首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ecological interactions between microparasite populations in the same host are an important source of selection on pathogen traits such as virulence and drug resistance. In the rodent malaria model Plasmodium chabaudi in laboratory mice, parasites that are more virulent can competitively suppress less virulent parasites in mixed infections. There is evidence that some of this suppression is due to immune-mediated apparent competition, where an immune response elicited by one parasite population suppress the population density of another. This raises the question whether enhanced immunity following vaccination would intensify competitive interactions, thus strengthening selection for virulence in Plasmodium populations. Using the P. chabaudi model, we studied mixed infections of virulent and avirulent genotypes in CD4+T cell-depleted mice. Enhanced efficacy of CD4+T cell-dependent responses is the aim of several candidate malaria vaccines. We hypothesized that if immune-mediated interactions were involved in competition, removal of the CD4+T cells would alleviate competitive suppression of the avirulent parasite. Instead, we found no alleviation of competition in the acute phase, and significant enhancement of competitive suppression after parasite densities had peaked. Thus, the host immune response may actually be alleviating other forms of competition, such as that over red blood cells. Our results suggest that the CD4+-dependent immune response, and mechanisms that act to enhance it such as vaccination, may not have the undesirable affect of exacerbating within-host competition and hence the strength of this source of selection for virulence.  相似文献   

2.
Within‐host interactions between co‐infecting parasites can significantly influence the evolution of key parasite traits, such as virulence (pathogenicity of infection). The type of interaction is expected to predict the direction of selection, with antagonistic interactions favouring more virulent genotypes and synergistic interactions less virulent genotypes. Recently, it has been suggested that virulence can further be affected by the genetic identity of co‐infecting partners (G × G interactions), complicating predictions on disease dynamics. Here, we used a natural host–parasite system including a fish host and a trematode parasite to study the effects of G × G interactions on infection virulence. We exposed rainbow trout (Oncorhynchus mykiss) either to single genotypes or to mixtures of two genotypes of the eye fluke Diplostomum pseudospathaceum and estimated parasite infectivity (linearly related to pathogenicity of infection, measured as coverage of eye cataracts) and relative cataract coverage (controlled for infectivity). We found that both traits were associated with complex G × G interactions, including both increases and decreases from single infection to co‐infection, depending on the genotype combination. In particular, combinations where both genotypes had low average infectivity and relative cataract coverage in single infections benefited from co‐infection, while the pattern was opposite for genotypes with higher performance. Together, our results show that infection outcomes vary considerably between single and co‐infections and with the genetic identity of the co‐infecting parasites. This can result in variation in parasite fitness and consequently impact evolutionary dynamics of host–parasite interactions.  相似文献   

3.
Humans and animals often become coinfected with pathogen strains that differ in virulence. The ensuing interaction between these strains can, in theory, be a major determinant of the direction of selection on virulence genes in pathogen populations. Many mathematical analyses of this assume that virulent pathogen lineages have a competitive advantage within coinfected hosts and thus predict that pathogens will evolve to become more virulent where genetically diverse infections are common. Although the implications of these studies are relevant to both fundamental biology and medical science, direct empirical tests for relationships between virulence and competitive ability are lacking. Here we use newly developed strain-specific real-time quantitative polymerase chain reaction protocols to determine the pairwise competitiveness of genetically divergent Plasmodium chabaudi clones that represent a wide range of innate virulences in their rodent host. We found that even against their background of widely varying genotypic and antigenic properties, virulent clones had a competitive advantage in the acute phase of mixed infections. The more virulent a clone was relative to its competitor, the less it suffered from competition. This result confirms our earlier work with parasite lines derived from a single clonal lineage by serial passage and supports the virulence-competitive ability assumption of many theoretical models. To the extent that our rodent model captures the essence of the natural history of malaria parasites, public health interventions which reduce the incidence of mixed malaria infections should have beneficial consequences by reducing the selection for high virulence.  相似文献   

4.
Theoretical models predict that parasite relatedness affects the outcome of competition between parasites, and the evolution of parasite virulence. We examined whether parasite relatedness affects competition between parasitic plants (Cuscuta europaea) that share common host plants (Urtica dioica). We infected hosts with two parasitic plants that were either half-siblings or nonrelated. Relative size asymmetry between the competing parasites was significantly higher in the nonrelated infections compared to infections with siblings. This higher asymmetry was caused by the fact that the performance of some parasite genotypes decreased and that of others increased when grown in multiple infections with nonrelated parasites. This result agrees with the predictions of theories on the evolution of parasite virulence: to enhance parasite transmission, selection may favour reduced competition with genetically related parasites in hosts infected by several genotypes. However, in contrast to the most common predictions, nonrelated infections were not more virulent than the sibling infections.  相似文献   

5.
In endemic areas with high transmission intensities, malaria infections are very often composed of multiple genetically distinct strains of malaria parasites. It has been hypothesised that this leads to intra-host competition, in which parasite strains compete for resources such as space and nutrients. This competition may have repercussions for the host, the parasite, and the vector in terms of disease severity, vector fitness, and parasite transmission potential and fitness. It has also been argued that within-host competition could lead to selection for more virulent parasites. Here we use the rodent malaria parasite Plasmodium yoelii to assess the consequences of mixed strain infections on disease severity and parasite fitness. Three isogenic strains with dramatically different growth rates (and hence virulence) were maintained in mice in single infections or in mixed strain infections with a genetically distinct strain. We compared the virulence (defined as harm to the mammalian host) of mixed strain infections with that of single infections, and assessed whether competition impacted on parasite fitness, assessed by transmission potential. We found that mixed infections were associated with a higher degree of disease severity and a prolonged infection time. In the mixed infections, the strain with the slower growth rate was often responsible for the competitive exclusion of the faster growing strain, presumably through host immune-mediated mechanisms. Importantly, and in contrast to previous work conducted with Plasmodium chabaudi, we found no correlation between parasite virulence and transmission potential to mosquitoes, suggesting that within-host competition would not drive the evolution of parasite virulence in P. yoelii.  相似文献   

6.
Competitive interactions between coinfecting genotypes of the same pathogen can impose selection on virulence, but the direction of this selection depends on the mechanisms behind the interactions. Here, we investigate how host immune responses contribute to competition between clones in mixed infections of the rodent malaria parasite Plasmodium chabaudi. We studied single and mixed infections of a virulent and an avirulent clone and compared the extent of competition in immunodeficient and immunocompetent mice (nude mice and T cell-reconstituted nude mice, respectively). In immunocompetent mice, the avirulent clone suffered more from competition than did the virulent clone. The competitive suppression of the avirulent clone was alleviated in immunodeficient mice. Moreover, the relative density of the avirulent clone in mixed infections was higher in immunodeficient than in immunocompetent mice. We conclude that immune-mediated interactions contributed to competitive suppression of the avirulent clone, although other mechanisms, presumably competition for resources such as red blood cells, must also be important. Because only the avirulent clone suffered from immune-mediated competition, this mechanism should contribute to selection for increased virulence in mixed infections in this host-parasite system. As far as we are aware, this is the first direct experimental evidence of immune-mediated apparent competition in any host-parasite system.  相似文献   

7.
Most evolutionary models treat virulence as an unavoidable consequence of microparasite replication and have predicted that in mixed-genotype infections, natural selection should favor higher levels of virulence than is optimal in genetically uniform infections. Increased virulence may evolve as a genetically fixed strategy, appropriate for the frequency of mixed infections in the population, or may occur as a conditional response to mixed infection, that is, a facultative strategy. Here we test whether facultative alterations in replication rates in the presence of competing genotypes occur and generate greater virulence. An important alternative, not currently incorporated in models of the evolution of virulence, is that host responses mounted against genetically diverse parasites may be more costly or less effective than those against genetically uniform parasites. If so, mixed clone infections will be more virulent for a given parasite replication rate. Two groups of mice were infected with one of two clones of Plasmodium chabaudi parasites, and three groups of mice were infected with 1:9, 5:5, or 9:1 mixtures of the same two clones. Virulence was assessed by monitoring mouse body weight and red blood cell density. Transmission stage densities were significantly higher in mixed- than in single-clone infections. Within treatment groups, transmission stage production increased with the virulence of the infection, a phenotypic correlation consistent with the genetic correlation assumed by much of the theoretical work on the evolution of virulence. Consistent with theoretical predictions of facultative alterations in virulence, we found that mice infected with both parasite clones lost more weight and had on average lower blood counts than those infected with single-clone infections. However, there was no consistent evidence of the mechanism invoked by evolutionary models that predict this effect. Replication rates and parasite densities were not always higher in ???mixed-clone infections, and for a given replication rate or parasite density, mixed-clone infections were still more virulent. Instead, prolonged anemia and increased transmission may have occured because genetically diverse infections are less rapidly cleared by hosts. Differences in maximum weight loss occured even when there were comparable parasite densities in mixed- and single-clone infections. We suggest that mounting an immune response against more that one parasite genotype is more costly for hosts, which therefore suffer higher virulence.  相似文献   

8.
Malaria vaccine developers are concerned that antigenic escape will erode vaccine efficacy. Evolutionary theorists have raised the possibility that some types of vaccine could also create conditions favoring the evolution of more virulent pathogens. Such evolution would put unvaccinated people at greater risk of severe disease. Here we test the impact of vaccination with a single highly purified antigen on the malaria parasite Plasmodium chabaudi evolving in laboratory mice. The antigen we used, AMA-1, is a component of several candidate malaria vaccines currently in various stages of trials in humans. We first found that a more virulent clone was less readily controlled by AMA-1-induced immunity than its less virulent progenitor. Replicated parasites were then serially passaged through control or AMA-1 vaccinated mice and evaluated after 10 and 21 rounds of selection. We found no evidence of evolution at the ama-1 locus. Instead, virulence evolved; AMA-1-selected parasites induced greater anemia in naïve mice than both control and ancestral parasites. Our data suggest that recombinant blood stage malaria vaccines can drive the evolution of more virulent malaria parasites.  相似文献   

9.

Background  

Evolutionary theory suggests that the selection pressure on parasites to maximize their transmission determines their optimal host exploitation strategies and thus their virulence. Establishing the adaptive basis to parasite life history traits has important consequences for predicting parasite responses to public health interventions. In this study we examine the extent to which malaria parasites conform to the predicted adaptive trade-off between transmission and virulence, as defined by mortality. The majority of natural infections, however, result in sub-lethal virulent effects (e.g. anaemia) and are often composed of many strains. Both sub-lethal effects and pathogen population structure have been theoretically shown to have important consequences for virulence evolution. Thus, we additionally examine the relationship between anaemia and transmission in single and mixed clone infections.  相似文献   

10.
Immunity promotes virulence evolution in a malaria model   总被引:2,自引:1,他引:1       下载免费PDF全文
Evolutionary models predict that host immunity will shape the evolution of parasite virulence. While some assumptions of these models have been tested, the actual evolutionary outcome of immune selection on virulence has not. Using the mouse malaria model, Plasmodium chabaudi, we experimentally tested whether immune pressure promotes the evolution of more virulent pathogens by evolving parasite lines in immunized and nonimmunized (“naïve”) mice using serial passage. We found that parasite lines evolved in immunized mice became more virulent to both naïve and immune mice than lines evolved in naïve mice. When these evolved lines were transmitted through mosquitoes, there was a general reduction in virulence across all lines. However, the immune-selected lines remained more virulent to naïve mice than the naïve-selected lines, though not to immunized mice. Thus, immune selection accelerated the rate of virulence evolution, rendering parasites more dangerous to naïve hosts. These results argue for further consideration of the evolutionary consequences for pathogen virulence of vaccination.  相似文献   

11.
Very little is known about how vector-borne pathogens interact within their vector and how this impacts transmission. Here we show that mosquitoes can accumulate mixed strain malaria infections after feeding on multiple hosts. We found that parasites have a greater chance of establishing and reach higher densities if another strain is already present in a mosquito. Mixed infections contained more parasites but these larger populations did not have a detectable impact on vector survival. Together these results suggest that mosquitoes taking multiple infective bites may disproportionally contribute to malaria transmission. This will increase rates of mixed infections in vertebrate hosts, with implications for the evolution of parasite virulence and the spread of drug-resistant strains. Moreover, control measures that reduce parasite prevalence in vertebrate hosts will reduce the likelihood of mosquitoes taking multiple infective feeds, and thus disproportionally reduce transmission. More generally, our study shows that the types of strain interactions detected in vertebrate hosts cannot necessarily be extrapolated to vectors.  相似文献   

12.
Conspecific competition occurs in a multitude of organisms, particularly in parasites, where several clones are commonly sharing limited resources inside their host. In theory, increased or decreased transmission investment might maximize parasite fitness in the face of competition, but, to our knowledge, this has not been tested experimentally. We developed and used a clone-specific, stage-specific, quantitative PCR protocol to quantify Plasmodium chabaudi replication and transmission stage densities in mixed-clone infections. We co-infected mice from two strains with an avirulent and virulent parasite clone and found competitive suppression of in-host (blood-stage) parasite densities and generally corresponding reductions in transmission stage production, with the virulent clone obtaining overall competitive superiority. In response to competitive suppression, there was little evidence of any alteration in transmission stage investment, apart from a small reduction by one of the two clones in one of the two host strains. This alteration did not result in a competitive advantage, although it might have reduced the disadvantage. This study supports much of the current literature, which predicts that conspecific in-host competition will result in a competitive advantage and positive selection for virulent clones and thus the evolution of higher virulence.  相似文献   

13.
An increasing number of scientists have recently raised concerns about the threat posed by human intervention on the evolution of parasites and disease agents. New parasites (including pathogens) keep emerging and parasites which previously were considered to be 'under control' are re-emerging, sometimes in highly virulent forms. This re-emergence may be parasite evolution, driven by human activity, including ecological changes related to modern agricultural practices. Intensive farming creates conditions for parasite growth and transmission drastically different from what parasites experience in wild host populations and may therefore alter selection on various traits, such as life-history traits and virulence. Although recent epidemic outbreaks highlight the risks associated with intensive farming practices, most work has focused on reducing the short-term economic losses imposed by parasites, such as application of chemotherapy. Most of the research on parasite evolution has been conducted using laboratory model systems, often unrelated to economically important systems. Here, we review the possible evolutionary consequences of intensive farming by relating current knowledge of the evolution of parasite life-history and virulence with specific conditions experienced by parasites on farms. We show that intensive farming practices are likely to select for fast-growing, early-transmitted, and hence probably more virulent parasites. As an illustration, we consider the case of the fish farming industry, a branch of intensive farming which has dramatically expanded recently and present evidence that supports the idea that intensive farming conditions increase parasite virulence. We suggest that more studies should focus on the impact of intensive farming on parasite evolution in order to build currently lacking, but necessary bridges between academia and decision-makers.  相似文献   

14.
Mixed infections are thought to have a major influence on the evolution of parasite virulence. During a mixed infection, higher within‐host parasite growth is favored under the assumption that it is critical to the competitive success of the parasite. As within‐host parasite growth may also increase damage to the host, a positive correlation is predicted between virulence and competitive success. However, when parasites must kill their hosts in order be transmitted, parasites may spend energy on directly attacking their host, even at the cost of their within‐host growth. In such systems, a negative correlation between virulence and competitive success may arise. We examined virulence and competitive ability in three sympatric species of obligately killing nematode parasites in the genus Steinernema. These nematodes exist in a mutualistic symbiosis with bacteria in the genus Xenorhabdus. Together the nematodes and their bacteria kill the insect host soon after infection, with reproduction of both species occurring mainly after host death. We found significant differences among the three nematode species in the speed of host killing. The nematode species with the lowest and highest levels of virulence were associated with the same species of Xenorhabdus, indicating that nematode traits, rather than the bacterial symbionts, may be responsible for the differences in virulence. In mixed infections, host mortality rate closely matched that associated with the more virulent species, and the more virulent species was found to be exclusively transmitted from the majority of coinfected hosts. Thus, despite the requirement of rapid host death, virulence appears to be positively correlated with competitive success in this system. These findings support a mechanistic link between parasite growth and both anti‐competitor and anti‐host factors.  相似文献   

15.
Intrahost competition between parasite genotypes has been predicted to be an important force shaping parasite ecology and evolution and has been extensively cited as a mechanism for the evolution of increased parasite virulence. However, empirical evidence demonstrating the existence and nature of intraspecific competition is lacking for many parasites. Here, we compared within-host competitiveness between genetic strains of Schistosoma mansoni with high (HIGH-V) or low (LOW-V) virulence to their intermediate snail host, Biomphalaria glabrata. Groups of snails were exposed to either one or the other of two parasite strains, or a mixed infection of both strains, and the resulting progeny were identified using a molecular marker. In two separate experiments investigating simultaneous and sequential infections, we demonstrated that the lifetime reproductive success of parasite strain HIGH-V was reduced in the presence of a faster replicating parasite genotype, LOW-V, regardless of whether it was in a majority or minority in the initial inoculum of the simultaneous exposure or of its relative position in the sequential exposure experiment. Thus, we demonstrate competition between parasite genotypes and asymmetry in competitive success between parasite strains. Moreover, since the less virulent strain investigated here had a competitive advantage, we suggest that a high frequency of multiple infections could favor the evolution of less, rather than more, virulent parasites in this system.  相似文献   

16.
Most studies of virulence of infection focus on pairwise host–parasite interactions. However, hosts are almost universally co-infected by several parasite strains and/or genotypes of the same or different species. While theory predicts that co-infection favours more virulent parasite genotypes through intensified competition for host resources, knowledge of the effects of genotype by genotype (G × G) interactions between unrelated parasite species on virulence of co-infection is limited. Here, we tested such a relationship by challenging rainbow trout with replicated bacterial strains and fluke genotypes both singly and in all possible pairwise combinations. We found that virulence (host mortality) was higher in co-infections compared with single infections. Importantly, we also found that the overall virulence was dependent on the genetic identity of the co-infecting partners so that the outcome of co-infection could not be predicted from the respective virulence of single infections. Our results imply that G × G interactions among co-infecting parasites may significantly affect host health, add to variance in parasite fitness and thus influence evolutionary dynamics and ecology of disease in unexpected ways.  相似文献   

17.
Variation among parasite strains can affect the progression of disease or the effectiveness of treatment. What maintains parasite diversity? Here I argue that competition among parasites within the host is a major cause of variation among parasites. The competitive environment within the host can vary depending on the parasite genotypes present. For example, parasite strategies that target specific competitors, such as bacteriocins, are dependent on the presence and susceptibility of those competitors for success. Accordingly, which parasite traits are favoured by within-host selection can vary from host to host. Given the fluctuating fitness landscape across hosts, genotype by genotype (G×G) interactions among parasites should be prevalent. Moreover, selection should vary in a frequency-dependent manner, as attacking genotypes select for resistance and genotypes producing public goods select for cheaters. I review competitive coexistence theory with regard to parasites and highlight a few key examples where within-host competition promotes diversity. Finally, I discuss how within-host competition affects host health and our ability to successfully treat infectious diseases.  相似文献   

18.
Here, we test the hypothesis that virulent malaria parasites are less susceptible to drug treatment than less virulent parasites. If true, drug treatment might promote the evolution of more virulent parasites (defined here as those doing more harm to hosts). Drug-resistance mechanisms that protect parasites through interactions with drug molecules at the sub-cellular level are well known. However, parasite phenotypes associated with virulence might also help parasites survive in the presence of drugs. For example, rapidly replicating parasites might be better able to recover in the host if drug treatment fails to eliminate parasites. We quantified the effects of drug treatment on the in-host survival and between-host transmission of rodent malaria (Plasmodium chabaudi) parasites which differed in virulence and had never been previously exposed to drugs. In all our treatment regimens and in single- and mixed-genotype infections, virulent parasites were less sensitive to pyrimethamine and artemisinin, the two antimalarial drugs we tested. Virulent parasites also achieved disproportionately greater transmission when exposed to pyrimethamine. Overall, our data suggest that drug treatment can select for more virulent parasites. Drugs targeting transmission stages (such as artemisinin) may minimize the evolutionary advantage of virulence in drug-treated infections.  相似文献   

19.
Models of malaria epidemiology and evolution are frequently based on the assumption that vector-parasitic associations are benign. Implicit in this assumption is the supposition that all Plasmodium parasites have an equal and neutral effect on vector survival, and thus that there is no parasite genetic variation for vector virulence. While some data support the assumption of avirulence, there has been no examination of the impact of parasite genetic diversity. We conducted a laboratory study with the rodent malaria parasite, Plasmodium chabaudi and the vector, Anopheles stephensi, to determine whether mosquito mortality varied with parasite genotype (CR and ER clones), infection diversity (single versus mixed genotype) and nutrient availability. Vector mortality varied significantly between parasite genotypes, but the rank order of virulence depended on environmental conditions. In standard conditions, mixed genotype infections were the most virulent but when glucose water was limited, mortality was highest in mosquitoes infected with CR. These genotype-by-environment interactions were repeatable across two experiments and could not be explained by variation in anaemia, gametocytaemia, blood meal size, mosquito body size, infection rate or oocyst burden. Variation in the genetic and environmental determinants of virulence may explain conflicting accounts of Plasmodium pathogenicity to mosquitoes in the malaria literature.  相似文献   

20.
Intraspecific competition between co-infecting parasites can influence the amount of virulence, or damage, they do to their host. Kin selection theory dictates that infections with related parasite individuals should have lower virulence than infections with unrelated individuals, because they benefit from inclusive fitness and increased host longevity. These predictions have been tested in a variety of microparasite systems, and in larval stage macroparasites within intermediate hosts, but the influence of adult macroparasite relatedness on virulence has not been investigated in definitive hosts. This study used the human parasite Schistosoma mansoni to determine whether definitive hosts infected with related parasites experience lower virulence than hosts infected with unrelated parasites, and to compare the results from intermediate host studies in this system. The presence of unrelated parasites in an infection decreased parasite infectivity, the ability of a parasite to infect a definitive host, and total worm establishment in hosts, impacting the less virulent parasite strain more severely. Unrelated parasite co-infections had similar virulence to the more virulent of the two parasite strains. We combine these findings with complementary studies of the intermediate snail host and describe trade-offs in virulence and selection within the life cycle. Damage to the host by the dominant strain was muted by the presence of a competitor in the intermediate host, but was largely unaffected in the definitive host. Our results in this host–parasite system suggest that unrelated infections may select for higher virulence in definitive hosts while selecting for lower virulence in intermediate hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号