首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is known from the experimental data that at different cerebellar neurons there are voltage-dependent Ca2+ channels, NMDA receptors, metabotropic glutamate and GABAB receptors. This receptor arrangement ensures that activation of excitatory and inhibitory input results in changes in activity of protein kinases and phosphatases and subsequent modification of synaptic efficacy. The mechanism of synaptic plasticity is advanced that in accordance with the known experimental data concerning the modification of excitatory and inhibitory inputs to Purkinje cells, granule cells, and deep cerebellar nuclei cells. The mechanism is based on a postulate that phosphorylation/dephosphorylation of AMPA (GABAA) receptors on cerebellar cells causes the LTP/LTD of excitatory (LTD/LTP of inhibitory) transmission. It is assumed that modification rules for Purkinje cells, granule cells, and deep cerebellar nuclei cells, wherein cGMP-dependent protein kinase G is involved in synaptic plasticity, are distinct from those of hippocampal/neocortical cells, wherein cAMP-dependent protein kinase A is involved in synaptic plasticity, since cGMP (cAMP) concentration decreases (increases) with Ca2+ rise.  相似文献   

2.
Long‐term potentiation (LTP) and long‐term depression (LTD) are the current models of synaptic plasticity and widely believed to explain how different kinds of memory are stored in different brain regions. Induction of LTP and LTD in different regions of brain undoubtedly involve trafficking of AMPA receptor to and from synapses. Hippocampal LTP involves phosphorylation of GluR1 subunit of AMPA receptor and its delivery to synapse whereas; LTD is the result of dephosphorylation and endocytosis of GluR1 containing AMPA receptor. Conversely the cerebellar LTD is maintained by the phosphorylation of GluR2 which promotes receptor endocytosis while dephosphorylation of GluR2 triggers receptor expression at the cell surface and results in LTP. The interplay of phosphorylation and O‐GlcNAc modification is known as functional switch in many neuronal proteins. In this study it is hypothesized that a same phenomenon underlies as LTD and LTP switching, by predicting the potential of different Ser/Thr residues for phosphorylation, O‐GlcNAc modification and their possible interplay. We suggest the involvement of O‐GlcNAc modification of dephosphorylated GluR1 in maintaining the hippocampal LTD and that of dephosphorylated GluR2 in cerebral LTP. J. Cell. Biochem. 109: 585–597, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
Silkis I 《Bio Systems》2000,57(3):187-196
It is pointed out that Ca(2+)-dependent modification rules for NMDA-dependent (NMDA-independent) synaptic plasticity in the striatum are similar to those in the neocortex and hippocampus (cerebellum). A unitary postsynaptic mechanism of synaptic modification is proposed. It is based on the assumption that, in diverse central nervous system structures, long-term potentiation/depression (LTP/LTD) of excitatory transmission (depression/potentiation of inhibitory transmission, LTDi/LTPi) is the result of an increasing/decreasing the number of phosphorylated AMPA and NMDA (GABA(A)) receptors. According to the suggested mechanism, Ca(2+)/calmodulin-dependent protein kinase II and protein kinase C, whose activity is positively correlated with Ca(2+) enlargement, together with cAMP-dependent protein kinase A (cGMP-dependent protein kinase G, whose activity is negatively correlated with Ca(2+) rise) mainly phosphorylate ionotropic striatal receptors, if NMDA channels are opened (closed). Therefore, the positive/negative post-tetanic Ca(2+) shift in relation to a previous Ca(2+) rise must cause NMDA-dependent LTP+LTDi/LTD+LTPi or NMDA-independent LTD+LTPi/LTP+LTDi. Dopamine D(1)/D(2) or adenosine A(2A)/A(1) receptor activation must facilitate LTP+LTDi/LTD+LTPi due to an augmenting/lowering PKA activity. Activation of muscarinic M(1)/M(4) receptors must enhance LTP+LTDi/LTD+LTPi as a consequence of an increase/decrease in the activity of protein kinase C/A. The proposed mechanism is in agreement with known experimental data.  相似文献   

4.
The acute hippocampal slice preparation has been widely used to study the cellular mechanisms underlying activity-dependent forms of synaptic plasticity such as long-term potentiation (LTP) and long-term depression (LTD). Although protein phosphorylation has a key role in LTP and LTD, little is known about how protein phosphorylation might be altered in hippocampal slices maintained in vitro. To begin to address this issue, we examined the effects of slicing and in vitro maintenance on phosphorylation of six proteins involved in LTP and/or LTD. We found that AMPA receptor (AMPAR) glutamate receptor 1 (GluR1) subunits are persistently dephosphorylated in slices maintained in vitro for up to 8 h. alpha calcium/calmodulin-dependent kinase II (alphaCamKII) was also strongly dephosphorylated during the first 3 h in vitro but thereafter recovered to near control levels. In contrast, phosphorylation of the extracellular signal-regulated kinase ERK2, the ERK kinase MEK, proline-rich tyrosine kinase 2 (Pyk2), and Src family kinases was significantly, but transiently, increased. Electrophysiological experiments revealed that the induction of LTD by low-frequency synaptic stimulation was sensitive to time in vitro. These findings indicate that phosphorylation of proteins involved in N-methyl-D-aspartate (NMDA) receptor-dependent forms of synaptic plasticity is altered in hippocampal slices and suggest that some of these changes can significantly influence the induction of LTD.  相似文献   

5.
Synaptic plasticity is an important mechanism that underlies learning and cognition. Protein phosphorylation by kinases and dephosphorylation by phosphatases play critical roles in the activity-dependent alteration of synaptic plasticity. In this study, we report that Wip1, a protein phosphatase, is essential for long-term potentiation (LTP) and long-term depression (LTD) processes. Wip1-deletion suppresses LTP and enhances LTD in the hippocampus CA1 area. Wip1 deficiency-induced aberrant elevation of CaMKII T286/287 and T305 phosphorylation underlies these dysfunctions. Moreover, we showed that Wip1 modulates CaMKII dephosphorylation. Wip1?/? mice exhibit abnormal GluR1 membrane expression, which could be reversed by the application of a CaMKII inhibitor, indicating that Wip1/CaMKII signaling is crucial for synaptic plasticity. Together, our results demonstrate that Wip1 phosphatase plays a vital role in regulating hippocampal synaptic plasticity by modulating the phosphorylation of CaMKII.  相似文献   

6.
NMDA受体通道参与大鼠脊髓背角C纤维诱发电位LTP的表达   总被引:3,自引:0,他引:3  
以往研究表明,激动NMDA受体是引起海马长时程增强(LTP)的必备条件,而LTP的表达主要与AMPA受体的磷酸化及其受体组装到突触后膜有关.但是,近年来有研究表明NMDA受体通道也参与了LTP的表达.为探讨NMDA受体通道是否参与了脊髓背角C纤维诱发电位LTP的表达,诱导LTP后,分别静脉或脊髓局部给予NMDA受体拮抗剂MK801或APV,观察其作用.发现静脉注射非竞争性NMDA受体MK801(0.1mg/kg)对脊髓LTP无影响,注射0.5mg/kg显著抑制LTP,但是当剂量增高到1.0mg/kg时,抑制作用并未进一步增大.脊髓局部给予MK801也能抑制脊髓背角LTP.为验证上述结果,使用了竞争性NMDA受体拮抗剂APⅤ.结果显示,脊髓局部给予50μmol/LAPⅤ对LTP无影响,100μmol/L对LTP有显著的抑制作用,当浓度升至200μmol/L时,抑制作用并未见进一步增强.因此认为,NMDA受体通道部分地参与了脊髓背角C纤维诱发电位LTP的表达.  相似文献   

7.
In the brain, most fast excitatory synaptic transmission is mediated through L-glutamate acting on postsynaptic ionotropic glutamate receptors. These receptors are of two kinds—the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainate (non-NMDA) and theN-methyl-D-aspartate (NMDA) receptors, which are thought to be colocalized onto the same postsynaptic elements. This excitatory transmission can be modulated both upward and downward, long-term potentiation (LTP) and long-term depression (LTD), respectively. Whether the expression of LTP/LTD is pre-or postsynaptically located (or both) remains an enigma. This article will focus on what postsynaptic modifications of the ionotropic glutamate receptors may possibly underly long-term potentiation/depression. It will discuss the character of LTP/LTD with respect to the temporal characteristics and to the type of changes that appears in the non-NMDA and NMDA receptor-mediated synaptic currents, and what constraints these findings put on the possible expression mechanism(s) for LTP/LTD. It will be submitted that if a modification of the glutamate receptors does underly LTP/LTD, an increase/decrease in the number of functional receptors is the most plausible alternative. This change in receptor number will have to include a coordinated change of both the non-NMDA and the NMDA receptors.  相似文献   

8.
Activation of protein kinase C (PKC) is one of the biochemical pathways thought to be activated during activity-dependent synaptic plasticity in the brain, and long-term potentiation (LTP) and long-term depression (LTD) are two of the most extensively studied models of synaptic plasticity. Here we have examined changes in the in situ phosphorylation level of two major PKC substrates, myristoylated alanine-rich C kinase substrate (MARCKS) and growth-associated protein (GAP)-43/B-50, after pharmacological stimulation or induction of LTP or LTD in the CA1 field of the hippocampus. We find that direct PKC activation with phorbol esters, K+-induced depolarization, and activation of metabotropic glutamate receptors increase the in situ phosphorylation of both MARCKS and GAP-43/B-50. The induction of LTP increased the in situ phosphorylation of both MARCKS and GAP-43/B-50 at 10 min following high-frequency stimulation, but only GAP-43/B-50 phosphorylation remained elevated 60 min after LTP induction. Furthermore, blockade of LTP induction with the NMDA receptor antagonist D-2-amino-5-phosphonopentanoic acid prevented elevations in GAP-43/B-50 phosphorylation but did not prevent the elevation in MARCKS phosphorylation 10 min following LTP induction. The induction of LTD resulted in a reduction in GAP-43/B-50 phosphorylation but did not affect MARCKS phosphorylation. Together these findings show that activity-dependent synaptic plasticity elicits PKC-mediated phosphorylation of substrate proteins in a highly selective and coordinated manner and demonstrate the compartmentalization of PKC-substrate interactions. Key Words: Protein kinase C-Myristoylated alanine-rich C kinase substrate-Growth-associated protein-43-Long-term potentiation-Long-term depression-(RS)-alpha-Methyl-4-carboxyphenylglycine-D-2-Amino-5-ph osphonopentanoic acid-Glutamate.  相似文献   

9.
The postsynaptic N-methyl-d-aspartate (NMDA) receptor activates multiple kinases and changes the phosphorylation of many postsynaptic proteins organized in signaling networks. Because the NMDA receptor is known to regulate gene expression, it is important to examine whether networks of kinases control signaling to gene expression. We examined the requirement of multiple kinases and NMDA receptor-interacting proteins for gene expression in mouse hippocampal slices. Protocols that induce long-term depression (LTD) and long-term potentiation (LTP) activated common kinases and overlapping gene expression profiles. Combinations of kinases were required for induction of each gene. Distinct combinations of kinases were required to up-regulate Arc, Npas4, Egr2, and Egr4 following either LTP or LTD protocols. Consistent with the combinatorial data, a mouse mutant model of the human cognition disease gene SAP102, which couples ERK kinase to the NMDA receptor, showed deregulated expression of specific genes. These data support a network model of postsynaptic integration where kinase signaling networks are recruited by differential synaptic activity and control both local synaptic events and activity-dependent gene expression.  相似文献   

10.
LTP inhibits LTD in the hippocampus via regulation of GSK3beta   总被引:2,自引:0,他引:2  
Glycogen synthase kinase-3 (GSK3) has been implicated in major neurological disorders, but its role in normal neuronal function is largely unknown. Here we show that GSK3beta mediates an interaction between two major forms of synaptic plasticity in the brain, N-methyl-D-aspartate (NMDA) receptor-dependent long-term potentiation (LTP) and NMDA receptor-dependent long-term depression (LTD). In rat hippocampal slices, GSK3beta inhibitors block the induction of LTD. Furthermore, the activity of GSK3beta is enhanced during LTD via activation of PP1. Conversely, following the induction of LTP, there is inhibition of GSK3beta activity. This regulation of GSK3beta during LTP involves activation of NMDA receptors and the PI3K-Akt pathway and disrupts the ability of synapses to undergo LTD for up to 1 hr. We conclude that the regulation of GSK3beta activity provides a powerful mechanism to preserve information encoded during LTP from erasure by subsequent LTD, perhaps thereby permitting the initial consolidation of learnt information.  相似文献   

11.
Philpot BD  Cho KK  Bear MF 《Neuron》2007,53(4):495-502
Light deprivation lowers the threshold for long-term depression (LTD) and long-term potentiation (LTP) in visual cortex by a process termed metaplasticity, but the mechanism is unknown. The decreased LTD/P threshold correlates with a decrease in the ratio of NR2A to NR2B subunits of cortical NMDA receptors (NMDARs) and a slowing of NMDAR-mediated excitatory postsynaptic currents (EPSCs). However, whether and how changes in NR2 subunit expression contribute to LTD and LTP have been controversial. In the present study, we used an NR2A knockout (KO) mouse to examine the role of this subunit in the experience-dependent modulation of NMDAR properties, LTD, and LTP. We found that deletion of NR2A abrogates the effects of visual experience on NMDAR EPSCs and prevents metaplasticity of LTP and LTD. These data support the hypothesis that experience-dependent changes in NR2A/B are functionally significant and yield a mechanism for an adjustable synaptic modification threshold in visual cortex.  相似文献   

12.
Insulin and its receptor are both present in the central nervous system and are implicated in neuronal survival and hippocampal synaptic plasticity. Here we show that insulin activates phosphatidylinositol 3-kinase (PI3K) and protein kinase B (PKB), and results in an induction of long-term depression (LTD) in hippocampal CA1 neurones. Evaluation of the frequency-response curve of synaptic plasticity revealed that insulin induced LTD at 0.033 Hz and LTP at 10 Hz, whereas in the absence of insulin, 1 Hz induced LTD and 100 Hz induced LTP. LTD induction in the presence of insulin required low frequency synaptic stimulation (0.033 Hz) and blockade of GABAergic transmission. The LTD or LTP induced in the presence of insulin was N-methyl-d-aspartate (NMDA) receptor specific as it could be inhibited by alpha-amino-5-phosphonopentanoic acid (APV), a specific NMDA receptor antagonist. LTD induction was also facilitated by lowering the extracellular Mg(2+) concentration, indicating an involvement of NMDA receptors. Inhibition of PI3K signalling or discontinuing synaptic stimulation also prevented this LTD. These results show that insulin modulates activity-dependent synaptic plasticity, which requires activation of NMDA receptors and the PI3K pathway. The results obtained provide a mechanistic link between insulin and synaptic plasticity, and explain how insulin functions as a neuromodulator.  相似文献   

13.
Reversal of long term potentiation (LTP) may function to increase the flexibility and storage capacity of neuronal circuits; however, the underlying mechanisms remain incompletely understood. We show that depotentiation induced by low frequency stimulation (LFS) (2 Hz, 10 min, 1200 pulses) was input-specific and dependent on N-methyl-d-aspartate (NMDA) receptor activation. The ability of LFS to reverse LTP was mimicked by a brief application of NMDA. This NMDA-induced depotentiation was blocked by adenosine A(1) receptor antagonist. However, the reversal of LTP by LFS was unaffected by metabotropic glutamate receptor antagonism. This LFS-induced depotentiation was specifically prevented by protein phosphatase (PP)1 inhibitors, okadaic acid, and calyculin A but not by the PP2A or PP2B inhibitors. Furthermore, by using phosphorylation site-specific antibodies, we found that LFS-induced depotentiation is associated with a persistent dephosphorylation of the GluR1 subunit of amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor at serine 831, a protein kinase C and calcium/calmodulin-dependent protein kinase II (CaMKII) substrate, but not at serine 845, a substrate of cAMP-dependent protein kinase. This effect was mimicked by bath-applied adenosine or NMDA and was specifically prevented by okadaic acid. Also, the increased phosphorylation of CaMKII at threonine 286 and the decreased PP activity seen with LTP were overcome by LFS, adenosine, or NMDA application. These results suggest that LFS erases LTP through an NMDA receptor-mediated activation of PP1 to dephosphorylate amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors and CaMKII in the CA1 region of the hippocampus.  相似文献   

14.
Zhao MG  Toyoda H  Lee YS  Wu LJ  Ko SW  Zhang XH  Jia Y  Shum F  Xu H  Li BM  Kaang BK  Zhuo M 《Neuron》2005,47(6):859-872
Cortical plasticity is thought to be important for the establishment, consolidation, and retrieval of permanent memory. Hippocampal long-term potentiation (LTP), a cellular mechanism of learning and memory, requires the activation of glutamate N-methyl-D-aspartate (NMDA) receptors. In particular, it has been suggested that NR2A-containing NMDA receptors are involved in LTP induction, whereas NR2B-containing receptors are involved in LTD induction in the hippocampus. However, LTP in the prefrontal cortex is less well characterized than in the hippocampus. Here we report that the activation of the NR2B and NR2A subunits of the NMDA receptor is critical for the induction of cingulate LTP, regardless of the induction protocol. Furthermore, pharmacological or genetic blockade of the NR2B subunit in the cingulate cortex impaired the formation of early contextual fear memory. Our results demonstrate that the NR2B subunit of the NMDA receptor in the prefrontal cortex is critically involved in both LTP and contextual memory.  相似文献   

15.
Long-term plasticity typically relies on postsynaptic NMDA receptors to detect the coincidence of pre- and postsynaptic activity. Recent studies, however, have revealed forms of plasticity that depend on coincidence detection by presynaptic NMDA receptors. In the amygdala, cortical afferent associative presynaptic long-term potentiation (LTP) requires activation of presynaptic NMDA receptors by simultaneous thalamic and cortical afferents. Surprisingly, both types of afferent can also undergo postsynaptically induced NMDA-receptor-dependent LTP. In the neocortex, spike-timing-dependent long-term depression (LTD) requires simultaneous activation of presynaptic NMDA autoreceptors and retrograde signalling by endocannabinoids. In cerebellar LTD, presynaptic NMDA receptor activation suggests that similar presynaptic mechanisms may exist. Recent studies also indicate the existence of presynaptic coincidence detection that is independent of NMDA receptors, suggesting that such mechanisms have a widespread role in plasticity.  相似文献   

16.
To evaluate the role in synaptic plasticity of ryanodine receptor type 3 (RyR3), which is normally enriched in hippocampal area CA1, we generated RyR3-deficient mice. Mutant mice exhibited facilitated CA1 long-term potentiation (LTP) induced by short tetanus (100 Hz, 100 ms) stimulation. Unlike LTP in wild-type mice, this LTP was not blocked bythe NMDA receptor antagonist D-AP5 but was partially dependent on L-type voltage-dependent Ca2+ channels (VDCCs) and metabotropic glutamate receptors (mGluRs). Long-term depression (LTD) was not induced in RyR3-deficient mice. RyR3-deficient mice also exhibited improved spatial learning on a Morris water maze task. These results suggest that in wild-type mice, in contrast to the excitatory role of Ca2+ influx, RyR3-mediated intracellular Ca2+ ([Ca2+]i) release from endoplasmic reticulum (ER) may inhibit hippocampal LTP and spatial learning.  相似文献   

17.
PICK1 is a calcium-sensing, PDZ domain-containing protein that interacts with GluR2 and GluR3 AMPA receptor (AMPAR) subunits and regulates their trafficking. Although PICK1 has been principally implicated in long-term depression (LTD), PICK1 overexpression in CA1 pyramidal neurons causes a CaMK- and PKC-dependent potentiation of AMPAR-mediated transmission and an increase in synaptic GluR2-lacking AMPARs, mechanisms associated with NMDA receptor (NMDAR)-dependent long-term potentiation (LTP). Here, we directly tested whether PICK1 participates in both hippocampal NMDAR-dependent LTP and LTD. We show that the PICK1 potentiation of AMPAR-mediated transmission is NMDAR dependent and fully occludes LTP. Conversely, blockade of PICK1 PDZ interactions or lack of PICK1 prevents LTP. These observations demonstrate an important role for PICK1 in LTP. In addition, deletion of PICK1 or blockade of PICK1 PDZ binding prevented NMDAR-dependent LTD. Thus, PICK1 plays a critical role in bidirectional NMDAR-dependent long-term synaptic plasticity in the hippocampus.  相似文献   

18.
There is a point of view that N-methyl-D-aspartate (NMDA) receptor subunit-specific signaling outcomes determine the direction of modifications of efficacy of synaptic transmission. Activation of NMDA receptors that contain the 2A subunit promotes LTP, while LTD requires activation of NMDA receptors containing 2B subunit. However, this hypothesis is inconsistent with some experimental data. For explanation of these data, we put forward an alternative hypothesis. According to this hypothesis, the activation of diverse subtypes of NMDA receptors can lead to ether LTP or LTD depending on the relation between posttetanic Ca2+ rise and increase in postsynaptic Ca2+ concentration produced by previous stimulation. Activation of NMDA receptors with 2B subunit can promote LTD of excitatory input to the pyramidal cell due to presence of these receptors on inhibitory interneurons, induction of the LTP in interneuron, and potentiation of inhibitory transmission between the interneuron and the target pyramidal cell.  相似文献   

19.
Wu LJ  Ren M  Wang H  Kim SS  Cao X  Zhuo M 《PloS one》2008,3(1):e1407
Neurabin is a scaffolding protein that interacts with actin and protein phosphatase-1. Highly enriched in the dendritic spine, neurabin is important for spine morphogenesis and synaptic formation. However, less is known about the role of neurabin in hippocampal plasticity and its possible effect on behavioral functions. Using neurabin knockout (KO) mice, here we studied the function of neurabin in hippocampal synaptic transmission, plasticity and behavioral memory. We demonstrated that neurabin KO mice showed a deficit in contextual fear memory but not auditory fear memory. Whole-cell patch clamp recordings in the hippocampal CA1 neurons showed that long-term potentiation (LTP) was significantly reduced, whereas long-term depression (LTD) was unaltered in neurabin KO mice. Moreover, increased AMPA receptor but not NMDA receptor-mediated synaptic transmission was found in neurabin KO mice, and is accompanied by decreased phosphorylation of GluR1 at the PKA site (Ser845) but no change at the CaMKII/PKC site (Ser831). Pre-conditioning with LTD induction rescued the following LTP in neurabin KO mice, suggesting the loss of LTP may be due to the saturated synaptic transmission. Our results indicate that neurabin regulates contextual fear memory and LTP in hippocampal CA1 pyramidal neurons.  相似文献   

20.
Tyrosine phosphorylation of the NR2A and NR2B subunits of the N-methyl-d-aspartate (NMDA) receptor by Src protein-tyrosine kinases modulates receptor channel activity and is necessary for the induction of long term potentiation (LTP). Deletion of H-Ras increases both NR2 tyrosine phosphorylation and NMDA receptor-mediated hippocampal LTP. Here we investigated whether H-Ras regulates phosphorylation and function of the NMDA receptor via Src family protein-tyrosine kinases. We identified Src as a novel H-Ras binding partner. H-Ras bound to Src but not Fyn both in vitro and in brain via the Src kinase domain. Cotransfection of H-Ras and Src inhibited Src activity and decreased NR2A tyrosine phosphorylation. Treatment of rat brain slices with Tat-H-Ras depleted NR2A from the synaptic membrane, decreased endogenous Src activity and NR2A phosphorylation, and decreased the magnitude of hippocampal LTP. No change was observed for NR2B. We suggest that H-Ras negatively regulates Src phosphorylation of NR2A and retention of NR2A into the synaptic membrane leading to inhibition of NMDA receptor function. This mechanism is specific for Src and NR2A and has implications for studies in which regulation of NMDA receptor-mediated LTP is important, such as synaptic plasticity, learning, and memory and addiction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号