首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Summary The frontal ganglion of the cockroach Periplaneta americana was studied histologically and its neuronal pathways were mapped by use of axonal cobalt iontophoresis. Neurons and fiber tracts of the frontal ganglion are directly linked with different regions of the central nervous system (tritocerebrum, protocerebrum, subesophageal ganglion) and with the more caudal parts of the stomatogastric nervous system (hypocerebral ganglion, nervus oesophagei).Supported by the Ministerium für Wissenschaft und Technik der DDR  相似文献   

2.
Summary Retrograde diffusion and precipitation of Co2+ reveals in the ipsilateral pars lateralis (PL) and contralateral pars intercerebralis (PI) of the brain neurons that enter the corpus cardiacum (CC), and, possibly, the corpus allatum (CA) on each side. The PL group consists of 29.6±8.4 somata that fill. Of these, 5.6±0.6 exceed 25 m in diameter, 14.3±2.7 range from 15–25 m, and 9.6±7.6 are smaller than 15 m. After CoCl2 was applied to the right CC-CA of two males, 239 and 265 somata in the left PI stained. Except for 16 ranging from 30–45 m and chiefly located anteriorly, a majority of these somata measured 10–25 m.The only somata revealed by staining whole brains with the performic acid-resorcin fuchsin method are neurosecretory cells 10–20 m in diameter located within the PI. In starved adult males there are 92.4±8.1 on the right, and 93.2±6.9 on the left. The largest somata in the PL group contain numerous granules that stain with paraldehyde fuchsin. These somata also fill with Co2+, and belong to neurosecretory cells that extend into the CC-CA.The cerebral distribution of branches from the PL group, and the relationship of these to the corpora pedunculata, central body, and arborizations from the PI decussation are described.  相似文献   

3.
Summary In the American cockroach, the distribution and connections of neuronal elements of the terminal ganglion-proctodeal nerve-hindgut system were investigated by means of immunohistochemical methods and axonal CoCl2 iontophoresis. Proctolinlike immunoreactivity was localized within neurons of the terminal ganglion projecting into the proctodeal nerve on the one hand, and in nerve cells without a direct connection to this system on the other. Immunohistochemically, in whole mount preparations fibres of the proctodeal nerve and terminal structures in the hindgut musculature exhibit strong proctolinlike immunoreactivity. At the light- and electron-microscopic levels the pathways of about 30 somata of the proctodeal neural system were characterized by cobalt chloride iontophoresis. The relationships of cobalt filled and immunoreactive neuronal structures are discussed.For the preparation of tritiated proctolin we thank Dr. S. Reißmann, WB Biochemie, Sektion Biologie, FSU JenaThe authors wish to thank G. Schörlitz, Film- und Bildstelle, FSU Jena, for photographs of whole mount preparations and Ms. A. Zinßer and Mrs. B. Cosack for excellent technical assistance.  相似文献   

4.
Summary By use of the indirect immunofluorescent technique applied to whole mounts of tissues and organs of the American cockroach, Periplaneta americana, serotonin-like reactivity has been demonstrated in an extensive meshwork of fibers on the surface of nerves of the subesophageal ganglion and the tritocerebrum. This meshwork appears to serve the neurohemal release of serotonin. In addition, several of these nerves contain two or more centrally located axons that appear to be serotonergic. The corpora cardica show immunoreactivity but do not appear to be a principal release site for serotonin. The nerves and ganglia of the stomadeal nervous system show immunoreactivity for serotonin and provide serotonin-positive innervation to the salivary glands and the visceral muscles of the stomodeum and midgut. The heart, hindgut, Malpighian tubules, fat body, and skeletal muscles all appear to lack serotonin immunoreactivity.  相似文献   

5.
Summary By back-filling the nervus corporis allati II (NCA2) with Co2+ and precipitating the sulfide, two groups of somata (A and B) are revealed on the ipsilateral side of the subesophageal ganglion (SG). These occur ante-roventrally, adjacent to the midsaggital plane. Group A consists of two cells; group B of five. Their processes form two discrete tracts issuing dorsoposteriorly into the neuropile between and slightly behind the circumesophageal connectives (CEC). After producing separate arborization fields in the dorsal neuropile, the tracts circumscribe the base of the ipsilateral CEC, unite, and their seven fibers enter NCA2 anteriorly.Prograde diffusion reveals 4-6 NCA2 axons penetrating the corpus allatum (CA) near a cap-like neurohemal organ. These axons form the transverse allatal tract (TAT), from whence they branch amongst the CA cells, and into the cap, the postallatal nerves, and the opposite CA.Electron microscopy of transverse sections demonstrates nine neurosecretory axons entering the SG through NCA2. Proximal to the CA, NCA2 consists of a central bundle of neurosecretory axons and a peripheral zone confluent with the CA cap. Depending upon the level of sectioning, there are 7–20 axons at the center, and seven pass into the TAT. The peripheral zone has the structure of a neurohemal organ.  相似文献   

6.
The distribution and morphology of crustacean cardioactive peptide-immunoreactive neurons in the brain of the locust Locusta migratoria has been determined. Of more than 500 immunoreactive neurons in total, about 380 are interneurons in the optic lobes. These neurons invade several layers of the medulla and distal parts of the lobula. In addition, a small group of neurons projects into the accessory medulla, the lamina, and to several areas in the median protocerebrum. In the midbrain, 12 groups or individual neurons have been reconstructed. Four groups innervate areas of the superior lateral and ventral lateral protocerebrum and the lateral horn. Two cell groups have bilateral arborizations anterior and posterior to the central body or in the superior median protocerebrum. Ramifications in subunits of the central body and in the lateral and the median accessory lobes arise from four additional cell groups. Two local interneurons innervate the antennal lobe. A tritocerebral cell projects contralaterally into the frontal ganglion and appears to give rise to fibers in the recurrent nerve, and in the hypocerebral and ingluvial ganglia. Varicose fibers in the nervi corporis cardiaci III and the corpora cardiaca, and terminals on pharyngeal dilator muscles arise from two subesophageal neurons. Some of the locust neurons closely resemble immunopositive neurons in a beetle and a moth. Our results suggest that the peptide may be (1) a modulatory substance produced by many brain interneurons, and (2) a neurohormone released from subesophageal neurosecretory cells.  相似文献   

7.
8.
We have investigated the distribution of tyrosine-hydroxylase-like immunoreactivity in the cerebral ganglia of the American cockroach, Periplaneta americana. Groups of tyrosine-hydroxylase-immunoreactive cell bodies occur in various parts of the three regions of the cerebral ganglia. In the protocerebrum, single large neurons or small groups of neurons are located in the lateral neuropil, adjacent to the calyces, and in the dorsal portion of the pars intercerebralis. Small scattered cell bodies are found in the outer layers of the optic lobe, and clusters of larger cell bodies can be found in the deutocerebrum, medial and lateral to the antennal glomeruli. Thick bundles of tyrosine-hydroxylase-positive nerve fibers traverse the neuropil in the proto- and deutocerebrum and innervate the glomerular and the nonglomerular neuropil with fine varicose terminals. Dense terminal patterns are present in the medulla and lobula of the optic lobe, the pars intercerebralis, the medial tritocerebrum, and the area surrounding the antennal glomeruli, the central body and the mushroom bodies. The pattern of tyrosine-hydroxylase-like immunoreactivity is similar to that previously described for catecholaminergic neurons, but it is distinctly different from the distribution of histaminergic and serotonergic neurons.  相似文献   

9.
Summary Proctolin-like immunoreactivity (PLI) was found in different parts of the arthropod central nervous system and in nerve fibers of muscles. In order to examine whether this PLI is related to a uniform type of secretory vesicle, hindgut musculature and frontal and hypocerebral ganglia were examined with the immunogold technique. PLI occurs exclusively within membran-bounded secretory granules. Neither granular ER nor Golgi stacks show PLI. In some cases close relationships between PLI-bearing granules and lysosomes were observed. In presynaptic areas, PLI-reactive granules are associated with numerous clear synaptic vesicles and restricted to an area distinctly separate from the presynaptic membrane. Three types of granules were found, differing in diameter and electron density: (1) dense, 80 nm; (2) dense, 150 nm; (3) low density, 150 nm. The results demonstrate that: (1) the PLI of the produced peptide occurs shortly after its separation from the Golgi stack; (2) the occurrence of PLI in three different granule types could be the morphological expression of the common occurrence of proctolin with other neuroactive substances. However, a possible cross-reactivity with other, hitherto unknown substances must be considered as well.  相似文献   

10.
Antisera raised to the cardioactive peptide corazonin were used to localize immunoreactive cells in the nervous system of the American cockroach. Sera obtained after the seventh booster injection were sufficiently specific to be used for immunocytology. They recognized a subset of 10 lateral neurosecretory cells in the protocerebrum that project to, and arborize and terminate in the ipsilateral corpus cardiacum. They also reacted with bilateral neurons in each of the thoracic and abdominal neuromeres, a single dorsal unpaired median neuron in the suboesophageal ganglion, an interneuron in each optic lobe, and other neurons at the base of the optic lobe, in the tritocerebrum and deutocerebrum. The presence of corazonin in the abdominal neurons and the lateral neurosecretory cells was confirmed by HPLC fractionation of extracts of the abdominal ganglia, brains and retrocerebral complexes, followed by determination of corazonin by ELISA, which revealed in each tissue a single immunoreactive peak co-eluting with corazonin in two different HPLC systems. Antisera obtained after the first three booster injections recognized a large number of neuroendocrine cells and neurons in the brain and the abdominal nerve cord. However, the sera from the two rabbits reacted largely with different cells, indicating that the majority of this immunoreactivity was due to cross-reactivity. These results indicate that the production of highly specific antisera to some neuropeptides may require a considerable number of booster injections.  相似文献   

11.
Summary The frontal ganglion, part of the stomatogastric nervous system, contains about 60 to 80 neurons, 25 to 30 m in diameter. A well developed Golgi system, producing dense-core vesicles, lysosomes, multivesicular bodies and dense bodies are abundant. Glia elements are sparsely distributed. Many nerve fibres contain granules of different size and electron density. Five groups of fibres can be distinguished: Fibres with granules of about 200 nm (type A), fibres with granules of about 160 to 170 nm (type B), fibres with granules of about 80 to 100 nm (type C) and those with synaptic vesicles of 50 nm (type D) respectively. A fifth very small type contains neither vesicles nor granules. Special attention was paid to synaptic contacts. The divergent dyad seems to be the main type in the frontal ganglion. Frequently, neurosecretory endings are observed in presynaptic position. Immunocytochemical staining of neurosecretory material closely corresponds to the distribution of type A fibres, as observed electron microscopically. Immunoelectrophoresis of extracts from frontal ganglia with polyspecific anti-neurosecretion-serum reveals a single precipitation line, indicating that the immunocytochemical localization of neurosecretory material is due to reaction with a specific as well as a crossreagent antibody.Supported by the Ministerium für Wissenschaft und Technik der DDRThe authors wish to thank Mrs. B. Cosack and Mrs. A. Schmidt for excellent technical assistance  相似文献   

12.
The morphology of the antennal hair-sensilla of Periplaneta americana, their distribution and frequency on the antennal flagellum have been examined by transmission- and scanning-electron microscopy. The types of sensilla were distinguished with respect to physiologically relevant criteria such as wall structure and number of sensory cells. Among the sensilla of the antenna of the adult male, long, single-walled sensilla with four sensory cells (types sw B), Probably responsible for reception of sexual pheromones, are most frequent, representing about 54% of the antennal sensilla. About half of these sensilla are newly-formed at the imaginal ecdysis; the other half are derived from the shorter type sw B sensilla of the nymphal antenna. Short type sw B sensilla are present in all larval stages of both sexes and in adult females as well. During the imaginal ecdysis of males, however, the length of these sensilla increases to double that found in nymphs. Dendritic branches also increase in number. During postembryonic development, the number of sensory fibers in the antennal flagellum increases nearly 20-fold, from 14,000 in the first larval instar to about 270,000 in the adult male. The greatest increase, approximately 90%, occurs during the last developmental stage.  相似文献   

13.
Summary The course of the Nervus connectivus (N.c.), its branches, and synaptic connections within the frontal ganglion (FG) were investigated electron microscopically after cobalt iontophoresis of the N.c. The subsequent treatment of ultrathin sections with Timm's method was found to be very suitable for identifying the smallest branches. In the neuropil, fibers of the N.c. form Gray-I-type synapses, but also dyads are abundant, whereby the N.c. fibers occur exclusively in postsynaptic position with neurosecretory fibers. The possible role of these relationships is discussed.Dedicated to the 70th birthday of Prof. Dr. Manfred GerschThe authors wish to thank Mrs. B. Cosack for excellent technical assistance  相似文献   

14.
Summary In the American cockroach, Periplaneta americana, and the Australian field cricket, Teleogryllus commodus, the two nerves supplying the bases of the cerci are joined by a branch that crosses behind the last abdominal ganglion. This commissural ring nerve is restricted to females, and it contains many axons filled with granular and agranular vesicles. The axons stem from somata located within the ganglion. There are one (Periplaneta) or two (Teleogryllus) groups of median neurons with bilaterally symmetrical bifurcations, and a group of postero-ventral neurons on each side. In T. commodus, these neurons are distinct from others associated with the cerci. In the two species, the ring nerve neurons contribute to a neuropile near the root of each cereal nerve. The bifurcating median neurons arborize on both sides before entering the ring nerve, while the postero-ventral ones branch more extensively ipsilateral to their somata. The possibilities are discussed that the bifurcating neurons may be homologous to dorsal unpaired median neurons, and that the ring nerve may be a neurohemal area.  相似文献   

15.
16.
The ocellus of the cockroach,Periplaneta americana (Blattariae)   总被引:3,自引:0,他引:3  
Summary The ocelli of Periplaneta americana were studied by light and electron microscopy. The view that the ocellus of the cockroach represents a degenerated structure can no longer be supported. All organelles necessary for function are present.The club-shaped retinular cells lie homogeneously distributed in the cupule of the ocellus. Rhabdoms are seen as sickle-, y-, x-or star-shaped structures with up to six cells in formation. Cells were found which had formed two rhabdomeres.The mass of cell organelles lies in the cytoplasm between the cell nucleus and the rhabdom. Smooth endoplasmic reticulum is wound into a spindle formation of considerable size at the origin of the axon in some cells. A cylindrical body in which 10–40 microtubules are packed, as yet unknown in insect retinular cells, is described.The receptory area of the ocellus terminates in a tapetum which contains granules, soluble in alcohol. The axon bundles of the retinular cells run through the tapetum and immediately thereafter make synaptic contact with dendrites of the ocellar nerve cells, while still within the ocellus.The authors are indebted to Mrs. Margaret Weber-Wood for her linguistic assistance  相似文献   

17.
The anatomy and functionality of the stomatogastric nervous system (SNS) of third-instar larvae of Calliphora vicina was characterised. As in other insects, the Calliphora SNS consists of several peripheral ganglia involved in foregut movement regulation. The frontal ganglion gives rise to the frontal nerve and is connected to the brain via the frontal connectives and antennal nerves (ANs). The recurrent nerve connects the frontal- to the hypocerebral ganglion from which the proventricular nerve runs to the proventricular ganglion. Foregut movements include rhythmic contractions of the cibarial dilator muscles (CDM), wavelike movements of crop and oesophagus and contractions of the proventriculus. Transections of SNS nerves indicate mostly myogenic crop and oesophagus movements and suggest modulatory function of the associated nerves. Neural activity in the ANs, correlating with postsynaptic potentials on the CDM, demonstrates a motor pathway from the brain to CDM. Crop volume is monitored by putative stretch receptors. The respective sensory pathway includes the recurrent nerve and the proventricular nerve. The dorsal organs (DOs) are directly connected to the SNS. Mechanical stimulation of the DOs evokes sensory activity in the AN. This suggests the DOs can provide sensory input for temporal coordination of feeding behaviour.  相似文献   

18.
Summary We have recently examined the electrophysiology and ultrastructure of approximately 100 tactile spines from the metathoracic legs of adult cockroaches. In only one animal the single sensory neuron that innervates the spine was replaced with a pair of apparently identical neurons which we believe were both functional. As far as we are aware this is the first reported study of unprovoked duplication in a peripherally-located insect sensory neuron.Supported by the Canadian Medical Research Council and the Alberta Heritage Foundation for Medical Research  相似文献   

19.
Cockroaches have long been used as insect models to investigate the actions of biologically active neuropeptides. Here, we describe the cloning and functional expression in Chinese hamster ovary cells of an adipokinetic hormone (AKH) G protein-coupled receptor from the cockroach Periplaneta americana. This receptor is only activated by various insect AKHs (we tested eight) and not by a library of 29 other insect or invertebrate neuropeptides and nine biogenic amines. Periplaneta has two intrinsic AKHs, Pea-AKH-1, and Pea-AKH-2. The Periplaneta AKH receptor is activated by low concentrations of both Pea-AKH-1 (EC50, 5 x 10(-9)M), and Pea-AKH-2 (EC50, 2 x 10(-9)M). Insects can be subdivided into two evolutionary lineages, holometabola (insects with a complete metamorphosis during development) and hemimetabola (incomplete metamorphosis). This paper describes the first AKH receptor from a hemimetabolous insect.  相似文献   

20.
Summary An antiserum against glutamate decarboxylase (GAD) of the rat brain was used to locate GAD activity in sections of the nervous system of the cockroach, Periplaneta americana. The sixth abdominal ganglion was chosen because electrophysiological evidence suggests the presence of GABAergic inhibitory synapses in the cereal-giant interneuron system. Groups of somata and numerous fibres and tracts were positively labelled by the GAD antiserum. A posterior group of labelled somata could be identified close to the entry of the cereal nerves. A line of somata clusters lay along a ventro-lateral furrow. Another discrete row of GAD-like cells was located dorso-laterally. Some small cells among the dorsal unpaired neurons were labelled. A small central group appeared under these cells. An abundance of GAD-like processes and transversal tracts were found within the neuropile. The different systems of GABAergic inhibitors in the ganglion are discussed; in particular we show that the fibres of cereal nerve X are not labelled. This demonstrates that the latter act on the giant fibres via interneurons. We suggest that the group that sends axons into the overlapping region between the cereal nerve and the giant fibre could be the inhibitory interneurons involved in this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号