首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Amyloid fibrils formed by incubation of recombinant wild-type human beta(2)-microglobulin (beta(2)M) ab initio in vitro at low pH and high ionic strength are short and highly curved. By contrast, fibrils extracted from patients suffering from haemodialysis-related amyloidosis and those formed by seeding growth of the wild-type protein in vitro with fibrils ex vivo are longer and straighter than those previously produced ab initio in vitro. Here we explore the effect of growth conditions on morphology of beta(2)M fibrils formed ab initio in vitro from the wild-type protein, as well as a variant form of beta(2)M in which Asn17 is deamidated to Asp (N17D). We show that deamidation results in significant destabilisation of beta(2)M at neutral pH. Despite this, acidification is still necessary to form amyloid from the mutant protein in vitro. Interestingly, at low pH and low ionic strength long, straight fibrils of recombinant beta(2)M are formed in vitro. The fibrils comprise three distinct morphological types when examined using electron microscopy (EM) and atomic force microscopy (AFM) that vary in periodicity and the number of constituent protofibrils. Using kinetic experiments we suggest that the immature fibrils observed previously do not represent intermediates in the assembly of fully mature amyloid, at least under the conditions studied here.  相似文献   

2.
Beta2-microglobulin (beta2-m), a typical immunoglobulin domain made of seven beta-strands, is a major component of amyloid fibrils formed in dialysis-related amyloidosis. To understand the mechanism of amyloid fibril formation in the context of full-length protein, we prepared various mutants in which proline (Pro) was introduced to each of the seven beta-strands of beta2-m. The mutations affected the amyloidogenic potential of beta2-m to various degrees. In particular, the L23P, H51P, and V82P mutations significantly retarded fibril extension at pH 2.5. Among these, only L23P is included in the known "minimal" peptide sequence, which can form amyloid fibrils when isolated as a short peptide. This indicates that the residues in regions other than the minimal sequence, such as H51P and V82P, determine the amyloidogenic potential in the full-length protein. To further clarify the mutational effects, we measured their stability against guanidine hydrochloride of the native state at pH 8.0 and the amyloid fibrils at pH 2.5. The amyloidogenicity of mutants showed a significant correlation with the stability of the amyloid fibrils, and little correlation was observed with that of the native state. It has been proposed that the stability of the native state and the unfolding rate to the amyloidogenic precursor as well as the conformational preference of the denatured state determine the amyloidogenicity of the proteins. The present results reveal that, in addition, stability of the amyloid fibrils is a key factor determining the amyloidogenic potential of the proteins.  相似文献   

3.
The solution structure and stability of N-terminally truncated beta2-microglobulin (deltaN6beta2-m), the major modification in ex vivo fibrils, have been investigated by a variety of biophysical techniques. The results show that deltaN6beta2-m has a free energy of stabilization that is reduced by 2.5 kcal/mol compared to the intact protein. Hydrogen exchange of a mixture of the truncated and full-length proteins at microM concentrations at pH 6.5 monitored by electrospray mass spectrometry reveals that deltaN6beta2-m is significantly less protected than its wild-type counterpart. Analysis of deltaN6beta2-m by NMR shows that this loss of protection occurs in beta strands I, III, and part of II. At mM concentration gel filtration analysis shows that deltaN6beta2-m forms a series of oligomers, including trimers and tetramers, and NMR analysis indicates that strand V is involved in intermolecular interactions that stabilize this association. The truncated species of beta2-microglobulin was found to have a higher tendency to self-associate than the intact molecule, and unlike wild-type protein, is able to form amyloid fibrils at physiological pH. Limited proteolysis experiments and analysis by mass spectrometry support the conformational modifications identified by NMR and suggest that deltaN6beta2-m could be a key intermediate of a proteolytic pathway of beta2-microglobulin. Overall, the data suggest that removal of the six residues from the N-terminus of beta2-microglobulin has a major effect on the stability of the overall fold. Part of the tertiary structure is preserved substantially by the disulfide bridge between Cys25 and Cys80, but the pairing between beta-strands far removed from this constrain is greatly perturbed.  相似文献   

4.
Amyloid fibrils are ordered polymers in which constituent polypeptides adopt a non-native fold. Despite their importance in degenerative human diseases, the overall structure of amyloid fibrils remains unknown. High-resolution studies of model peptide assemblies have identified residues forming cross-β-strands and have revealed some details of local β-strand packing. However, little is known about the assembly contacts that define the fibril architecture. Here we present a set of three-dimensional structures of amyloid fibrils formed from full-length β2-microglobulin, a 99-residue protein involved in clinical amyloidosis. Our cryo-electron microscopy maps reveal a hierarchical fibril structure built from tetrameric units of globular density, with at least three different subunit interfaces in this homopolymeric assembly. These findings suggest a more complex superstructure for amyloid than hitherto suspected and prompt a re-evaluation of the defining features of the amyloid fold.  相似文献   

5.
Human beta(2)-microglobulin (beta(2)m) forms amyloid fibrils in hemodialysis related amyloidosis. Peptides spanning the beta strands of beta(2)m have been shown to form amyloid fibrils in isolation. We have studied the self-association of a 13-residue peptide Ac-DWSFYLLYYTEFT-am (Pbeta(2)m) spanning one of the beta-strands of human beta(2)-microglobulin when dissolved in various organic solvents such as methanol (MeOH), trifluoroethanol (TFE), hexafluoroisopropanol (HFIP), and dimethylsulfoxide. We have observed that Pbeta(2)m forms amyloid fibrils when diluted from organic solvents into aqueous buffer at pH 7.0 as judged by increase in thioflavin T fluorescence. Fibril formation was observed to depend on the solvents in which peptide stock solutions were prepared. Circular dichroism spectra indicated propensity for helical conformation in MeOH, TFE, and HFIP. In buffer, beta-structure was observed irrespective of the solvent in which the peptide stock solutions were prepared. Atomic force microscopy images obtained by drying the peptide on mica from organic solvents indicated the ability of Pbeta(2)m to self-associate to form nonfibrillar structures. Morphology of the structures was dependent on the solvent in which the peptide was dissolved. Peptides that have the ability to self-associate such as amyloid-forming peptides would be attractive candidates for the generation of self-assembled structures with varying morphologies by appropriate choice of surfaces and solvents for dissolution.  相似文献   

6.
Amyloid fibrils are a major pathological feature of Alzheimer's disease as well as other amyloidoses including the prion diseases. They are an unusual phenomenon, being made up of different, normally soluble proteins which undergo a profound conformational change and assemble to form very stable, insoluble fibrils which accumulate in the extracellular spaces. In Alzheimer's disease the amyloid fibrils are composed of the A beta protein. Knowledge of the structure of amyloid is essential for understanding the abnormal assembly and deposition of these fibrils and could lead to the rational design of therapeutic agents for their prevention or disaggregation. Here we reveal the core structure of an Alzheimer's amyloid fibril by direct visualisation using cryo-electron microscopy. Synthetic amyloid fibrils composed of A beta residues 11 to 25 and 1 to 42 were examined. The A beta (11-25) fibrils are clearly composed of beta-sheet structure that is observable as striations across the fibres. The beta-strands run perpendicular to the fibre axis and the projections show that the fibres are composed of beta-sheets with the strands in direct register. This observation has implications not only for the further understanding of amyloid, but also for the development of cryo-electron microscopy for direct visualisation of secondary structure.  相似文献   

7.
Dialysis-related amyloidosis (DRA) involves the aggregation of beta(2)-microglobulin (beta(2)m) into amyloid fibrils. Using Congo red and thioflavin-T binding, electron microscopy, and X-ray fiber diffraction, we have determined conditions under which recombinant monomeric beta(2)m spontaneously associates to form fibrils in vitro. Fibrillogenesis is critically dependent on the pH and the ionic strength of the solution, with low pH and high ionic strength favoring fibril formation. The morphology of the fibrils formed varies with the growth conditions. At pH 4 in 0.4 M NaCl the fibrils are approximately 10 nm wide, relatively short (50-200 nm), and curvilinear. By contrast, at pH 1.6 the fibrils formed have the same width and morphology as those formed at pH 4 but extend to more than 600 nm in length. The dependence of fibril growth on ionic strength has allowed the conformational properties of monomeric beta(2)m to be determined under conditions where fibril growth is impaired. Circular dichroism studies show that titration of one or more residues with a pK(a) of 4.7 destabilizes native beta(2)m and generates a partially unfolded species. On average, these molecules retain significant secondary structure and have residual, non-native tertiary structure. They also bind the hydrophobic dye 1-anilinonaphthalene-8-sulfonic acid (ANS), show line broadening in one-dimensional (1)H NMR spectra, and are weakly protected from hydrogen exchange. Further acidification destabilizes this species, generating a second, more highly denatured state that is less fibrillogenic. These data are consistent with a model for beta(2)m fibrillogenesis in vitro involving the association of partially unfolded molecules into ordered fibrillar assemblies.  相似文献   

8.
Misfolding and aggregation of normally soluble proteins into amyloid fibrils and their deposition and accumulation underlies a variety of clinically significant diseases. Fibrillar aggregates with amyloid-like properties can also be generated in vitro from pure proteins and peptides, including those not known to be associated with amyloidosis. Whereas biophysical studies of amyloid-like fibrils formed in vitro have provided important insights into the molecular mechanisms of amyloid generation and the structural properties of the fibrils formed, amyloidogenic proteins are typically exposed to mild or more extreme denaturing conditions to induce rapid fibril formation in vitro. Whether the structure of the resulting assemblies is representative of their natural in vivo counterparts, thus, remains a fundamental unresolved issue. Here we show using Fourier transform infrared spectroscopy that amyloid-like fibrils formed in vitro from natively folded or unfolded beta(2)-microglobulin (the protein associated with dialysis-related amyloidosis) adopt an identical beta-sheet architecture. The same beta-strand signature is observed whether fibril formation in vitro occurs spontaneously or from seeded reactions. Comparison of these spectra with those of amyloid fibrils extracted from patients with dialysis-related amyloidosis revealed an identical amide I' absorbance maximum, suggestive of a characteristic and conserved amyloid fold. Our results endorse the relevance of biophysical studies for the investigation of the molecular mechanisms of beta(2)-microglobulin fibrillogenesis, knowledge about which may inform understanding of the pathobiology of this protein.  相似文献   

9.
In vitro formation of amyloid fibrils from intact beta 2-microglobulin   总被引:9,自引:0,他引:9  
Prompted by the identification of hemodialysis-associated amyloid protein as beta 2-microglobulin, we attempted to create in vitro amyloid fibrils from the native protein. Beta 2-microglobulin in PBS was slowly dialyzed free of salt and then concentrated. The residue showed Congophilia with green birefringence by light microscopy and polarization, and non-branching fibrils of indeterminate length, measuring 8 to 10 nm in diameter by electron microscopy, thus meeting the morphologic criteria for amyloid. The present study demonstrates the first successful in vitro creation of amyloid fibrils with intact precursor protein molecules and provides supporting evidence that hemodialysis-associated amyloid is constituted from beta 2-microglobulin.  相似文献   

10.
The kinetics of spontaneous assembly of amyloid fibrils of wild-type beta(2)-microglobulin (beta(2)M) in vitro, under acid conditions (pH 2.5) and low ionic strength, has been followed using thioflavin-T (ThT) binding. In parallel experiments, the morphology of the different fibrillar species present at different time-points during the growth process were characterised using tapping-mode atomic force microscopy (TM-AFM) in air and negative stain electron microscopy (EM). The thioflavin-T assay shows a characteristic lag phase during which the nucleation of fibrils occurs before a rapid growth in fibril density. The volume of fibrils deposited on mica measured from TM-AFM images at each time-point correlates well with the fluorescence data. TM-AFM and negative-stain EM revealed the presence of various kinds of protein aggregates in the lag phase that disappear concomitantly with a rise in the density of amyloid fibrils, suggesting that these aggregates precede fibril growth and may act as nucleation sites. Three distinct morphologies of mature amyloid fibrils were observed within a single growth experiment, as observed previously for the wild-type protein and the variant N17D. Additional supercoiled morphologies of the lower-order fibrils were observed. Comparative height analysis from the TM-AFM data allows each of the mature fibril types and single protofilaments to be identified unambiguously, and reveals that the assembly occurs via a hierarchy of morphological states.  相似文献   

11.
It has been suggested that, while the globular native forms of proteins are a side-chain-dominated compact structure evolved by pursuing a unique fold with optimal packing of amino acid residues, amyloid fibrils are a main-chain-dominated structure with an extensive hydrogen bond network. To address this issue, the effects of hydrostatic pressure on amyloid fibrils of beta2-microglobulin (beta2-m), involved in dialysis-related amyloidosis, were studied. A systematic analysis at various pressures and concentrations of guanidine hydrochloride conducted by monitoring thioflavin T fluorescence, light-scattering, and tryptophan fluorescence revealed contrasting conformational changes occurring consecutively: first, a pressure-induced reorganization of fibrils and then a pressure-induced unfolding. The changes in volume as well as the observed structural changes indicate that the beta2-m amyloid fibrils under ambient pressure are less tightly packed with a larger number of cavities, consistent with the main-chain-dominated amyloid structure. Moreover, the amyloid structure without optimal packing will enable various isoforms to form, suggesting the structural basis of multiple forms of amyloid fibrils in contrast to the unique native-fold.  相似文献   

12.
Many human neurodegenerative diseases are associated with amyloid fibril formation. The human 99-residue beta(2)-microglobulin (beta2m) is one of the most intensively studied amyloid-forming proteins. Recent studies show that the C-terminal fragments 72-99, 83-89, and 91-96 form by themselves amyloid fibrils in vitro and play a significant role in fibrillization of the full-length beta2m protein under acidic pH conditions. In this work, we have studied the equilibrium structures of the 17-residue fragment 83-99 in solution, and investigated its dimerization process by multiple molecular dynamics simulations. We find that an intertwined dimer, with the positions of the beta-strands consistent with the results for the monomer, is a possible structure for two beta2m(83-89) peptides. Based on our molecular-dynamics-generated dimeric structure, a protofibril model is proposed for the full-length beta2m protein.  相似文献   

13.
Cleavage of the small amyloidogenic protein beta2-microglobulin after lysine-58 renders it more prone to unfolding and aggregation. This is important for dialysis-related beta2-microglobulin amyloidosis, since elevated levels of cleaved beta2-microglobulin may be found in the circulation of dialysis patients. However, the solution structures of these cleaved beta2-microglobulin variants have not yet been assessed using single-residue techniques. We here use such methods to examine beta2-microglobulin cleaved after lysine-58 and the further processed variant (found in vivo) from which lysine-58 is removed. We find that the solution stability of both variants, especially of beta2-microglobulin from which lysine-58 is removed, is much reduced compared to wild-type beta2-microglobulin and is strongly dependent on temperature and protein concentration. 1H-NMR spectroscopy and amide hydrogen (1H/2H) exchange monitored by MS show that the overall three-dimensional structure of the variants is similar to that of wild-type beta2-microglobulin at subphysiological temperatures. However, deviations do occur, especially in the arrangement of the B, D and E beta-strands close to the D-E loop cleavage site at lysine-58, and the experiments suggest conformational heterogeneity of the two variants. Two-dimensional NMR spectroscopy indicates that this heterogeneity involves an equilibrium between the native-like fold and at least one conformational intermediate resembling intermediates found in other structurally altered beta2-microglobulin molecules. This is the first single-residue resolution study of a specific beta2-microglobulin variant that has been found circulating in dialysis patients. The instability and conformational heterogeneity of this variant suggest its involvement in beta2-microglobulin amyloidogenicity in vivo.  相似文献   

14.
Amyloid fibrils are assemblies of misfolded proteins and are associated with pathological conditions such as Alzheimer's disease and the spongiform encephalopathies. In the amyloid diseases, a diverse group of normally soluble proteins self-assemble to form insoluble fibrils. X-ray fibre diffraction studies have shown that the protofilament cores of fibrils formed from the various proteins all contain a cross-beta-scaffold, with beta-strands perpendicular and beta-sheets parallel to the fibre axis. We have determined the threedimensional structure of an amyloid fibril, formed by the SH3 domain of phosphatidylinositol-3'-kinase, using cryo-electron microscopy and image processing at 25 A resolution. The structure is a double helix of two protofilament pairs wound around a hollow core, with a helical crossover repeat of approximately 600 A and an axial subunit repeat of approximately 27 A. The native SH3 domain is too compact to fit into the fibril density, and must unfold to adopt a longer, thinner shape in the amyloid form. The 20x40-A protofilaments can only accommodate one pair of flat beta-sheets stacked against each other, with very little inter-strand twist. We propose a model for the polypeptide packing as a basis for understanding the structure of amyloid fibrils in general.  相似文献   

15.
Abeta2M (beta(2)-microglobulin-related) amyloidosis is a frequent and serious complication in patients on long-term dialysis. Partial unfolding of beta2-m (beta(2)-microglobulin) may be essential to its assembly into Abeta2M amyloid fibrils in vivo. Although SDS around the critical micelle concentration induces partial unfolding of beta2-m to an alpha-helix-containing aggregation-prone amyloidogenic conformer and subsequent amyloid fibril formation in vitro, the biological molecules with similar activity under near-physiological conditions are still unknown. The effect of various NEFAs (non-esterified fatty acids), which are representative anionic amphipathic compounds in the circulation, on the growth of Abeta2M amyloid fibrils at a neutral pH was examined using fluorescence spectroscopy with thioflavin T, CD spectroscopy, and electron microscopy. Physiologically relevant concentrations of laurate, myristate, oleate, linoleate, and mixtures of palmitate, stearate, oleate and linoleate, induced the growth of fibrils at a neutral pH by partially unfolding the compact structure of beta2-m to an aggregation-prone amyloidogenic conformer. In the presence of human serum albumin, these NEFAs also induced the growth of fibrils when their concentrations exceeded the binding capacity of albumin, indicating that the unbound NEFAs rather than albumin-bound NEFAs induce the fibril growth reaction in vitro. These results suggest the involvement of NEFAs in the development of Abeta2M amyloidosis, and in the pathogenesis of Abeta2M amyloidosis.  相似文献   

16.
The tissue specificity of fibrillar deposition in dialysis-related amyloidosis is most likely associated with the peculiar interaction of beta2-microglobulin (beta2-m) with collagen fibers. However, other co-factors such as glycosaminoglycans might facilitate amyloid formation. In this study we have investigated the role of heparin in the process of collagen-driven amyloidogenesis. In fact, heparin is a well known positive effector of fibrillogenesis, and the elucidation of its potential effect in this type of amyloidosis is particularly relevant because heparin is regularly given to patients subject to hemodialysis to prevent blood clotting. We have monitored by atomic force microscopy the formation of beta2-m amyloid fibrils in the presence of collagen fibers, and we have discovered that heparin strongly accelerates amyloid deposition. The mechanism of this effect is still largely unexplained. Using dynamic light scattering, we have found that heparin promotes beta2-m aggregation in solution at pH 6.4. Morphology and structure of fibrils obtained in the presence of collagen and heparin are highly similar to those of natural fibrils. The fibril surface topology, investigated by limited proteolysis, suggests that the general assembly of amyloid fibrils grown under these conditions and in vitro at low pH is similar. The exposure of these fibrils to trypsin generates a cleavage at the C-terminal of lysine 6 and creates the 7-99 truncated form of beta2-m (DeltaN6beta2-m) that is a ubiquitous constituent of the natural beta2-m fibrils. The formation of this beta2-m species, which has a strong propensity to aggregate, might play an important role in the acceleration of local amyloid deposition.  相似文献   

17.
Sasahara K  Naiki H  Goto Y 《Biochemistry》2006,45(29):8760-8769
To understand the initial stages in the formation of amyloid fibrils of beta(2)-microglobulin, a protein responsible for dialysis-related amyloidosis, the effects of heat on the acid-unfolded monomer at pH 2.5 were studied. In the presence of a low concentration of seed fibrils, differential scanning calorimetric thermograms of acid-unfolded beta(2)-microglobulin monomers showed a large decrease in heat capacity with a sigmoidal temperature-dependence, which was subsequently released at higher temperature. Measurements of circular dichroism, atomic force microscopy, ultracentrifugation, and repeated differential scanning calorimetry indicated that the exothermic sigmoidal transition is accompanied by the conversion of about 12% of the monomeric beta(2)-microglobulin molecules into amyloid fibrils, which subsequently dissociate into monomers at high temperature. Interestingly, amyloid fibrils, formed partly after the sigmoidal transition, exhibited a heating rate-dependent, kinetically controlled thermal response, indicating that 12% of the total protein is enough to exhibit the unique thermal response. On the other hand, the salt-induced protofibrils did not show such a calorimetric response, indicating that the kinetic thermal response is unique to the particular structure of fibrils. Taken together, although the calorimetric behavior of amyloid fibrils remains elusive, it may be interpreted in terms of the effects of heat associated with the formation, the association, and the unfolding of fibrils, in which the interactions between specific beta-sheet structures and water molecules play a crucial role and are sensitively reflected in the heat capacity change in protein solution.  相似文献   

18.
Amyloid fibrils are fibrous beta-structures that derive from abnormal folding and assembly of peptides and proteins. Despite a wealth of structural studies on amyloids, the nature of the amyloid structure remains elusive; possible connections to natural, beta-structured fibrous motifs have been suggested. In this work we focus on understanding amyloid structure and formation from sequences of a natural, beta-structured fibrous protein. We show that short peptides (25 to 6 amino acids) corresponding to repetitive sequences from the adenovirus fiber shaft have an intrinsic capacity to form amyloid fibrils as judged by electron microscopy, Congo Red binding, infrared spectroscopy, and x-ray fiber diffraction. In the presence of the globular C-terminal domain of the protein that acts as a trimerization motif, the shaft sequences adopt a triple-stranded, beta-fibrous motif. We discuss the possible structure and arrangement of these sequences within the amyloid fibril, as compared with the one adopted within the native structure. A 6-amino acid peptide, corresponding to the last beta-strand of the shaft, was found to be sufficient to form amyloid fibrils. Structural analysis of these amyloid fibrils suggests that perpendicular stacking of beta-strand repeat units is an underlying common feature of amyloid formation.  相似文献   

19.
In beta(2)-microglobulin-related (Abeta2M) amyloidosis, partial unfolding of beta(2)-microglobulin (beta2-m) is believed to be prerequisite to its assembly into Abeta2M amyloid fibrils in vivo. Although low pH or 2,2,2-trifluoroethanol at a low concentration has been reported to induce partial unfolding of beta2-m and subsequent amyloid fibril formation in vitro, factors that induce them under near physiological conditions have not been determined. Using fluorescence spectroscopy with thioflavin T, circular dichroism spectroscopy, and electron microscopy, we here show that at low concentrations, sodium dodecyl sulfate (SDS) converts natively folded beta2-m monomers into partially folded, alpha-helix-containing conformers. Surprisingly, this results in the extension of Abeta2M amyloid fibrils at neutral pH, which could be explained basically by a first-order kinetic model. At low concentrations, SDS also stabilized the fibrils at neutral pH. These SDS effects were concentration-dependent and maximal at approximately 0.5 mM, around the critical micelle concentration of SDS (0.67 mM). As the concentration of SDS was increased above 1 mM, the alpha-helix content of beta2-m rose to approximately 10%, while the beta-sheet content decreased to approximately 20%, a change paralleled by a complete cessation of fibril extension and the destabilization of the fibrils. Detergents of other classes had no significant effect on the extension of fibrils. These findings are consistent with the hypothesis that in vivo, specific factors (e.g., phospholipids) that affect the conformation and stability of beta2-m and amyloid fibrils will have significant effects on the kinetics of Abeta2M fibril formation.  相似文献   

20.
Ordered assembly of monomeric human beta(2)-microglobulin (beta(2)m) into amyloid fibrils is associated with the disorder hemodialysis-related amyloidosis. Previously, we have shown that under acidic conditions (pH <5.0 at 37 degrees C), wild-type beta(2)m assembles spontaneously into fibrils with different morphologies. Under these conditions, beta(2)m populates a number of different conformational states in vitro. However, this equilibrium mixture of conformationally different species is difficult to resolve using ensemble techniques such as nuclear magnetic resonance or circular dichroism. Here we use electrospray ionization mass spectrometry to resolve different species of beta(2)m populated between pH 6.0 and 2.0. We show that by linear deconvolution of the charge state distributions, the extent to which each conformational ensemble is populated throughout the pH range can be determined and quantified. Thus, at pH 3.6, conditions under which short fibrils are produced, the conformational ensemble is dominated by a charge state distribution centered on the 9+ ions. By contrast, under more acidic conditions (pH 2.6), where long straight fibrils are formed, the charge state distribution is dominated by the 10+ and 11+ ions. The data are reinforced by investigations on two variants of beta(2)m (V9A and F30A) that have reduced stability to pH denaturation and show changes in the pH dependence of the charge state distribution that correlate with the decrease in stability measured by tryptophan fluorescence. The data highlight the potential of electrospray ionization mass spectrometry to resolve and quantify complex mixtures of different conformational species, one or more of which may be important in the formation of amyloid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号