首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By means of NADPH-diaphorase (NADPH-d) histochemistry and nitric oxide synthase (NOS) immunohistochemistry, we demonstrate that considerable numbers of NADPH-d-positive neurons are distributed throughout the canine superior cervical ganglion (SCG). These neurons also show NOS immunoreactivity. This finding indicates that NADPH-d histochemistry, a simple and reliable technique, can be used as a reliable marker of NOS activity in the sympathetic innervation of canine head and neck. The present findings suggest that the participation of nitric oxide in the SCG differs greatly between species.  相似文献   

2.
Carbon monoxide (CO) and nitric oxide (NO) are two endogenously produced gases that can function as second messenger molecules in the nervous system. The enzyme systems responsible for CO and NO biosynthesis are heme oxygenase (HO) and nitric oxide synthase (NOS), respectively. The present study was undertaken to examine the distribution of HO-2 and NOS of the trigeminal primary afferent neurons of the rat, located in the trigeminal ganglion (TG) and mesencephalic trigeminal nucleus (MTN), using histochemistry and immunohistochemistry. NADPH-d staining was found in most neurons in TG. The intensely NADPH-d-stained neurons were small- or medium-sized, while the large-sized neurons were less intensely stained. Immunocytochemistry for HO-2 revealed that almost all neurons in TG expressed HO-2, but they did not appear cell size-specific pattern. NADPH-d and HO-2 positive neurons appeared the same pattern, which was NADPH-d activity and HO-2 expression progressively declined from the caudal to rostral part of the MTN. A double staining revealed that the colocalization of NADPH-d/HO-2 neurons was 97.3% in TG and 97.6% in MTN. The remarkable parallels between NADPH-d and HO-2 suggest that NO and CO are likely neurotransmitters and mediate the orofacial nociception and sensory feedback of the masticatory reflex arc together.  相似文献   

3.
Summary Paravertebral (superior cervical and stellate), prevertebral (coeliac-superior mesenteric, inferior mesenteric) and pelvic (hypogastric) sympathetic ganglia of the rat were investigated by enzyme histochemistry to ascertain the distribution of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-diaphorase) activity. In the paravertebral ganglia the majority of the sympathetic neuronal perikarya contained lightly and homogeneously distributed formazan reaction product but there was a range of staining intensities amongst the neuron population. In contrast, in the prevertebral ganglia, intense NADPH-diaphorase staining was present in certain neurons. Firstly, a population of neurons of the coeliac-superior mesenteric ganglion complex were surrounded by densely NADPH-diaphorase-positive baskets of fibres and other stained fibres were seen in interstitial nerve bundles and in nerve trunks connected to the ganglion complex. Secondly, in both the inferior mesenteric ganglion and hypogastric ganglion there were many very intensely NADPH-diaphorase positive neurons. Stained dendritic and axonal processes emerged from these cell bodies. In both ganglia this population of neurons was smaller in size than the lightly stained ganglionic neurons and commonly had only one long (presumably axonal) process. The similarity of these highly NADPH-diaphorase-positive neurons with previously described postganglionic parasympathetic neurons in the hypogastric ganglion is discussed.  相似文献   

4.
Mediation of the respiratory reflex effects of an exogenous serotonin challenge goes beyond the lung vagi and is suggested to involve the nodose ganglia. In the present experiments the effects of an intravenous serotonin challenge on breathing pattern were studied in 8 pentobarbitone-chloralose anaesthetised cats. Bolus injection of serotonin oxalate (50 µg/kg) into the right femoral vein evoked prompt apnoea of 19.2 (±2.4)-second duration in all 8 cats while intact; the apnoea was much shorter after midcervical vagal section (8.1±0.9 s, p<0.001), and was abolished by supranodose vagotomy. In post-apnoeic breaths, the tidal volume was reduced from a baseline of 34.1±4.0 to 13.5±1.1 ml (p<0.001) prior to, and from a baseline of 43.9±5.4 to 33.8±6.6 ml (p<0.01) after midcervical vagotomy; the serotonin challenge did not affect tidal volume following supranodose vagal section (p=0.4). The increase in respiratory rate found in intact (p<0.001) and midcervically vagotomised cats (p<0.01) was eliminated by the neurotomy above the nodose ganglia. Supranodose vagotomy altered cardiovascular response to serotonin by replacing the fall in blood pressure with an increase. These data suggest that the sequelae of serotonin-induced pulmonary chemoreflex, i.e. respiratory arrest, cardiovascular changes and post-apnoeic pattern of breathing require intact nodose ganglia.  相似文献   

5.
Nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase histochemistry, which indicates the presence of neural nitric oxide synthase, the enzyme responsible for the generation of nitric oxide, was used in combination with retrograde labelling methods to determine, in whole-mounts and sections of rat major pelvic ganglia, whether neurons destined for the penile corpora cavernosa were able to produce nitric oxide. In whole-mount preparations of pelvic ganglia, among the 607±106 retrogradely labelled neurons innervating the penile corpora cavernosa, 84±7% were NADPH-diaphorase-positive, 30±7% of which were intensely histochemically stained. In serial sections of pelvic ganglia, out of a mean count of 451 retrogradely labelled neurons, 65% stained positively for NADPH-diaphorase. An average of 1879±363 NADPH-diaphorase positive cell bodies was counted in the pelvic ganglion. In the major pelvic ganglion, neurons both fluorescent for Fluorogold or Fast Blue and intensely stained for NADPH-diaphorase were consistently observed in the dorso-caudal part of the ganglia in the area close to the exit of the cavernous nerve and within this nerve. This co-existence was much less constant in other parts of the ganglion. In the rat penis, many NADPH-diaphorase-positive fibres and varicose terminals were observed surrounding the penile arteries and running within the wall of the cavernous spaces. This distribution of NADPH-diaphorase-positive nerve cells and terminals is consistent with the idea that the relaxation of the smooth muscles of the corpora cavernosa and the dilation of the penile arterial bed mediated by postganglionic parasympathetic neurons is attributable to the release of nitric oxide and that nitric oxide plays a crucial role in penile erection. Moreover, the existence in the pelvic ganglion of a large number of NADPH-diaphorase-positive neurons that are not destined for the corpora cavernosa suggests that nitric oxide is probably also involved in the function of other pelvic tissues.  相似文献   

6.
There is strong evidence that NADPH-diaphorase can be used as a marker for neurones that employ nitric oxide as a messenger molecule. In the present study, the NADPH-diaphorase activity of intracardiac neurones and nerve terminals in whole-mount stretch preparations and sections of the newborn and adult guinea-pig atria and interatrial septum has been examined histochemically. Together with epicardial, endothelial and endocardial cells, which displayed some NADPH-diaphorase staining, a subpopulation of intracardiac neurones exhibited moderate-heavy labelling for NADPH-diaphorase, while the majority of neurones were only lightly stained or negative. Intracardiac ganglia containing positive neuronal cell bodies were located between the epicardial cells and atrial myocytes in four main regions: in association with the superior and inferior vena cavae, the points of entry of the pulmonary veins, and within the interatrial septum. Nerve terminals exhibiting NADPH-diaphorase activity were seen throughout the atrial tissue, forming basket-like endings around intracardiac neuronal cell bodies; varicose terminals were also observed on atrial myocytes and other non-neuronal structures. A proportion of the nerve fibres was clearly of intrinsic origin, other terminals may well have originated from neuronal cell bodies present outside the heart.  相似文献   

7.
Recently, we showed that Paramecium primaurelia synthesizes molecules functionally related to the cholinergic system and involved in modulating cell-cell interactions leading to the sexual process of conjugation. It is known that nitric oxide (NO) plays a role in regulating the release of transmitter molecules, such as acetylcholine, and that the NO biosynthetic enzyme, nitric oxide synthase (NOS), shows nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) activity. In this work, we detected the presence of NADPH-d activity in P. primaurelia. We characterized this activity histochemically by examining its specificity for beta-NADPH and alpha-NADH co-substrates, and sensitivity both to variations in chemico-physical parameters and to inhibitors of enzymes showing NADPH-d activity. Molecules immunologically related to NOS were recognized by the anti-rat brain NOS (bNOS) antibody. Moreover, bNOS immunoreactivity and NADPH-d activity sites were found to be co-localized. The non-denaturing electrophoresis, followed by exposure to beta-NADPH or alpha-NADH co-substrates, revealed the presence of a band of apparent molecular mass of about 124 kDa or a band of apparent molecular mass of about 175 kDa, respectively. In immunoblot experiments, the bNOS antibody recognized a single band of apparent molecular mass of about 123 kDa.  相似文献   

8.
Summary A dividing granule-containing cell is described in the pelvic ganglion of the guinea-pig two days after pelvic nerve section. This appears to be the first report of a dividing granule-containing cell in adult tissue.  相似文献   

9.
The origin and ultrastructural localization of NADPH-diaphorase (NADPH-d) in the olfactory afferent pathway of the crayfishPacifastacus leniusculus was investigated by means of histochemical techniques. Sensory axons in the antennular nerve and the olfactory lobe glomeruli of normal animals expressed NADPH-d staining properties. The NADPH-d staining of each glomerulus was regionalized showing pronounced staining in the apical cap-region. Following ablation of the chemosensory input for 30 days, the staining properties of the antennular nerve and the glomeruli were reduced. At the electron microscopic level, the NADPH-d precipitate was found to be distributed on various membranes in neuronal profiles and glial cells. Stained neuronal profiles were frequently observed in the glomeruli, whereas the number of positive glial cells was low. Almost all NADPH-d positive profiles in the neuropil had an intraglomerular localization. The present findings suggest that NADPH-d in the crayfish olfactory lobe neuropil is localized to terminals of olfactory sensory axons.  相似文献   

10.
Standard microelectrode techniques were used to study the impulse activity of different types of nodosal ganglion neurons in the course of the development of myocardial ischemia. The cardiopulmonary late inspiratory and inspiratory-expiratory neuronal responses were estimated upon ligation of the coronary artery during the first respiratory cycle after blood flow stoppage. Spontaneous activity of cardiopulmonary neurons was not dependent on coronary circulation disturbances at the moment of coronary artery ligation. Later on, however, during the development of myocardial ischemia, there occurred substantial changes in all the types of nodosal ganglion neuronal activity, excluding real inspiratory neurons.  相似文献   

11.
Summary The distributions within the coeliac ganglion of different chemically coded subgroups of noradrenaline neurons, and the relationships between these neurons and nerve fibres projecting to the ganglion from the intestine, have been assessed quantitatively by use of an immunohistochemical double-staining method. Noradrenaline (NA) neurons made up 99% of all cell bodies. Of these, 21% were also reactive for somatostatin (NA/SOM neurons), 53% were also reactive for NPY (NA/NPY neurons), and 26% were not reactive for either peptide. NA neurons without reactivity for any of the peptides whose localization was tested have been designated NA/-. A small percentage, about 1%, of neurons were reactive for both NPY and SOM. The three major types of NA neurons were arranged in clumps or ribbons throughout the ganglia, with a tendency for NA/SOM neurons to be medial and NA/NPY neurons to be lateral in the ganglia. A small group of neurons (<1%) encoded with dynorphin, NPY and vasoactive intestinal peptide (VIP) was encountered. VIP-immunoreactive nerve terminals, projecting to the ganglion from cell bodies in the intestine, ended around NA/SOM and NA/neurons but not around NA/NPY neurons. Thus, the VIP axons from the intestine end selectively around neurons that modify intestinal function (NA/SOM and NA/-neurons) but not around neurons, the terminals of which supply blood vessels (NA/NPY neurons).  相似文献   

12.
Nicotinamide-adenine-dinucleotide phosphate-diaphorase positive cells in the chick thymus were studied at the electron-microscopic level. The formazan, a marker for the enzyme nitric oxide synthase, labelled cystic, undifferentiated, endocrine-like and myoid cells in the medulla. Some lymphoid and reticulo-epithelial cells were also lightly labelled. The reaction product was predominantly bound to the membranes of the endoplasmic reticulum in all the cells labelled and also to the nuclear envelope and outer membrane of mitochondria. The Golgi apparatus and the plasma membrane were free of the reaction product.  相似文献   

13.
The nodose ganglion is the distal cranial ganglion of the vagus nerve which provides sensory innervation to the heart and other viscera. In this study, removal of the neuronal precursors which normally populate the right nodose ganglion was accomplished by ablating the right nodese placode in stage 9 chick embryos. Subsequent histological evaluation showed that in 54% of lesioned embryos surviving to day 6, the right ganglion was absent. Most embryos surviving to day 12, however, had identifiable right ganglia. In day 12 embryos, the right ganglion which developed was abnormal, with ganglion volume and ganglion cell diameter reduced by 50% and 20%, respectively, compared to control ganglia. To investigate the source of the neuron population in the regenerated ganglion, we combined nodose placode ablation with bilateral replacement of chick with quail cardiac neural crest (from mid-otic placode to somite 3). These cells normally provide only non-neuronal cells to the nodose ganglion, but produce neurons in other regions. At day 9, quail-derived neurons were identified in the right nodose ganglia of these chimeras, indicating that cardiac neural crest cells can generate neurons in the ganglion when placode-derived neurons are absent or reduced in number. On the other hand, we found that sympathetic neural crest (from somites 10 to 20) does not support ganglion development, suggesting that only neural crest cells normally present in the ganglion participate in reconstituting its neuronal population. Our previous work has shown that right nodose placode ablation produces abnormal cardiac function, which mimics a life-threatening human heart condition known as long QT syndrome. The present results suggest that the presence of neural crest-derived neurons in the developing right nodose ganglion may contribute to the functional abnormality in long QT syndrome.This work was supported by grant PO1 HL 36059  相似文献   

14.
The distributions of neuronal nitric oxide synthase immunoreactivity (NOS-IR) and NADPH-diaphorase (NADPH-d) activity were compared in the cat spinal cord. NOS-IR in neurons around the central canal, in superficial laminae (I and II) of the dorsal horn, in the dorsal commissure, and in fibers in the superficial dorsal horn was observed at all levels of the spinal cord. In these regions, NOS-IR paralleled NADPH-d activity. The sympathetic autonomic nucleus in the rostral lumbar and thoracic segments exhibited prominent NOS-IR and NADPH-d activity, whereas the parasympathetic nucleus in the sacral segments did not exhibit NOS-IR or NADPH-d activity. Within the region of the sympathetic autonomic nucleus, fewer NOS-IR cells were identified compared with NADPH-d cells. The most prominent NADPH-d activity in the sacral segments occurred in fibers within and extending from Lissauer's tract in laminae I and V along the lateral edge of the dorsal horn to the region of the sacral parasympathetic nucleus. These afferent projections did not exhibit NOS-IR; however, NOS-IR and NADPH-d activity were demonstrated in dorsal root ganglion cells (L7-S2). The results of this study demonstrate that NADPH-d activity is not always a specific histochemical marker for NO-containing neural structures.  相似文献   

15.
NADPH-diaphorase reactivity in adult and developing cat retinae   总被引:4,自引:0,他引:4  
Summary We have examined the distribution and size of nicotinamide adenine dinucleotide phosphate (NADPH) diaphorase reactivity in adult and developing cat retinae. From late gestation E (embryonic day) 58 to adulthood, NADPH-diaphorase reactivity was detected in amacrine cells with somata located in the inner nuclear layer (INL) and ganglion cell layer (GCL) and in processes spreading in the middle strata of the inner plexiform layer (IPL). Reactivity was also present in small rounded profiles located in the outer plexiform layer (OPL) and thought to be cone pedicles. The number of NADPH-diaphorase reactive cells present in adult retinae was about 40 000; 75% of these somata were located in the GCL, the remainder in the INL. At birth, however, there was more than double this number of labelled somata (85 000), the total gradually declining to reach adult values by P (postnatal day) 25. This loss of NADPH-diaphorase reactive somata may be partly explained by natural cell death (apoptosis) or by loss of the active diaphorase from the cells. The density distributions of NADPH-diaphorase reactive cells in the INL and GCL of retinal wholemounts reached maxima in regions slightly inferior to the area centralis at all ages studied. The principal topographical difference between adult and developing retinae was that the density gradient of NADPH-diaphorase reactive cells was steeper in adults than at younger ages. During early development, the somal and dendritic field diameters of NADPH-diaphorase reactive cells at the area centralis were about the same size as those in the periphery; by adulthood, cells in the periphery were larger. The change in the somal diameter gradient apparently emerged because of a reduction in somal size of the centrally located cells. The change in the dendritic diameter gradient emerged because of a greater growth of peripheral cells as compared to central cells. We suggest that NADPH-diaphorase may have a role in the formation of synapses in the developing IPL.  相似文献   

16.
应用细胞内生物电记录技术观察豚鼠腹腔神经节(CG)神经元自发快兴奋性突触后电位(f-EPSP)和动作电位(AP)的特征,分析其形成的可能机制。发现在豚鼠离体CG上存在自发f-EPSP和AP,发放频率不同。自发f-EPSP的幅度(5.67±2.66)mV(n=26),明显低于刺激内脏大神经诱发f-EPSP的幅度(13.26±6.74)mV(n=34,P<0.01),而自发的AP后超极化幅度(AHPA)(13.86±4.24)mV(n=30),明显高于刺激内脏大神经诱发的AHPA(8.99±2.79)mV(n=54,P<0.01)。六烃季铵或低Ca2 /高Mg2 Krebs液能完全阻断自发的AP,但自发的f-EPSP则不被完全阻断。结果提示豚鼠离体CG神经元有自发性电活动,这除与突触前膜ACh的随机释放有关以外,可能还有对Ca2 不敏感的其他递质介导。  相似文献   

17.
Summary The digestive tract of the guinea-pig, from the esophagus to the rectum, was examined in detail to determine the distribution and relative abundances of neurons in these organs that project to the coeliac ganglion and the routes by which their axons reach the ganglion. A retrogradely transported neuronal marker, Fast Blue, was injected into the coeliac ganglion. The esophagus, stomach, gallbladder, pancreas, duodenum, small intestine, caecum, proximal colon, distal colon and rectum were analysed for labelled neurons. Retrogradely labelled neurons were found only in the myenteric plexus of these organs, and in the pancreas. No labelled neurons were found in the gallbladder or the fundus of the stomach, or in the submucous plexus of any region. A small number of labelled neurons was found in the gastric antrum. An increasing density of labelled neurons was found along the duodenum. Similarly, an increasing density of labelled neurons was found from proximal to distal along the jejuno-ileum. However, the greates densities of labelled neurons were in the large intestine. many labelled neurons were found in the caecum, including a high density underneath its taeniae. An increasing density of labelled neurons was found along the length of the proximal colon, and labelled neurons were found in the distal colon and rectum. In total, more labelled cell bodies occurred in the large intestine than in the small intestine. The routes taken by the axons of viscerofugal neurons were ascertained by lesioning the nerve bundles which accompany vessels supplying regions of the digestive tract. Viscerofugal neurons of the caecum project to the coeliac ganglion via the ileocaeco-colic nerves; neurons in the proximal colon project to the ganglion via the right colic nerves, and neurons in the distal colon project to the ganglion via the mid colic and intermesenteric nerves. Neurons in the rectum project to the coeliac ganglion via the intermesenteric nerves. These nerves (except for the intermesenterics) all join nerve bundles from the small intestine that follow the superior mesenteric artery. All viscerofugal neurons of the caecum were calbindin-immunoreactive (calb-IR) and 94% were immunoreactive for vasoactive intestinal peptide (VIP-IR). In the proximal colon, 49% of labelled neurons were calb-IR and 85% were VIP-IR. In the distal colon, 80% of labelled neurons were calb-IR and 71% were VIP-IR.  相似文献   

18.
Although locust feeding has been well studied, our understanding of the neural basis of feeding-related motor patterns is still far from complete. This paper focuses on interactions between the pattern of rhythmic movements of the mouth appendages, governed by the suboesophageal ganglion (SOG), and the foregut movements, controlled by the frontal ganglion (FG), in the desert locust. In vitro simultaneous extracellular nerve recordings were made from totally isolated ganglia as well as from fully interconnected SOG-FG and brain-SOG-FG preparations. SOG-confined bath application of the nitric oxide donor, SNP, or the phosphodiesterase antagonist, IBMX, each followed by the muscarinic agonist pilocarpine, consistently induced robust fictive motor patterns in the SOG. This was observed in both isolated and interconnected preparations. In the brain-SOG-FG configuration the SOG-confined modulator application had an indirect excitatory effect on spontaneous FG rhythmic activity. Correlation between fictive motor patterns of the two ganglia was demonstrated by simultaneous changes in burst frequency. These interactions were found to be brain-mediated. Our results indicate the presence of intricate neuromodulation-mediated circuit interactions, even in the absence of sensory inputs. These interactions may be instrumental in generating the complex rhythmic motor patterns of the mandibles and gut muscles during locust feeding or ecdysis-related air swallowing.  相似文献   

19.
A histochemical investigation of age-related changes that occur with respect to the localization of NADPH-diaphorase in the ganglionated plexus of the guinea-pig gallbladder was carried out. In all age groups examined (embryonic stages day 34 and 52, 2 to 4-day old, 6-month old and 2-year old), the mean percentage of NADPH-diaphorase-positive neurons per ganglion was obtained by taking the number of neurons that were immunoreactive to protein gene product 9.5 (a general neuronal marker) as 100%. In addition, the possible co-existence of NADPH-diaphorase and nitric oxide synthase in the ganglionated plexus of 2 to 4-day old and 6-month old guinea-pig gallbladder was investigated. NADPH-diaphorase was not present in the ganglionated plexus of the gallbladder at embryonic day 34. At embryonic day 52, all the protein gene product 9.5-immunoreactive neurons showed positive staining to NADPH-diaphorase; this dropped to a minimum at 2–4 days (26.7%), rose slightly at 6 months (33.6%), and finally returned close to the 100% value at 2 years. In the gallbladders of 2-year old guinea-pigs, some (3 out of 10) ganglia were devoid of protein gene product 9.5-immunoreactive neurons, but NADPH-diaphorase-stained granules were found within the ganglia. However, all those neurons that were immunopositive to protein gene product 9.5 also expressed NADPH-diaphorase. Moreover, NADPH-diaphorase-positive neurons in the gallbladder of 2 to 4-day-old and 6-month-old guinea-pigs were found to express nitric oxide synthase.  相似文献   

20.
Coexistence of NADPH-diaphorase with vasopressin and oxytocin was studied in the magnocellular neurosecretory nuclei of the rat hypothalamus by use of sequential histochemical and immunocytochemical techniques in the same sections. Coexistence was found in all the nuclei examined (supraoptic, paraventricular, circular, fornical, and in some isolated neurons located in the hypothalamic area between the paraventricular and supraoptic nuclei). The ratios of neurons expressing both markers (NADPH-diaphorase and vasopressin, NADPH-diaphorase and oxytocin) in each of the nuclei were very similar. Although further studies must be carried out, the partial coexistence found in all nuclei suggests that NADPH-diaphorase is probably not related to general mechanisms involving vasopressin and oxytocin, but rather in specific functions shared by certain hypothalamic neuronal cell populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号