首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
RNA polymerase III (Pol III) as well as Pol II (35S) promoters are able to drive hairpin RNA (hpRNA) expression and induce target gene silencing in plants. siRNAs of 21 nt are the predominant species in a 35S Pol II line, whereas 24- and/or 22-nucleotide (nt) siRNAs are produced by a Pol III line. The 35S line accumulated the loop of the hpRNA, in contrast to full-length hpRNA in the Pol III line. These suggest that Pol II and Pol III-transcribed hpRNAs are processed by different pathways. One Pol III transgene produced only 24-nt siRNAs but silenced the target gene efficiently, indicating that the 24-nt siRNAs can direct mRNA degradation; specific cleavage was confirmed by 5' rapid amplification of cDNA ends (RACE). Both Pol II- and Pol III-directed hpRNA transgenes induced cytosine methylation in the target DNA. The extent of methylation is not correlated with the level of 21-nt siRNAs, suggesting that they are not effective inducers of DNA methylation. The promoter of a U6 transgene was significantly methylated, whereas the promoter of the endogenous U6 gene was almost free of cytosine methylation, suggesting that endogenous sequences are more resistant to de novo DNA methylation than are transgene constructs.  相似文献   

10.
Cao X  Jacobsen SE 《Current biology : CB》2002,12(13):1138-1144
Proper DNA methylation patterning requires the complementary processes of de novo methylation (the initial methylation of unmethylated DNA sequences) and maintenance methylation (the faithful replication of preexisting methylation). Arabidopsis has two types of methyltransferases with demonstrated maintenance activity: MET1, which maintains CpG methylation and is homologous to mammalian DNMT1, and CHROMOMETHYLASE 3 (CMT3), which maintains CpNpG (N = A, T, C, or G) methylation and is unique to the plant kingdom. Here we describe loss-of-function mutations in the Arabidopsis DOMAINS REARRANGED METHYLASE (DRM) genes and provide evidence that they encode de novo methyltransferases. drm1 drm2 double mutants retained preexisting CpG methylation at the endogenous FWA locus but blocked de novo CpG methylation that is normally associated with FWA transgene silencing. Furthermore, drm1 drm2 double mutants blocked de novo CpNpG and asymmetric methylation and gene silencing of the endogenous SUPERMAN (SUP) gene, which is normally triggered by an inverted SUP repeat. However, drm1 drm2 double mutants did not show reactivation of previously established SUPERMAN epigenetic silenced alleles. Thus, drm mutants prevent the establishment but not the maintenance of gene silencing at FWA and SUP, suggesting that the DRMs encode the major de novo methylation enzymes affecting these genes.  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
A SNF2-like protein facilitates dynamic control of DNA methylation   总被引:7,自引:0,他引:7  
DRD1 is a SNF2-like protein previously identified in a screen for mutants defective in RNA-directed DNA methylation of a seed promoter in Arabidopsis. Although the initial study established a role for DRD1 in RNA-directed DNA methylation, it did not address whether DRD1 is needed for de novo or maintenance methylation, or whether it is required for methylation of other target sequences. We show here that DRD1 is essential for RNA-directed de novo methylation and acts on different target promoters. In addition, an unanticipated role for DRD1 in erasure of CG methylation was shown when investigating maintenance methylation after segregating away the silencing trigger. DRD1 is unique among known SNF2-like proteins in facilitating not only de novo methylation of target sequences in response to RNA signals, but also loss of methylation when the silencing inducer is withdrawn. The opposing roles of DRD1 could contribute to the dynamic regulation of DNA methylation.  相似文献   

19.
20.
siRNA诱导的DNA甲基化与肿瘤的发生   总被引:4,自引:0,他引:4  
siRNA诱导的基因沉默最早只被认为是发生在细胞质内的转录后水平的调控过程,随着siRNA指导DNA甲基化现象的发现,已证实siRNA可以通过指导基因组表观修饰引起转录水平基因沉默.DNA甲基化曾被预言是致癌作用的一种表观遗传学机制,肿瘤发生过程中抑瘤基因异常沉默涉及到基因启动子区域DNA的甲基化.分析了这两个过程中内在的关系,探索siRNA对肿瘤细胞中基因异常表达的影响和作用.这将有助于肿瘤生物学和表观遗传学的研究,也会为研发防治肿瘤的新方法和新途径提供新的思路.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号