more blastocysts (32%) than nuclei from morulae at cavitation (29%), both stages being superior to nuclei from blastocysts (15% development to the blastocyst stage). Morulae at cavitation yielded a higher number of cloned blastocysts per donor embryo (11.5 ± 5.9) than did morulae (9.3 ± 3.2) and blastocysts (3.3 ± 1.4). Transfer of cloned embryos originating from in vivo-derived morulae, morulae at cavitation, and blastocysts resulted in four pregnancies (10%), three pregnancies (7%), and one (17%) pregnancy on day 45. The corresponding numbers of calves born were 3 (4%), 3 (7%), and 0, respectively. After transfer of blastocysts derived from in vitro nuclear donor morulae (n = 16) and morulae at cavitation (n = 7), two (20%) and two (50%) recipients, respectively, were pregnant on day 45. However, transfer of seven cloned embryos from in vitro donor blastocysts to three recipients did not result in a pregnancy. Using in vitro-produced donor embryos, calves were only obtained from morula-stage donors (13%). Our results indicate that the developmental stage of donor embryos affects the efficiency of nuclear transfer, with morulae at cavitation yielding a high number of cloned blastocysts. © 1996 Wiley-Liss, Inc.  相似文献   

14.
The aim of the present study was to assess the effects of porcine circovirus type 2 (PCV2) on porcine embryos and their receptor sows during the first 21 days of pregnancy. Hatched blastocysts exposed to 10(5.0) TCID50 PCV2 per ml (strain 1121, fifth passage PK15) and negative control embryos were transferred to PCV2-immune receptor sows at the 7th day of the cycle. Two weeks after transfer (D21), the receptor sows were euthanized and embryos were recovered. They were assessed macroscopically for viability and examined for viral antigen-positive cells by immunoperoxidase staining. The embryonic survival rate of the PCV2-exposed embryos (6.4%, 7 viable embryos out of 110 transferred) was significantly lower than the survival rate of the negative control embryos (65.4%, 34 viable embryos out of 52 transferred). All of the non-viable PCV2-exposed embryos (n=9) displayed immunohistochemical positive signals for PCV2-antigen in degenerated tissues. In the PCV2-exposed embryos that were categorized as viable at D21, small clusters (n=4) or no PCV2-positive cells (n=3) were detected. The pregnancy results of the receptor sows that received PCV2-exposed embryos (1/5) were considerably different from the negative control receptors (2/2), with 3 out of 5 sows displaying a regular return to oestrus. In conclusion, it can be stated that PCV2 can replicate in embryos and might lead to embryonic death. In a small proportion of embryos, PCV2 exposure does not have a detrimental effect on embryo development before D21.  相似文献   

15.
Bovine herpesvirus 1 (BoHV-1) is widely distributed among cattle populations and has been associated with cells, fluids, and tissues collected from donor animals for use in reproductive technologies. The purpose of this study was to determine if lactoferrin would inhibit BoHV-1 in cell culture and to evaluate if embryos could develop normally when cultured in vitro with lactoferrin. In Experiment 1, lactoferrin (10 mg/mL) inhibited up to 25,000 plaque forming units (PFU)/mL of BoHV-1 in Madin Darby bovine kidney (MDBK) cell culture. In Experiment 2, lactoferrin (10 mg/mL) combined with cidofovir (62.5 microg/mL) inhibited up to 100,200 PFU/mL of virus in cell culture. In Experiment 3, following fertilization, presumptive zygotes were cultured in media containing lactoferrin (10, 5, and 2.5 mg/mL). Embryonic development and quality were assessed, and embryonic viability was determined by counting the nucleated cells of developed blastocysts. While lactoferrin did not affect the nucleated cell count of the treated embryos, it did significantly decrease blastocyst development. In conclusion, lactoferrin from bovine milk can inhibit BoHV-1 in cell culture. However, supplementation of in vitro culture medium with lactoferrin inhibits blastocyst development of in vitro-produced embryos.  相似文献   

16.
Although porcine-origin trypsin will effectively remove bovine herpesvirus 1 (BHV-1) associated with in vivo-derived embryos, TrypLE, a recombinant trypsin-like protease, has not been evaluated. In Experiment 1, 17 groups of 10 in vivo-derived embryos were exposed to BHV-1, treated with TrypLE Express or TrypLE Select (10x concentration) for varying intervals, and assayed as 2 groups of 5 embryos. TrypLE Select treatment for 5 and 10 min (two and seven groups of five embryos, respectively) effectively inactivated BHV-1. In Experiment 2, 22 groups of 10 IVF embryos were treated and assayed. Treatment with TrypLE Select for 7 and 10 min (six groups of five embryos each) and with TrypLE Select diluted 1:2 for 10 min (seven groups of five embryos) was also effective. In Experiment 3, 17 groups of 10 IVF embryos were further evaluated with TrypLE Select undiluted and diluted 1:2 for 10 min. Treatment with the diluted product was effective (18 groups of five embryos), whereas the undiluted product was not completely effective (virus isolated from 2 of 16 groups). In Experiment 4, IVF embryos were treated as described in Experiment 3 and then cultured individually or as groups of five on uterine tubal cells (UTCs) for 48 h; 60% of UTC samples associated with groups of embryos and 35% of UTC associated with individual embryo samples were positive for BHV-1. Therefore, although TrypLE Select appeared to have promise for the treatment of in vivo-derived embryos, it cannot be recommended for treatment of in vitro-derived embryos.  相似文献   

17.
The purpose of this study was to determine whether oocytes obtained from bovine ovaries collected at commercial abattoirs for use in in vitro fertilization programs would be contaminated with bovine herpesvirus-1 (BHV-1) and/or bovine viral diarrhea virus (BVDV). In total, of 85 samples tested containing 759 embryos produced by in vitro fertilization, 2 (2.4%) were positive for BHV-1 while none were positive for BVDV. The follicular fluid collected during oocyte aspiration tested positive in 11.8% for BVH-1 and in 4.7% for BVDV. Oviductal cells used to co-culture zygotes/embryos tested positive for BHV-1 and BVDV in 6.2% and 1.2% samples respectively.  相似文献   

18.
The objective was to determine the effect of cryopreservation by conventional slow controlled cooling (0.5 °C/min) and by vitrification on the presence of bovine viral diarrhea virus (BVDV) and bovine herpesvirus-1 (BHV-1) infectivity associated with frozen-thawed Day 7 bovine embryos. In this study, Day 7 embryos generated by in vitro fertilization (IVF) were exposed in vitro for 1.5 h to BVDV (N = 393) and BHV-1 (N = 242) and subsequently tested before and after cryopreservation for the presence of infectivity. Exposure of embryos to viral agents resulted in 72% of them infected prior to cryopreservation. Stepwise exposure of embryos to cryoprotectants, as well as their removal, substantially reduced the proportion of contaminated embryos (46% vs. 72%, P < 0.05). Overall, both freezing methods reduced the percentage of infectious embryos compared with that of embryos similarly exposed to viruses but not cryopreserved (31% vs. 72%, respectively; P < 0.001). The percentage of embryos with infectious viruses was not significantly higher after vitrification than after slow cooling (38% vs. 22%). In addition, after cryopreservation, a higher percentage (P < 0.002) of embryos exposed to BHV-1 (42%) remained infectious than did embryos exposed to BVDV (24%). In conclusion, cryopreservation reduced the proportion of infected embryos but did not render all of them free from infectious pathogens.  相似文献   

19.
Yang BK  Yang X  Foote RH 《Theriogenology》1993,40(3):521-530
Growth factors were studied as a means of increasing the development of in vitro matured (IVM) and in vitro fertilized (IVF) oocytes into morulae or blastocysts. Cell numbers of blastocysts were also counted. In Experiment 1, 2- to 8-cell embryos derived from bovine IVM/IVF oocytes were randomly allotted to one of 3 culture groups: a) synthetic oviduct fluid (SOF); b) SOF + 10 ng/ml epidermal growth factor (EGF); or c) SOF + 100 ng/ml EGF; all 3 culture media contained 10% fetal bovine serum. Culture resulted in 12%, 23% and 14% (P>0.05), respectively, developing into morulae and blastocysts. In Experiment 2, 5 ng/ml of transforming growth factor B (1) (TGFB (1)) added to CR(1aa) medium containing BSA increased the percentage of blastocysts to 56% vs 40% for the control (P<0.05). In Experiment 3, EGF and TGFB(1), added singly and in combination to CR(1aa) did not produce a synergistic effect. More embryos developed into morulae and blastocysts (45%) in a bovine oviduct epithelial co-culture than in any other treatment except in CR(1aa) + EGF (34%; P>0.05). In Experiment 4, 0, 1 and 5 ng/ml of platelet derived growth factor (PDGF) added to CR(1aa) yielded 39%, 70% and 52% morulae and blastocysts, respectively (P<0.05). Cell number was not increased, indicating that growth factors can increase the proportion of embryos that develop into morulae and blastocysts without an increase in the cell number.  相似文献   

20.
Swiss white mice were superovulated, mated, and sacrificed to recover two-cell embryos that were cultured in Ham's F-10 supplemented with 15% fetal serum. In 16 experiments, media enriched with fetal bovine serum (FBS) supported blastocyst development from 80% ± 19% (mean ± S.D.) of two-cell embryos. Culture media + FBS was the positive control when 74 batches of heat-inactivated human fetal cord serum (hFCS) were tested. Statistical analyses indicated two distinct populations: 49 hFCS promoted blastocyst formation and 25 hFCS grew fewer blastocysts. In five studies, 35/47 two-cell embryos recovered from mice oviducts in media + FBS and immediately incubated formed blastocysts (75% ± 10%). In six comparison studies where the recovered embryos stood at room temperature for 30 minutes before incubation, only 18/57 (29% ± 21%) became blastocysts. When the colony was housed for 1 week in rooms with Shell No Pest Strips as treatment for mites, only 11/125 two-cell embryos became blastocysts (9%). In contrast, animals housed in quarters decontaminated with chlorine bleach had reduced breeding efficiency and produced fewer two-cell embryos. We conclude that (1) Ham's F-10 + FBS is an excellent positive control to test new batches of hFCS; (2) hFCS that supports blastocyst formation from ≥75% of two-cell embryos is adequate for human use; (3) pesticide treatment of breeding colonies and cooling of murine embryos during harvest both impaired in vitro blastocyst development; and (4) chlorine bleach cleansing of animal quarters reduced the number of successful matings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号