首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the effect of veratridine on DOPA (3,4-dihydroxyphenylalanine) accumulation by the superior cervical ganglion of the rat. Incubation of the ganglion with veratridine (50 microM) causes a 10-fold increase in the rate of DOPA accumulation. Veratridine-stimulated DOPA accumulation is blocked by tetrodotoxin, but not by cholinergic or adrenergic antagonists or by decentralization of the ganglion. The cyclic nucleotide 8-bromo cyclic GMP does not increase DOPA accumulation, and 8-bromo cyclic AMP causes only a 2-fold increase in DOPA accumulation, which is additive with the effect of veratridine. Thus, the action of veratridine appears to be independent of these cyclic nucleotides. The effect of veratridine on DOPA accumulation is probably due to a stable modification of tyrosine hydroxylase, since an increase in tyrosine hydroxylase activity can be measured in cell-free extracts of veratridine-treated ganglia. Both the increase in DOPA accumulation and the stable activation of tyrosine hydroxylase are dependent upon extracellular Ca2+. The activation of tyrosine hydroxylase by veratridine may be mediated by the depolarization of, and the subsequent entry of Ca2+ into, ganglionic neurons.  相似文献   

2.
Phorbol 12,13-dibutyrate (PDBu) increased the production of 3,4-dihydroxyphenylalanine (DOPA) in the superior cervical ganglion of the rat. This effect occurred without a detectable lag and persisted for at least 90 min of incubation. The action of PDBu was half-maximal at a concentration of approximately 0.1 microM; at high concentrations, PDBu produced about a twofold increase in DOPA accumulation. PDBu increased DOPA production in decentralized ganglia and in ganglia incubated in a Ca2+-free medium. The action of PDBu was additive with the actions of dimethylphenylpiperazinium, muscarine, and 8-Br-cyclic AMP, all of which also increase DOPA accumulation, and was not inhibited by the cholinergic antagonists hexamethonium (3 mM) and atropine (6 microM). Finally, PDBu did not increase the content of cyclic AMP in the ganglion. Thus, the action of PDBu does not appear to be mediated by the release of neurotransmitters from preganglionic nerve terminals, by the stimulation of cholinergic receptors in the ganglion, or by an increase in ganglionic cyclic AMP. PDBu also increased the incorporation of 32Pi into tyrosine hydroxylase. PDBu activates protein kinase C, which in turn may phosphorylate tyrosine hydroxylase and increase the rate of DOPA synthesis in the ganglion.  相似文献   

3.
Cholinergic agonists and certain peptides of the glucagon-secretin family acutely increase tyrosine hydroxylase activity in the superior cervical ganglion in vitro. The present study was designed to investigate possible interactions between these two classes of agonists in regulating catecholamine biosynthesis. Synergistic effects were found between carbachol and either secretin or vasoactive intestinal peptide in the regulation of DOPA (dihydroxyphenylalanine) synthesis. In addition, synergism was found at the level of the accumulation of cyclic adenosine monophosphate, the likely second messenger in the peptidergic regulation of tyrosine hydroxylase activity. The synergism seen with carbachol was blocked by a muscarinic, but not by a nicotinic, antagonist. Synergism was also found between bethanechol, a muscarinic agonist, and secretin, but not between secretin and dimethylphenylpiperazinium, a nicotinic agonist. Since previous immunohistochemical results suggest that vasoactive intestinal peptide and acetylcholine are colocalized in some preganglionic sympathetic neurons, the present data raise the possibility that the two might act synergistically in vivo in regulating catecholamine biosynthesis. Synergistic postsynaptic actions may be a common feature at synapses where peptides of the secretin-glucagon and acetylcholine are colocalized.  相似文献   

4.
We have identified a 56-kilodalton protein in cultured bovine adrenal chromaffin cells that is phosphorylated when catecholamine secretion is stimulated. Immunodetection on Western blots from both one- and two-dimensional polyacrylamide gels indicated that this protein was tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis. Two-dimensional polyacrylamide gel electrophoresis of proteins from unstimulated cells revealed small amounts of phosphorylated protein with a molecular weight of 56K and pI values of 6.37 and 6.27 which were subunits of tyrosine hydroxylase. Nicotinic stimulation of chromaffin cells caused the phosphorylation of three proteins of 56 kilodaltons with pI values of approximately 6.37, 6.27, and 6.15 which were tyrosine hydroxylase. The immunochemical analysis also revealed that there was unphosphorylated tyrosine hydroxylase 56 kilodaltons with a pI of 6.5 which may have decreased on nicotinic stimulation. The phosphorylation of tyrosine hydroxylase was associated with an increase in in situ conversion of [3H]tyrosine to [3H]dihydroxyphenylalanine ([3H]DOPA). Muscarinic stimulation also caused phosphorylation of tyrosine hydroxylase, but to a smaller extent than did nicotinic stimulation. The secretagogues, elevated K+ and Ba2+, stimulated phosphorylation of tyrosine hydroxylase and [3H]DOPA production. The effects of nicotinic stimulation and elevated K+ on tyrosine hydroxylase phosphorylation and [3H]DOPA production were Ca2+-dependent. Nicotinic agonists also raised cyclic AMP levels in chromaffin cells after 2 min. Dibutyryl cyclic AMP and forskolin, which have little effect on catecholamine secretion, also caused phosphorylation of tyrosine hydroxylase. These stimulators of cyclic AMP-dependent processes caused the appearance of two phosphorylated subunits of tyrosine hydroxylase with pI values of 6.37 and 6.27. There was also a small amount of phosphorylated subunit with a pI of 6.15. Both agents stimulated [3H]DOPA production. The experiments indicate that tyrosine hydroxylase is phosphorylated and activated when chromaffin cells are stimulated to secrete. The data suggest that the earliest phosphorylation of tyrosine hydroxylase induced by a nicotinic agonist occurs through stimulation of a Ca2+-dependent protein kinase. After 2 min phosphorylation by a cyclic AMP-dependent protein kinase may also occur. Phosphorylation of tyrosine hydroxylase is associated with an increase in in situ tyrosine hydroxylase activity.  相似文献   

5.
The secretion of catecholamines and ATP induced by cholinergic agonists and its dependence on extracellular Ca2+ were studied in cultured porcine adrenal chromaffin cells. Both nicotine and methacholine (a selective muscarinic agonist) induced secretion and increases in cytosolic free Ca2+ concentration ([Ca2+]in), although the activation of nicotinic receptors produced responses that were larger than those produced by activation of muscarinic receptors. The secretion and the increase in [Ca2+]in evoked by nicotine were completely dependent on extracellular Ca2+ and were blocked by prior depolarization of the cells with high extracellular K+ levels. In addition, nicotine induced significant 45Ca2+ influx. In contrast, the secretion and the increase in [Ca2+]in evoked by methacholine were partially dependent on extracellular Ca2+; methacholine also induced 45Ca2+ influx. Prior depolarization of the cells with high extracellular K+ levels did not block methacholine-induced secretion. In general, nicotinic responses were mediated by Ca2+ influx through voltage-dependent pathways. In contrast, muscarinic responses were dependent on both Ca2+ influx through an unknown mechanism that could not be inactivated by high K+ concentration-induced depolarization and presumably also intracellular Ca2+ mobilization.  相似文献   

6.
The ability of cholinergic agonists to activate phospholipase C in bovine adrenal chromaffin cells was examined by assaying the production of inositol phosphates in cells prelabeled with [3H]inositol. We found that both nicotinic and muscarinic agonists increased the accumulation of [3H]inositol phosphates (mainly inositol monophosphate) and that the effects mediated by the two types of receptors were independent of each other. The production of inositol phosphates by nicotinic stimulation required extracellular Ca2+ and was maximal at 0.2 mM Ca2+. Increasing extracellular Ca2+ from 0.22 to 2.2 mM increased the sensitivity of inositol phosphates formation to stimulation by submaximal concentrations of 1,1-dimethyl-4-phenyl-piperazinium iodide (DMPP) but did not enhance the response to muscarine. Elevated K+ also stimulated Ca2+-dependent [3H]inositol phosphate production, presumably by a non-receptor-mediated mechanism. The Ca2+ channel antagonists D600 and nifedipine inhibited the effects of DMPP and elevated K+ to a greater extent than that of muscarine. Ca2+ (0.3-10 microM) directly stimulated the release of inositol phosphates from digitonin-permeabilized cells that had been prelabeled with [3H]inositol. Thus, cholinergic stimulation of bovine adrenal chromaffin cells results in the activation of phospholipase C by distinct muscarinic and nicotinic mechanisms. Nicotinic receptor stimulation and elevated K+ probably increased the accumulation of inositol phosphates through Ca2+ influx and a rise in cytosolic Ca2+. Because Ba2+ caused catecholamine secretion but did not enhance the formation of inositol phosphates, phospholipase C activation is not required for exocytosis. However, diglyceride and myo-inositol 1,4,5-trisphosphate produced during cholinergic stimulation of chromaffin cells may modulate secretion and other cellular processes by activating protein kinase C and/or releasing Ca2+ from intracellular stores.  相似文献   

7.
Long-term (18 h) activation of 5-HT1A receptors alters 5-HT1A receptor-G protein coupling and leads to heterologous sensitization of adenylate cyclase. In contrast, the effects of short-term (2 h) 5-HT1A receptor activation on subsequent adenylate cyclase activity have not been determined. The present study examined and characterized 5-HT1A receptor-induced heterologous sensitization following short-term activation in CHO-5-HT1A cells. Short-term activation of 5-HT1A receptors with full agonists, as well as the partial agonist, buspirone, markedly enhanced subsequent forskolin-stimulated cyclic AMP accumulation. This heterologous sensitization was evident after 30 min treatment with 5HT and appeared to be near maximal following 2 h agonist treatment. Sensitization was characterized by a dose-dependent increase in forskolin-stimulated cyclic AMP accumulation and was prevented by WAY 100635 or by pertussis toxin treatment. The ability of the 5-HT1A agonists to induce heterologous sensitization was not significantly altered by agents shown previously to modulate 5-HT1A-mediated inhibition of cyclic AMP accumulation.  相似文献   

8.
1. Electrogenic ion transport was monitored in vitro as the short-circuit current (Isc in μA/cm2) across proximal, mid and distal colon removed from fed and 48 hr-starved Swiss albino mice (Mus muscaris).2. Electrogenic secretion was induced either with serosal bethanechol (muscarinic agonist), DMPP (nicotinic agonist) or dibutyryl-cyclic AMP (DbcAMP). Proximal and distal colon from starved mice showed greater electrogenic secretion in response to bethanechol than those from the fed controls while DMPP and DbcAMP did not activate the hypersecretion.3. In the distal colon, starvation induced a large increase in the basal Isc that was unaffected by mucosal amiloride but was inhibited by tetrodotoxin (TTX) and by diphenylamine-2-carboxylic acid (DPC) unlike the fed basal Isc. Bethanechol activated a biphasic response consisting of a transient decrease in the Isc followed by a sustained increase both of which were significantly greater in the starved than the fed tissue and were inhibited by TTX, DPC and atropine but not hexamethonium.4. Starvation enhances the secretory response to muscarinic activation in proximal and distal colon and induces an increased basal electrogenic (Cl ) secretion in the distal colon stimulated by an augmented neural tone.  相似文献   

9.
In pregnant-rat myometrium (day 21 of gestation), isoprenaline-induced cyclic AMP accumulation, resulting from receptor-mediated activation of adenylate cyclase, was negatively regulated by prostaglandins [PGE2, PGF2 alpha; EC50 (concn. giving 50% of maximal response) = 2 nM] and by the muscarinic agonist carbachol (EC50 = 2 microM). PG-induced inhibition was prevented by pertussis-toxin treatment, supporting the idea that it was mediated by the inhibitory G-protein Gi through the inhibitory pathway of the adenylate cyclase. Both isoprenaline-induced stimulation and PG-evoked inhibition of cyclic AMP were insensitive to Ca2+ depletion. By contrast, carbachol-evoked attenuation of cyclic AMP accumulation was dependent on Ca2+ and was insensitive to pertussis toxin. The inhibitory effect of carbachol was mimicked by ionomycin. Indirect evidence was thus provided for the enhancement of cyclic AMP degradation by a Ca2(+)-dependent phosphodiesterase activity in the muscarinic-mediated effect. The attenuation of cyclic AMP elicited by carbachol coincided with carbachol-stimulated inositol phosphate (InsP3, InsP2 and InsP) generation, which displayed an almost identical EC50 (3 microM) and was similarly unaffected by pertussis toxin. Both carbachol effects were reproduced by oxotremorine, whereas pilocarpine (a partial muscarinic agonist) failed to induce any decrease in cyclic AMP accumulation and concurrently was unable to stimulate the generation of inositol phosphates. These data support our proposal for a carbachol-mediated enhancement of a Ca2(+)-dependent phosphodiesterase activity, compatible with the rises in Ca2+ associated with muscarinic-induced increased generation of inositol phosphates. They further illustrate that a cross-talk between the two major transmembrane signalling systems contributed to an ultimate decrease in cyclic AMP in the pregnant-rat myometrium near term.  相似文献   

10.
Abstract: The purpose of these experiments was to determine if cholinergic agents affected the release of acetylcholine (ACh) from a synaptosomal preparation of the guinea pig ileum myenteric plexus. The synaptosomal preparation was first incubated with the precursor [3H]choline; subsequently, release of the stored [3H]ACh was measured. The release was decreased by oxotremorine or exogenous ACh plus hexamethonium and increased by exogenous ACh plus atropine. The nicotinic agonist 1,1-dimethyl-4-phenylpiperazinium (DMPP) evoked release that was inhibited by nicotinic antagonists or muscarinic agonists. Release was stimulated half-maximally by approximately 2 μ m - and maximally by 10 μ m -DMPP. Either in the absence of calcium or at 0°C, DMPP was without effect. The effect of 10 μ m -DMPP was brief, a significant stimulation occurring only within the first 2 min at 37°C. Tetrodotoxin also inhibited excitation by DMPP but not completely. Thus, the release of [3H]ACh appears to be presynaptically modulated, negatively by muscarinic agonists and positively by nicotinic agonists.  相似文献   

11.
Incubation of the rat superior cervical ganglion in Na+-free or low-Na+ medium increased the rate of synthesis of 3,4-dihydroxyphenylalanine (DOPA) in the ganglion fourfold and caused a concomitant stable activation of tyrosine hydroxylase. DOPA synthesis was half-maximal in medium containing about 20 mM Na+. Low-Na+ medium also increased the incorporation of 32Pi into tyrosine hydroxylase; the dependence of tyrosine hydroxylase phosphorylation on the Na+ concentration resembled that of DOPA synthesis. The stimulatory effects of low-Na+ medium on DOPA production and on tyrosine hydroxylase activity in vitro were dependent on extra-cellular Ca2+. The stimulation of DOPA synthesis in low-Na+ medium was inhibited by methoxyverapamil, an inhibitor of Ca2+ uptake, and was partially blocked by tetrodotoxin, but it was not affected by the cholinergic antagonists hexamethonium and atropine. Ionomycin, a calcium ionophore, stimulated DOPA synthesis to about the same extent as low-Na+ medium and also increased the incorporation of 32Pi into tyrosine hydroxylase. 8-Bromo cyclic AMP (1 mM) also stimulated DOPA production in the ganglion, and this stimulation was more than additive with that produced by low-Na+ medium. These data support the hypothesis that low-Na+ medium stimulates DOPA synthesis by raising intracellular Ca2+, which then promotes the phosphorylation of tyrosine hydroxylase.  相似文献   

12.
The time courses of changes in cyclic nucleotide levels in monocytes have been studied. Histamine and prostaglandin E2 (PGE2) produced a rapid rise in cyclic AMP (peak 15 min) levels, which returned to normal within 4h, whereas cholera toxin, NaF and phosphodiesterase inhibitors produced slow sustained rises lasting over 24h. With the exception of isobutylmethylxanthine (10 mumol X 1(-1), none of these reagents altered cyclic GMP levels. alpha 1-Adrenergic and nicotinic cholinergic receptor-ligand interactions and imidazole produced rapid and relatively short-lived falls in cyclic AMP, and rises in cyclic GMP. In contrast, prostaglandin synthetase inhibitors produced delayed but more sustained falls in cyclic AMP but no rises in cyclic GMP. Agents that increased cyclic AMP decreased complement-component-C2 production, and those that decreased cyclic AMP increased C2 production. Agents that increased cyclic GMP alone (ascorbate, nitroprusside and prostaglandin F2 alpha) did not affect C2 production. Antigen-antibody complexes that stimulate C2 synthesis produced falls in cyclic AMP and rises in cyclic GMP similar to those produced by adrenergic and cholinergic ligands. Serum-treated complexes and anaphylatoxins, which inhibited C2 production, were associated with changes in cyclic AMP similar to those produced by histamine and PGE2. These data suggest that there are two transmembrane signals involved in the regulation of C2 production by monocytes. The inhibitory signal is adenylyl cyclase activation. The stimulatory signal is not so obvious, but may be Ca2+ influx, since the time courses of changes in cyclic nucleotides produced by agents that stimulate C2 synthesis are identical, and alpha 1-adrenergic agonists cause the formation of Ca2+ channels.  相似文献   

13.
Ochi Y  Horie S  Maruyama T  Watanabe K  Yano S 《Life sciences》2005,77(16):2040-2050
The existence of a direct action of acetylcholine and gastrin on muscarinic M3 and cholecystokinin2 (CCK2) receptors on gastric parietal cells has not yet been convincingly established because these stimulated acid secretions are remarkably inhibited by histamine H2 receptor antagonists. In the present study, we investigated the necessity of intracellular cyclic AMP in inducing gastric acid secretion via muscarinic M3 and CCK2 receptors on parietal cells using an isolated mouse stomach preparation. Bethanechol (10-300 microM) produced a marked increase in acid output and this increase was completely blocked by famotidine (10 microM). In the presence of famotidine, bethanechol (1-30 microM) augmented the acid secretory response to dibutyryl AMP (200 microM) in a concentration-dependent manner. The augmentation was blocked by atropine (1 microM), 4-DAMP (0.1 microM), a muscarinic M3-selective antagonist, and by Ca2+ exclusion from the serosal nutrient solution. Pentagastrin (0.3-3 microM) also concentration-dependently stimulated gastric acid secretion, but the effect was completely inhibited by famotidine. In the presence of famotidine, pentagastrin (0.1-0.3 microM) elicited a definite potentiation of the acid secretory response to dibutyryl cyclic AMP (200 microM). This potentiation was inhibited by YM022 (1 microM), a CCK2 receptor antagonist, and by exclusion of Ca2+ from the serosal nutrient solution. The present results suggest that gastric acid secretion via the activation of muscarinic M3 and CCK2 receptors on the parietal cells is induced by activation of the cyclic AMP-dependent secretory pathway.  相似文献   

14.
Hormonally stimulated secretion of ACTH from AtT-20 mouse pituitary tumor cells is a cyclic AMP-mediated process. The presence of inhibitory cholinergic muscarinic receptors on these cells was recently reported, and in this study, the relationship between the activation of these receptors and the consequent inhibition of cyclic AMP formation and ACTH secretion was investigated. The muscarinic agent, oxotremorine, antagonized both cyclic AMP synthesis and ACTH secretion in response to corticotropin-releasing factor (CRF), vasoactive intestinal peptide, a 27-amino acid peptide with an N-terminal histidine and a C-terminal isoleucine amide, and forskolin. Other muscarinic agents, carbachol and bethanechol, had similar inhibitory effects. The cholinomimetics reduced basal (unstimulated) ACTH secretion without decreasing basal cyclic AMP levels, and also antagonized hormone release in response to cyclic AMP-independent agonists such as K+, A-23187, and phorbol ester. Scopolamine reversed the inhibitory effects of the muscarinic agents on basal and stimulated ACTH secretion and cyclic AMP formation. Increasing the extracellular calcium concentration reversed the muscarinic antagonism of basal and CRF-stimulated hormone release without affecting the cyclic AMP response. Pertussis toxin pretreatment attenuated the inhibitory effects of the muscarinic agents on forskolin-stimulated cyclic AMP synthesis and ACTH secretion as well as the inhibitory effect of carbachol on basal ACTH release. The data suggest that cyclic AMP is an essential mediator in the ACTH secretory pathway, but that an alternate cyclic AMP-independent ACTH pathway also exists in the clonal cells, and that both pathways may be modulated by a common postcholinergic receptor mechanism.  相似文献   

15.
Growth Factor-Like Effects Mediated by Muscarinic Receptors in PC12M1 Cells   总被引:2,自引:0,他引:2  
Rat pheochromocytoma (PC12) cells stably expressing cloned m1 muscarinic acetylcholine receptors (PC12M1) undergo morphological changes when stimulated by muscarinic agonists. These changes, which include the outgrowth of neurite-like processes, are blocked by the muscarinic antagonist atropine and are not observed in PC12 cells. The observed morphological changes, which are independent of RNA and protein synthesis, are blocked by the methylation inhibitor 5'-deoxy-5'-methylthioadenosine, suggesting that methylation plays a role in this process. Analysis of cyclic AMP accumulation and phosphoinositide turnover reveals that both processes are enhanced on activation by muscarinic agonist. Our data suggest, however, that the muscarinic-dependent neurite-like outgrowth processes are not mediated by cyclic AMP, Ca2+, or protein kinase C pathways. The muscarinic-dependent neurite outgrowth effect is enhanced by nerve growth factor, with a resulting increase in both the number of neurite-extending cells and the length of the neurite. In addition, activation of muscarinic receptors in PC12M1 cells stimulates the induction of marker genes for neuronal differentiation. Muscarinic receptors may therefore mediate growth factor-like effects in these cells.  相似文献   

16.
Agents that increase the intracellular Ca2+ concentration have been examined for their ability to stimulate 3H-inositol polyphosphate accumulation in rat cerebral cortex slices. Elevated extracellular K+ levels, the alkaloid sodium channel activator veratrine, the calcium ionophore ionomycin, and the marine toxin maitotoxin were all able to stimulate phosphoinositide metabolism. Certain features appear common to the agents studied. Thus, although [3H]inositol monophosphate, [3H]inositol bisphosphate ([3H]InsP2), and [3H]inositol trisphosphate were all stimulated, a proportionally greater effect was observed on [3H]InsP2 in comparison to stimulation by the muscarinic receptor agonist carbachol. However, only an elevated K+ level stimulated [3H]inositol tetrakisphosphate ([3H]InsP4) accumulation alone or produced marked synergy with carbachol on the formation of this polyphosphate. The results suggest that agents that elevate the cytoplasmic Ca2+ concentration in cerebral cells can increase the hydrolysis of membrane polyphosphoinositides. The pattern of the response differs from that produced by muscarinic receptor agonists and indicate that Ca2(+)-dependent hydrolysis may involve different pools of lipids, phosphoinositidase C enzymes, or both. However, clear differences in the ability of these agents to stimulate InsP4, alone or in the presence of muscarinic agonist, suggest that factors other than a simple elevated intracellular Ca2+ concentration are implicated.  相似文献   

17.
The relative capacities of muscarinic cholinergic receptor (MR) and bradykinin (BK)-receptor activation to increase phosphoinositide hydrolysis and to increase cytosolic Ca2+ were compared in NG108-15 neuroblastoma x glioma and 1321N1 human astrocytoma cells. In 1321N1 cells, the muscarinic cholinergic agonist carbachol and BK each stimulated a concentration-dependent accumulation of inositol phosphates (K0.5 approximately 10 microM and approximately 10 nM respectively) and a rapid increase in cytosolic Ca2+ as determined by quin2 fluorescence. In NG108-15 cells, BK alone stimulated a pertussis-toxin-insensitive accumulation of inositol phosphates (K0.5 approximately 10 nM) under conditions in which pertussis toxin completely inhibited MR-mediated inhibition of adenylate cyclase. BK also stimulated a rapid increase in cytosolic Ca2+ in NG108-15 cells. In contrast, no MR-mediated increase in phosphoinositide hydrolysis or change in cytosolic Ca2+ concentration was observed in NG108-15 cells. These results support the idea that MR selectively interact with either the cyclic AMP or the inositol phosphate second-messenger systems.  相似文献   

18.
The influence of cholinomimetics on follicle-stimulating hormone (FSH)-induced progestin production was studied in a primary culture of rat granulosa cells. Cells were cultured for 2 days with FSH and delta 4-androstenedione in the presence or absence of increasing concentrations of cholinergic agonists. Although ineffective as stimulators of steroidogenesis by themselves, the three nicotinic receptor-selective agonists lobeline, dimethylphenylpiperazinium iodide (DMPP), and phenyltrimethylammonium iodide (PTMA) inhibited FSH-induced progesterone and 20 alpha-hydroxypregn-4-en-3-one production in dose-dependent fashions. The rank order of inhibitory potencies was lobeline greater than DMPP greater than PTMA with IC50 values of 2 X 10(-6) M, 3 X 10(-5) M, and 3 X 10(-4) M, respectively. In contrast, the muscarinic receptor-selective agonists muscarine and bethanechol failed to inhibit steroid production. The inhibitory effect of lobeline on the time course of FSH-induced induced steroid production indicated an immediate inhibitory action; however, this inhibition was readily reversed upon removal of the drug. Further studies demonstrated that the FSH-stimulated increase in intracellular cAMP levels, as well as progesterone production induced by cholera toxin and forskolin (agents that stimulate cAMP production) and by dibutyryl cAMP (a cAMP analog), were also suppressed by lobeline. The present observations indicate that nicotinic, but not muscarinic, cholinergic agonists inhibit progesterone biosynthesis in cultured granulosa cells and suggest that endogenous acetylcholine may play a modulatory role in ovarian steroidogenesis.  相似文献   

19.
Acetylcholine, oxotremorine and carbachol, compounds that exhibit muscarinic agonist activity, maximally inhibited basal prolactin secretion from GH3 cells by approx. 50% and intracellular cyclic AMP levels by approx. 20%. Both parameters were inhibited with similar potencies by each agonist. These inhibitory effects were blocked by a muscarinic but not by a nicotinic receptor antagonist. In the presence of VIP or IBMX, which raise intracellular cyclic AMP levels and stimulate hormone release, the degree of muscarinic inhibition was increased, but the potency remained unchanged. Similar changes in the secretory rate of prolactin and growth hormone occurred in these and in cell perifusion experiments. These results suggest that the inhibition of hormone secretion from GH3 cells by muscarinic agonists is mediated by a decrease in intracellular cyclic AMP levels.  相似文献   

20.
Cyclic AMP accumulation in rat superior cervical ganglia during synaptic activity occurs by a noncholinergic, nonadrenergic process. Both preganglionic nerve stimulation and 4-aminopyridine increase ganglion cyclic AMP levels in the presence of atropine or phentolamine. Of the polypeptides tested as putative transmitters, vasoactive intestinal polypeptide (10(-6) M) causes ganglion cyclic AMP accumulation comparable to that produced by preganglionic nerve stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号